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Erwin with his psi can do 
Calculations quite a few. 
But one thing has not been seen: 
Just what does psi really mean? 

Erich Hückel, translated by Felix Bloch 
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Applications of the Schrödinger Equation:  

•  Solution of the 1-dimensional Time Independent Schrödinger Equation 
(TISE) for the potential step and potential barrier. 

•  Interpret the solutions: the tunneling process.  
•  Solve the TISE for potential square wells of finite and infinite depth.  
•  Discuss the resulting quantised and continuous energy levels, 

eigenvalues and quantum numbers.  
•  Show that the TISE for the (1d) simple harmonic oscillator results in 

Hermite’s equation, with solutions which are Hermite functions.  
•  Show that the boundary conditions result in the quantization of its energy 

levels.  
•  Use the optical spectroscopy of quantum wells in semiconductors and 

alpha particle decay as examples.  
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Angular Momentum:  

•  Review "Classical" angular momentum.  
•  Motivate the angular momentum operators in quantum mechanics and 

derive their commutation relations.  
•  Solve the angular part of the TISE for a central potential and define 

spherical harmonics and Legendre polynomials in terms of 
eigenfunctions of angular momentum.  

•  Provide an elementary treatment of the addition of angular momenta by 
analogy to vectors. 

Text books:  
1.  B.H. Bransden and C.J. Joachain, Quantum Mechanics (2nd edition),  

 Pearson Education Ltd., 2000. 
2.  Alastair I M Rae, Quantum Mechanics, 3rd edition, IoP Publishing (1998)  
3.  Eisberg and Resnick, Quantum Physics of Atoms, Molecules, Solids,  

 Nuclei and Particles, (Wiley) 
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  Summary of concepts already encountered: 
–  In Quantum Mechanics, all information about a particle is 

contained in its wave function: Ψ(x,t) 
–  Probability of finding particle in region x to x+dx is 

–  The particle must be somewhere in space (normalization 
condition): 

–  The behaviour of a particle is described by the time-dependent 
Schrödinger equation: 

 where        is the Hamiltonian operator: 
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  Operators: 
–  In QM, dynamical variables are replaced by operators: 

 (I will adopt the convention that an operator has a hat ^ on top) 
–  Operator acting on an eigenfunction is the eigenvalue times the 

eigenfunction: 

Quantity Operator Representation 

Momentum 

Position 

Kinetic energy 

Potential energy 

Total energy 
(Hamiltonian) 
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To solve the Schrödinger equation, we need to perform separation of 
variables. Assume that:  

  

€ 

i ∂Ψ x,t( )
∂t

= −
2

2m
∂2Ψ x, t( )
∂x 2

+V (x)Ψ x,t( )⇒

Divide both sides by ψ(x)T(t): 

Hence both sides have to be equal to a constant E (with units of energy!).  
The time part of the equation: 

  

€ 

i dT t( )
dt

− ET(t) = 0⇒ T(t) = Ae
−i
Et
 = Ae

− iωt

  where  ω =
E

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  1D Time-independent Schrödinger equation: 
–  The spatial part of the Schrödinger equation is called the 

Time-Independent Schrödinger Equation TISE (in 1D): 

This is an eigenvalue problem: 
with                   the Hamiltonian 

We will solve the 1D time-independent Schrödinger equation for 
different assumptions of V(x) 

  

€ 

−
2

2m
1

ψ(x)
∂2ψ x( )
∂x 2

+V (x) = E ⇒
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  Free particles: assume V(x)=0 

–  Proof: 

–  Total wave function: 

  

€ 

d2ψ x( )
dx 2

= −k 2 Aeikx + Be−ikx( ) ⇒ k 2 − 2mE
2

= 0 ⇒ k = ±
2mE
2

  

€ 

Ψ(x, t) = Aeikx + Be− ikx( ) e−iωt where ω =
E


This solution is simply the sum of two plane waves, the solution to the 
wave equation, and E is interpreted as the total energy of the system.  
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Note: 
The normalization of plane waves is problematic, since: 

€ 

Ψ(x,t) 2dx
−∞

∞

∫ = Aeikx + Be− ikx( ) e−iωt
2
dx

−∞

∞

∫

= A*e− ikx + B*e+ikx( ) e+ iωt Aeikx + Be−ikx( ) e−iωtdx
−∞

∞

∫

= A*A + B*B + B*Ae+i2kx + A*Be− i2kx( )dx
−∞

∞

∫

= A 2
+ B 2

+ B*Ae+i2kx + A*Be− i2kx( )dx
−∞

∞

∫ =1⇒ A = B = 0!!!
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A way around it: 
1. Assume particles are moving in positive x-direction  => B=0 
2. Assume plane waves confined in space of dimension L, (justified, 

assuming that average separation between particles is L).  

      The particles  propagate as 
wave fronts of constant phase 
(plane waves), since there are 
no potentials to distort the 
passage of the particles.  
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  Momentum (B=0): 

since 

Independent of x and t    (Δpx=0, therefore Δx=∞) 
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  Probability density (B=0): 

Independent of x and t (Δpx=0 , therefore Δx=∞) 
Probability current density (see first part of lectures): 

  

€ 

J(x, t) =

i2m

Ψ*(x,t) ∇Ψ(x,t)( ) − ∇Ψ*(x, t)( )Ψ(x, t)[ ]

=
1
2
Ψ*(x,t) 

im
∇Ψ(x, t)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

im
∇Ψ(x, t)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
*

Ψ(x, t)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

= Re Ψ*(x, t) 
im
∇Ψ(x, t)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⇒

J(x, t) = Re A*e−i(kx−ωt ) 
im

Aikei(kx−ωt )
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
=
k
m
A 2

= v A 2
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Probability current density is related to velocity and probability  
density  

(positive since moving from left to right, i.e. positive x): 

Remember the continuity equation: 

      Probability conservation: the rate of change of the probability of finding the  
particle in a given volume equals the probability current density escaping the 
volume. 
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  Comparison with case  A=0: 

Probability current density:     
    The probability current density is negative since the movement is from 

right to left 

For the next few lectures, we will just consider the time-independent part 
of the Schrodinger equation and test for possible solutions under 
different assumptions about the 1 dimensional potential V(x).  


