

Recap puzzle

Concept	Equation	Definition	
Exponential decay	$N(t) = N_0 e^{-\lambda t}$	Number of nuclei that have decayed in the time t	
Activity	$A(t) = A_0 e^{-\lambda t}$	Number of nuclei decaying per unit time	
Decay probability	$P_{decay}(t) = \lambda e^{-\lambda t}$	Probability of a single nucleus decaying in the interval t	
Lifetime	$\tau = 1/\lambda$	Maximum time until an unstable nucleus decays	
Half-life	$t_{1/2} = In2/\lambda$	Time by which half the radioactive sample has not yet decayed	

Answers

Concept	Equation	Definition	
Exponential decay	$N(t) = N_0 e^{-\lambda t}$	Number of nuclei that have not decayed by time t	
Activity	$A(t) = A_0 e^{-\lambda t}$	Number of nuclei decaying per unit time, where $A_0 = \lambda N_0$	
Decay probability	$P_{decay}(t) = \lambda e^{-\lambda t}$	Probability of a single nucleus decaying in the interval $t \rightarrow t+dt$	
Mean lifetime or simply <i>lifetime</i>	τ = 1/λ	Mean time until an unstable nucleus decays	
Half-life	$t_{1/2} = In2/\lambda$	Time after which half the radioactive sample has decayed	

Simple decay

If a sample of material consists of nucleus A which is unstable and decays to nucleus B (of which there are initially none) we have simply:

 $A \rightarrow B$

Nomenclature:

The initial number of each nucleus is:

$$N_A(t=0) = N_0$$
 (= total number of nuclei)

$$N_{\scriptscriptstyle R}(t=0)=0$$

As nucleus A decays into nucleus B

$$N_A(t) = N_0 e^{-\lambda_A t}$$

and since

$$N_0 = N_A(t) + N_B(t)$$

$$N_{R}(t) = N_{0}(1 - e^{-\lambda_{A}t})$$

Alternative decay modes

An initial nuclide A that decays into two products: $A \rightarrow B + C$

We have at any time t: $N_A(t) + N_B(t) + N_C(t) = N_0$ and

$$\frac{dN_A}{dt} = -\lambda_A N_A, \quad \frac{dN_B}{dt} = \lambda_B N_A, \quad \frac{dN_C}{dt} = \lambda_C N_A$$

with $\lambda_A = \lambda_B + \lambda_C$. The decay constants λ_B and λ_C only determine the probabilities of the decays to products B or C

$$N_B(t) = \frac{\lambda_B}{\lambda_A} N_0 (1 - e^{-\lambda_A t})$$
$$N_C(t) = \frac{\lambda_C}{\lambda_A} N_0 (1 - e^{-\lambda_A t})$$

and

$$N_A(t) = N_0 - N_B(t) - N_C(t) = N_0 e^{-\lambda_A t}$$

Decay series (or chains)

Many heavy nuclei decay via complicated series involving several α and β decays. Consider the simple case of $A \rightarrow B \rightarrow C$, where C is stable and only A is present initially:

The number of nuclei A vary according to:

$$N_A(t) = N_o e^{-\lambda_A t}$$

The number of nuclei B as a function of time can be found from:

$$\frac{dN_B(t)}{dt} = -\lambda_B N_B(t) + \lambda_A N_A(t) \tag{1}$$

where the first term is the decay of nuclei B and the second term is due to B being created from the decay of A.

Integrating, we can get $N_B(t)$ and its activity $A_B(t)$:

$$N_B(t) = \frac{\lambda_A}{\lambda_B - \lambda_A} N_0 \left(e^{-\lambda_A t} - e^{-\lambda_B t} \right) \tag{2}$$

$$A_B(t) = \lambda_B N_B(t) = \frac{\lambda_A \lambda_B}{\lambda_B - \lambda_A} N_0 \left(e^{-\lambda_A t} - e^{-\lambda_B t} \right)$$

How was equation (2) derived?

