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Transformation of space intervals in
Special Relativity

We have discussed time dilation, where a time interval Afg measured in the
stationary frame is related to the time interval At measured in the moving
frame by

At =y At,

Similarly with time dilation, the length of a ruler measured in a frame in
which it is moving is less than the length measured in its rest frame

AL, !

where Y=
Y J1-p°

This effect is called length contraction, also known as FitzGerald-Lorenz
contraction.
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Minkowski spacetime

* The mathematician Hermann Minkowski
proposed in 1907 a four-dimensional
interpretation of Special Relativity

* He introduced the unification of space and time
into an inseparable 4D entity (‘the World’)

* The Lorentz geometry of Special Relativity can

be elegantly represented in the 4D Minkowski
spacetime

“The views of space and time which I wish to lay before you have
sprung from the soil of experimental physics, and therein lies their
strength. They are radical. Henceforth space by itself, and time by
itself, are doomed to fade away into mere shadows, and only a kind
of union of the two will preserve an independent reality.”

Hermann Minkowski
(1864-1909)

H. Minkowski - Address at at the 80th Assembly of German Natural
Scientists and Physicians, KéIn, Sep 1908
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Four-vectors

In three coordinates x, y, z we can define a position in space X = (x,y,2)
The distance d between two points can be defined as

d* = (x, _xz)z +(y _)’2)2 +(z, _Z2)2

This distance is invariant under Galilean transformations

In Relativity we need to deal with space and time

The Minkowski spacetime (os simply space) is defined as a 4-dimensional
vector space with 3 spacial and 1 temporal dimensions X=(ct,x,y,z)

The Minkowski space replaces Euclidean space as the natural framework of
reality once relativity comes into play

The corresponding distance in Minkowski space is

Sz — Cz(tl _tz)z _(x1 —X2)2 _(yl _y2)2 _(Z1 _Z2)2 (1)

This S2 is invariant under Lorentz transformations, i.e. Lorentz invariant



4-velocity

The position 4-vector in Minkowski space is defined as X=(ct,x,y,z) so we can
calculate

dX dx

d — —
==Y — [, = ,——) = ,
7 th(C x)=v(c dt) y(c,v)

where tis the proper time, i.e. the elapsed time between two events as
measured by a clock that passes through both events.

* |nthe rest frame:
v=0,y=1 = V=(:0,0,0)

A
E>
which can be interpreted to mean that
when we are ‘at rest” we actually move at
{ T maximum speed through time.

* Note that for light there is no rest frame
and v defined above does not make sense

- V=vy(,c) = V' =y(’-¢)=0

distance

(see next slide)



Invariants

The scalar product of two generic 4-vectors ‘@’ and ‘b’ is defined as:

—

ab = Cbob() — Cblbl — CLQbQ — CLgbg — CLQbO —a-b

This product is Lorentz invariant, i.e. it has the same value in all inertial
frames.

Analogous with the spacetime vector, one can define the 4-momentum as

P=mV
where m is the rest mass and V is the 4-velocity constructed as
V=y(,v)

such that in terms of the total energy and the 3-momentum, we have
P=my(c,v)
= P=(E/c,p) (2)



Example

A particle of mass M is at rest when it splits into two fragments, each of rest
mass m, which move with velocities (v,0,0) and (-v,0,0). Show that M=2my.

By conservation of 4-momentum we have:

M(c,0,0,0)=my(c,v,0,0)+ my(c,—v,0,0)

Hence, for the first component we have

Mc=myc+myc = M =2my
Note that M>2m. T




Invariant mass

Applying the scalar product to the 4-momentum defined in (2), we can
construct the invariant
2
P’=—-p>=m’c’ 3)
C

where m = is called the invariant mass, which for a particle is

C

identical to its rest mass.

Equation (3) can be also written in the form
E’=p’c’+m’c’ (4)

Note that since the 4-momentum squared is Lorentz invariant, one can
choose an inertial system where p =0 and then E = mc” .




How much energy ?

Let us calculate the ratio
E

—=c*=9x10"m’/s* =9x10"°J / kg
m

This means that /g of mass is approximately equivalent to:
- 90 TJ (9 trillion Joules) or

- 25 GWh (25 million kilowatt-hour)
- 21.5 Tcal (billion kilocalories)

- 21 kt (kilotons TNT-equivalent energy)

Listen to 10 famous physicists explaining mass-energy equivalence at:
http://www.pbs.org/wgbh/nova/einstein/experts.html



http://www.pbs.org/wgbh/nova/einstein/experts.html
http://www.pbs.org/wgbh/nova/einstein/experts.html

Letters to Roosevelt

e Between 1939 and 1945, Einstein
signed a series of letters to president
Roosevelt about the possibility of
constructing "extremely powerful ,:
bombs of a new type" including hints %
that the Germans might be already
undertaking research in this direction.

e The first letter, dated August 2, 1939
is considered the letter that launched
the nuclear arms race.

e Later on Einstein would take full
responsibility for the consequences,

calling it "the greatest mistake" of his
life.
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E=mc? and the Hiroshima bomb

