

Dr. Dan Protopopescu

Kelvin Building, room 524

Dan.Protopopescu@glasgow.ac.uk

Topics covered in this course

Four fundamental interactions

The Electromagnetic Interaction

- Acts between all particles carrying electric charge (electron, proton, positron etc.)
- Responsible for molecular forces (chemistry) and most forces between everyday objects, e.g. friction, contact forces
- Range: infinite
- The force between two charges q_1 and q_2 :

$$F_e(r) = -\frac{q_1 q_2}{4\pi \varepsilon_0 r^2}$$

Potential:

$$V_e(r) = \frac{q_1 q_2}{4\pi \varepsilon_0 r}$$

The Gravitational Interaction

- Acts between all particles or objects with mass
- Range: infinite
- For two masses m₁ and m₂, the force is:

$$F_g(r) = G \frac{m_1 m_2}{r^2}$$

• The potential:

$$V_g(r) = -G \frac{m_1 m_2}{r}$$

Note that the electromagnetic and gravitational forces both obey the $1/r^2$ law and have infinite range.

The Strong Interaction

- Range: finite
- Comes in two varieties:
 - "Residual" strong force acts between protons and neutrons (nucleons) and is what binds atomic nuclei together
 - Fundamental strong interaction acts between quarks and gluons, i.e. between colour charges

The residual Strong Interaction

- Force acting between nucleons
- Range: R≃1 fm
- Due to the exchange of <u>mesons</u> (usually pions)

Well modelled by the Yukawa potential:

$$V_s(r) = -\frac{g_s^2}{4\pi} \frac{e^{-r/R}}{r} \qquad \text{(Note that when R \to \infty, V_s(r) \infty \frac{1}{r})}$$

where g_s^2 is a constant related to the strength of the force, and

$$R = \frac{\hbar}{m_{\pi} c}$$

where c is the speed of light, and m_π is the mass of the pion.

How was R obtained?

The Uncertainty Principle relates the allowed energy of the exchanged meson ΔE and the time it exists Δt via the relation

$$\Delta E \Delta t = \hbar \tag{1}$$

If we equate the energy ΔE with the mass of the particle

$$\Delta E = m_{\pi}c^2 \tag{2}$$

and we approximate the range of the particle with

$$R = c\Delta t \tag{3}$$

then we have from (1), (2) and (3)

$$m_{\pi}c^2 \frac{R}{c} = \hbar \implies R = \frac{\hbar}{m_{\pi}c}$$

The Weak Interaction

- Acts between electrons, positrons and nucleons.
- Is responsible for β -decay: $n \rightarrow p + e^- + \overline{V}_e$
- Also important in fusion which, among other things, powers the sun

Electroweak

- Is the unified description of electromagnetic and the weak interactions
- Above an unification energy of ~100 GeV, the two forces merge into a single electroweak force
- Abdus Salam, Sheldon Glashow and Steven Weinberg were awarded the Nobel Prize in Physics in 1979 for contributions to this unified theory
- The theory was experimentally confirmed by:
 - The discovery in 1973 of neutral currents in neutrino scattering by the <u>Gargamelle</u> collaboration at CERN
 - The discovery in 1983 by the UA1/2 collaborations of the W and Z bosons in proton-antiproton collisions at the SOS (CERN)

Four fundamental interactions

PROPERTIES OF THE INTERACTIONS					
Interaction Property	Gravitational	Weak	Electromagnetic	Strong	
rioperty	Gravitational	(Electroweak)		Fundamental	Residual
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	
Particles experiencing:	All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
Strength relative to electromag 10 ⁻¹⁸ m	10 ⁻⁴¹	0.8	1	25	Not applicable
for two u quarks at: 3×10^{-17}	m 10 ⁻⁴¹	10 ⁻⁴	1	60	to quarks
for two protons in nucleus	10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20

- Each force acts between particles of a particular type
- Force is mediated by a *force carrier* particle

Force carriers

- How is the force between particles manifested?
- In classical physics this is described by the force law or potential
- Another way of describing it is via "force carriers"
- A force carrier is emitted by one particle and the other particle absorbs it

Units recap

- Nuclear and particle physics deal with very different scales to "ordinary" objects
- Length: 1 fm (femtometre) = 10^{-15} m
- Energy: $1 \text{ MeV } (10^6 \text{ eV}) = 1.602 \times 10^{-13} \text{ Joules}$
- Mass: 1 atomic mass unit $(1u) = 1.66 \times 10^{-27} \text{kg}$ (=1/12 of the mass of ¹²C or, roughly, the mass of a proton or neutron)
 - or units in MeV/ c^2 (e.g. proton mass = 938 MeV/ c^2)
- Velocity: $\beta = v/c$ fraction of the speed of light
- Time: time to travel 1fm at velocity c $\sim 3 \times 10^{-24}$ s
- Momentum: units MeV/c