We multiply both sides of the equation by $e^{\lambda_B t}$

$$\frac{dN_B(t)}{dt} = -\lambda_B N_B(t) + \lambda_A N_A \qquad \times e^{\lambda_B t}$$

and we rearrange to obtain

$$e^{\lambda_B t} \frac{dN_B(t)}{dt} + \lambda_B e^{\lambda_B t} N_B(t) = \lambda_A N_A e^{\lambda_B t}$$

This can be written as

$$\frac{d}{dt}(e^{\lambda_B t} N_B(t)) = \lambda_A N_A e^{\lambda_B t}$$

where we use $\,N_A(t)=N_0e^{-\lambda_At}\,$ to obtain the form

$$\frac{d}{dt}(e^{\lambda_B t} N_B(t)) = \lambda_A N_0 e^{(\lambda_B - \lambda_A)t}$$

How was eq.(2) derived (part II)

We multiply by dt and integrate both sides

$$\int_{0}^{t} d(e^{\lambda_B t} N_B(t)) = \int_{0}^{t} \lambda_A N_0 e^{(\lambda_B - \lambda_A)t} dt$$

to obtain

$$N_B(t)e^{\lambda_B t} - 0 = \frac{\lambda_A}{\lambda_B - \lambda_A} N_0(e^{(\lambda_B - \lambda_A)t} - 1)$$

which gives us

$$N_B(t) = \frac{\lambda_A}{\lambda_B - \lambda_A} N_0(e^{-\lambda_A t} - e^{-\lambda_B t})$$

QED

$A \rightarrow B \rightarrow C$ decay series

For the stable element C from such a series one would obtain:

$$N_C(t) = N_0 \left[1 - \frac{\lambda_B e^{-\lambda_A t} - \lambda_A e^{-\lambda_B t}}{\lambda_B - \lambda_A} \right]$$

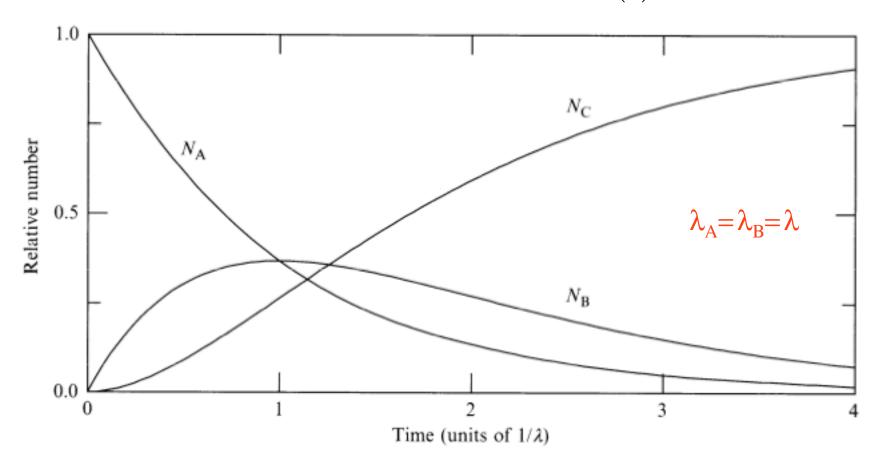
which we derived using $N_0 = N_A(t) + N_B(t) + N_C(t)$

Instead we will focus on $N_B(t)$ and investigate a few special cases:

- $\lambda_A \gg \lambda_B$ (parent decays quickly)
- $\lambda_A = \lambda_B$
- $\lambda_A < \lambda_B$
- $\lambda_A \ll \lambda_B$ (parent is long lived)

$A \rightarrow B \rightarrow C$ decay series for $\lambda_A \gg \lambda_B$

Parent decays quickly, $\tau_A \ll \tau_B$


The number of daughter nuclei rises to maximum, then decays with constant λ_B .

$$N_B(t) = \underbrace{\lambda_A N_0}_{\text{--}\lambda_A} N_0 \underbrace{(e^{-\lambda_A t})}_{\text{--}0} e^{-\lambda_B t} \xrightarrow{\lambda_A \gg \lambda_B} N_0 e^{-\lambda_B t}$$

After a given time, daughter nuclei decay almost as if there were no parent nuclei.