- The energy released from a 23°U fission reaction is Q=183 MeV

- In one kilogram of 23°U there are

v = 1000/235 = 4.255 moles
- One mole of any substance contains Na = 6.023x 10?3 atoms.
- That means 1kg of 23°U contains

N =vNa=4255x 6.023x10% = 2.56x10°¢ nuclei

- Say only a fraction f=0.8 of these nuclei participate in the chain
reaction. The total energy released is

Qior = fFNQ = 0.8 x 2.56x10% x 183 x 1.602x10-'= 60 TJ
- The mass transformed into energy here is
m=6x1013/(3x108)2=0.67x103kg =0.67 g !!
97



Relativistic mass

In equation (2) we have introduced the relativistic momentum

p=ymy
Th Ht n
e quan m =
; " \/1—\/2/02

is the relativistic mass (the rest mass is often denoted by my).

One should note that
m

which suggests that an object with non-zero rest mass can not reach the speed
of light.

(&.o)




Forces and energy In relativity

Newton’s 2" law:

%

dedr [[ 2 2 s\ m
1 /CZ (l_v/c2)

For increasing velocity the acceleration generated by a constant force
decreases.

The total energy is: E = = K + mc’

The kinetic energy: K= — mc



Example

A pion is moving at at speed of 0.9c. Let us calculate the momentum, total
energy and the kinetic energies of the pion.

B=09 = y=—0 =229

1-j3°

So then
p=vmyv=yBm,=229x%x0.9x 139.6 MeV / c* =228 2 MeV /¢

Energy:
E=ym,’=229x139.6MeV /c* = 320 MeV

Kinetic energy: K = E—m,c> =320-139.6 =180.4 MeV



Example: Muon lifetime

Cosmic ray muons are created when
highly energetic radiation from deep
space interacts with atoms in the
Earth’s atmosphere. The initial
collisions create pions which decay
into muons.

20 GeV muons are produced in the

upper atmosphere, 15 km above sea
level.

The muon has a measured mean
lifetime t = 2.2 ps

If muons travel at a velocities close to
the speed of light, will they reach
ground level to de detected ?
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Muon lifetime puzzle

A muon moving at the speed of light would travel the 15km
distance in a time

t=H/c=15000m/(0.998 x 3x10°m /s)=50Ls
so the fraction of muons reaching ground level is
iy exp(—i) - exp(—S—O) ~13x107"
N, T 2.2
i.e. practically nothing will be detected.
However, for an observer on Earth the lifetime of the muons is
T, =yt =(E/myc’)T =(20GeV/106 MeV)T =~ 1897
and then the fraction of muons reaching the ground will be

ﬁ:exp —L :exp(— oD j2089290%
N, Ty 2.2x189




Muon lifetime puzzle cont'd

Another way of looking at this problem:- From the muon's
reference frame, the 15km distance between upper atmosphere
and ground is contracted by a y factor:

H = il = p km=0.0793kmz._7v9m

Ly 189 i

and the time needed to travel this distance is

— — 8 A
t,=H,/c=T9m/3x10"m/s=0.26us

The fraction of muons left undecayed by the time they reach
the ground level is

5
l:exp 2 :exp(—%j20.89:90%
N, T 2:2



Frames of reference

 The two most commonly used frames of reference for particle kinematics
are the laboratory system (LAB) and the centre of mass system (CM).

Beam Target Beam Target
@—0O @— —0O

LAB CM Fixed
target

* Inthe LABwe have: P, =(E,/c, p,) P.=(m,c, (_5)
C M B =(Eye, ) Pr=(Ee, B B+ =0

* The invariant mass squared of the system is

s=(P,+P.) /¢’ =(E,+E,)/c*—(p,+p,)/c’



Example: LHC protons

The LHC collides 7TeV protons. What is the invariant mass of the 2-proton
system ?

Beam ‘—) (—‘ Beam CM

We have 2TeV protons colliding head 1o head:

P =(E/c,p) P,=(E/c,—p)
Then
S = M22p :(})1 _|_P2)2/C2 —

= (E+EV/c' —(p-p)/* =(2E/ )
=0

ie. M, =14TeV /¢’



Example: proton-hydrogen collisions in the atmosphere

For cosmic ray protons collide with hydrogen nuclei in the atmosphere, what
energy of the protons will produce the same CM energy as the LHC ?

Beam ‘—)‘ Target LAB

We have a proton with energy E and momentum p colliding with a
proton practically at rest:

P=(E/c,p) P,=(myc,0) with

Then B

s = M22p =(P+P)/c’ = (E+mpcz)2/c4 —-p’lc’ =

= 2m§ + 2Emp /c*

very small
and (M; -2m.) (14° —2\><&e@£/)
E=—2" PL — : = 98000 TeV !

2mpc2 2x0.001



The Large Hadron Collider

The LHC synchrotron is designed to collide opposing particle beams of either protons
at up to 7 TeV per nucleon, or Pb nuclei at an energy of 574 TeV per nucleus (2.76
TeV per nucleon-pair).
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Image credits: cern.ch
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