Interactions summary: strength and range

Force	Strength	Range	
Strong Nuclear	_	A few fm	
Electromagnetic	~1/100	Infinite	
Weak Nuclear	~ 10-5	Less than I fm	
Gravitational	~ 10-36	Infinite	

Discovery of particles - beginnings

Discovery of particles – recent history

Classification of particles

ALL known particles fall into one of two categories, depending on their intrinsic angular momentum (spin):

Fermions

- e.g. proton, electron, quarks
- Particles with half integer spin $\frac{1}{2}\hbar, \frac{3}{2}\hbar, \frac{5}{2}\hbar, \dots$
- Can be thought of as the "matter" particles
- Obey the Pauli exclusion principle: "No two fermions may exist in the same quantum mechanical state"

Bosons

- e.g. photon, pions, gluons
- Particles with integer spin $0\hbar, 1\hbar, 2\hbar, \dots$
- Can be thought of as the "force carrying" particles
- Do not obey the Pauli exclusion principle

matter constituents **FERMIONS** spin = 1/2, 3/2, 5/2, ...Quarks Leptons spin = 1/2spin = 1/2Approx. Mass Electric **Electric Flavor Flavor** Mass GeV/c² charge charge GeV/c² electron <1×10⁻⁸ 0 **U** up 0.003 2/3 neutrino **d** down 0.000511 electron 0.006 -1/3muon < 0.0002 0 1.3 **C** charm 2/3 μ neutrino 0.106 -1 0.1 -1/3 μ muon **S** strange tau t top ν < 0.02 0 175 2/3

• The **leptons** do not interact via the strong interaction

-1

The collective name for strongly interacting particles is <u>hadrons</u>

b bottom

4.3

-1/3

Quarks do not exist in isolation

1.7771

neutrino

tau

- All hadrons and leptons can interact via the weak interaction
- The force carriers here are the W⁺, W⁻ and Z⁰ bosons

Exercise: using the exchange model and the masses above, calculate the range of the weak force given that the characteristic time of the interactions is 10⁻¹⁰s.

Baryons qqq and Antibaryons qqq

Baryons are fermionic hadrons.

There are about 120 types of baryons.

Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
р	proton	uud	1	0.938	1/2
p	anti- proton	ūūd	-1	0.938	1/2
n	neutron	udd	0	0.940	1/2
Λ	lambda	uds	0	1.116	1/2
Ω^{-}	omega	SSS	–1	1.672	3/2

mage credits: PD

Mesons qq

Mesons are bosonic hadrons.
There are about 140 types of mesons.

Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
π^+	pion	ud	+1	0.140	0
K-	kaon	sū	-1	0.494	0
$ ho^+$	rho	ud	+1	0.770	1
B ⁰	B-zero	db	0	5.279	0
η_{c}	eta-c	cc	0	2 .980	0

Image credits: PDG

OBSERVED EVENTS

UNOBSERVED EVENTS

1. n
$$\longrightarrow$$
 p + e⁻ + $\overline{\nu}_e$

2.
$$\pi^+ + \Pi - > D + \pi^0$$

3.
$$\pi^- + p \longrightarrow n + \pi^- + \pi^+$$

4.
$$\pi^- + p \longrightarrow p + \pi^0 + \pi^-$$

7.
$$n + p - p + p + \pi^-$$

8.
$$p + p \longrightarrow p + n + \pi^+$$

9.
$$e^+ + e^- \rightarrow p + \overline{p}$$

10.
$$e^+ + e^- \rightarrow \gamma + \gamma$$

13. p · —>
$$\pi^+ + \pi^-$$

17.
$$\pi^0 + \Pi \longrightarrow \pi^+ + \pi^-$$

By studying which reactions are, or are not observed, one can work out conservation laws.

Conservation Laws

	Interaction			
Conserved Quantity	Strong	Electromagnetic	Weak	
Energy / Momentum	Yes	Yes	Yes	
Charge	Yes	Yes	Yes	
Baryon Number	Yes	Yes	Yes	
Lepton Number	Yes	Yes	Yes	
lsospin (u or d quark content)	Yes	No	No	
Strangeness	Yes	Yes	No	
Charm	Yes	Yes	No	
Parity	Yes	Yes	No	