$A \rightarrow B \rightarrow C$ decay series for $\lambda_A = \lambda_B$

The solution of eq.(1) when λ_A = λ_B = λ is: $N_B(t)=\lambda N_0 t e^{-\lambda t}$

$A \rightarrow B \rightarrow C$ decay series for $\lambda_A < \lambda_B$

Ratio of activities becomes constant after sufficiently long time:

$$\frac{A_B}{A_A} = \frac{\lambda_B N_B}{\lambda_A N_A} = \frac{\lambda_B}{\lambda_B - \lambda_A} (1 - e^{-(\lambda_B - \lambda_A)t})$$

$$\approx \frac{\lambda_B}{\lambda_B - \lambda_A} \quad \text{when} \quad t \to \infty$$

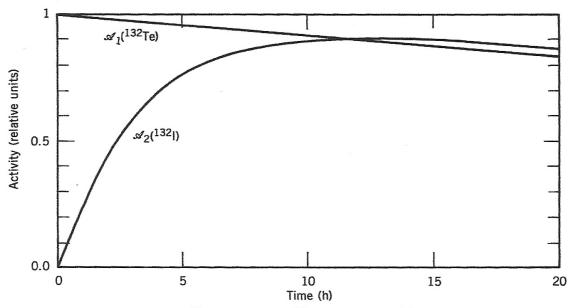
$A \rightarrow B \rightarrow C$ decay series for $\lambda_A \ll \lambda_B$

Parent nucleus is long lived: $\lambda_A \ll \lambda_B$ or $\tau_A \gg \tau_B$ so:

$$e^{-\lambda_A t} \approx 1 \implies N_A \approx N_0$$

 $\implies N_B \approx N_A \frac{\lambda_A}{\lambda_B} (1 - e^{-\lambda_B t})$

After a sufficiently long time $(1 - e^{-\lambda_B t}) \rightarrow 1$

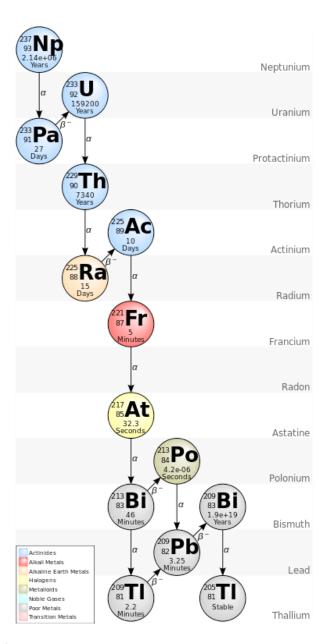

$$\Rightarrow \lambda_A N_A = \lambda_B N_B \iff dN_B / dt = 0 \quad \text{in eq. (1)}$$
 Activity of A = Activity of B

This is known a *secular equilibrium*, i.e. at large times B is decaying at the same rate as it is produced.

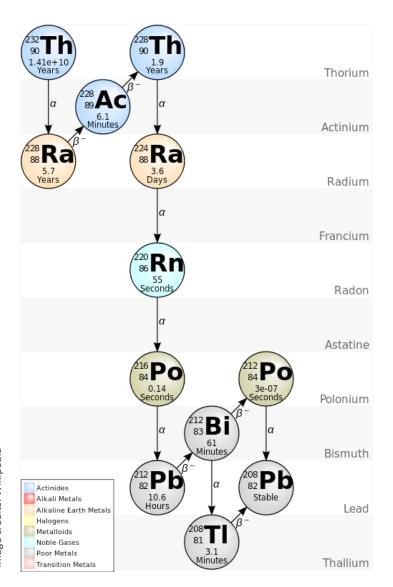
Secular equilibrium ($\lambda_A \ll \lambda_B$)

An example of secular equilibrium is:

132
Te(12hrs) → 132 I(2.28hrs) → 132 Xe


Figure 6.6 In the decay 132 Te (78 h) \rightarrow 132 I (2.28 h) \rightarrow 132 Xe, approximate secular equilibrium is reached at about 12 h.

Alpha decay chains


Because α-decay always decreases the atomic mass number A of the nucleus by 4, almost any decay will result in a nucleus with an atomic mass A' such that

 $A \mod 4 = A' \mod 4$

As a result, there are four radioactive decay chains known as the Thorium (4n), Neptunium (4n+1), Radium (4n+2) and Actinium (4n+3) series.

Thorium series and the age of the Earth

 232 Th has a very long half life $(t_{1/2} = 14Gyr)$ and goes through a long decay chain to stable 208 Pb.

It effectively behaves as if ²³²Th→²³²Pb

By measuring the relative abundance of ²⁰⁸Pb:

$$\frac{N(^{208}Pb)}{N(^{232}Th)} = \frac{N_0(1 - e^{-\lambda_{Th}t})}{N_0e^{-\lambda_{Th}t}}$$

one can estimate of the age of the Earth at 4×10^9 yr.

mage credits: Wikipedia

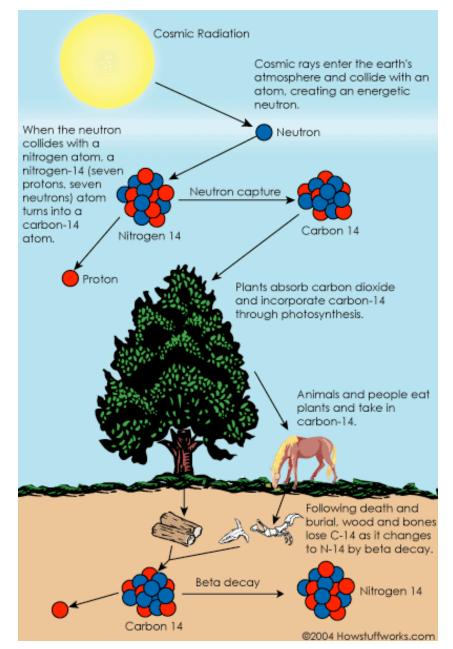
Radiometric dating

• Technique used to date geological materials (rocks) or man-made materials

 Based on a comparison between the observed abundance of a naturally occurring radioactive isotope and its decay products, using known decay

rates.

Isotope		Half Life	Useful	Rock or
Parent	Daughter	(years)	Range (years)	mineral host
U-238	Pb-206	4.5×10 ⁹	10 ⁷ - 4.6×10 ⁹	Zircon Uraninite
K-40	A-40	1.3×10°	5×10⁴ - 4.6×10³	Micas Hornblende Volcanics
Rb-87	Sr-87	47×10°	10 ⁷ - 4.6×10 ⁹	Micas Orthoclase Igneous rocks
C-14	(N-14)	5730	100 - 7×10 ⁴	Biol material CO ₂


Radiocarbon dating

- Carbon is a fundamental part of living tissue.
- There are 3 isotopes of carbon ¹²C, ¹³C and ¹⁴C in the atmosphere, from where they are absorbed by living organisms.
 - The ratio of 14 C/ 12 C is known to be $\gamma_0 = 1.8 \times 10^{-12}$
 - ¹⁴C is permanently created by cosmic rays, i.e. this isotopic ratio is constant in nature
- The concentration of ¹⁴C in living organisms is the same as that in the environment
- When the organism dies it no longer absorbs ¹⁴C. The ¹⁴C in the organism decays but the amount of ¹²C remains constant

$$^{14}\text{C}/^{12}\text{C} = \gamma = \gamma_0 e^{-\lambda t}$$

 By measuring the ratio of ¹⁴C/¹²C one can find out how much time has passed

$$t = \lambda ln(\gamma_0/\gamma)$$

