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  Third example: Infinite Potential Well 
–  The potential is defined as: 

–  The 1D Schrödinger equation is: 

–  The solution is the sum of the two plane waves propagating in 
opposite directions, which is equivalent to the sum of a cosine 
and a sine (i.e. standing waves), with wave number k: 

V (x) =
0 if
∞ if

⎧
⎨
⎪

⎩⎪

−a < x < a
x > a

 

d 2ψ x( )
dx2 + 2m

2 Eψ (x) = 0     for     − a < x < a

ψ (x) = A 'eikx + B 'e− ikx = Acoskx + Bsin kx

x!

 
k = 2mE

2

V(x)!��

a -a 

��

E!
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The wave function must be zero at both walls of well: 

We look at each condition separately 

Normalization condition: 

Acos ka( ) + Bsin ka( ) = 0
Acos −ka( ) + Bsin −ka( ) = 0 ⇒ Acos ka( )− Bsin ka( ) = 0

⎫
⎬
⎪

⎭⎪
⇒

⇒ Acos ka( ) = 0   and   Bsin ka( ) = 0

cos ka( ) = 0⇒ kn =
nπ
2a

= nπ
L
, n = 1,3,5,...

sin ka( ) = 0⇒ kn =
nπ
2a

= nπ
L
, n = 2,4,6,...

Quantization of  
the wave number 

ψ n *(x)ψ n (x)dx = 1⇒−a

a

∫ A 2 cos2 kx dx = A 2 1
2
a − (−a)( )

−a

a

∫ = 1
e.g.

⇒ A = 1
a

4 

  Solutions:          

        
                         

The solution has to have a definite parity (either odd or even). 
                                  We can evaluate the de Broglie wavelength: 

        Only half integer and integer wavelengths fit in the box. 
        The energy is quantized, i.e. only certain energy values 
         are allowed (energy eigenvalues)  

ψ n (x) =ψ n (−x)

kn =
nπ
2a

⇒

symmetric (even function)  

antisymmetric (odd function)  ψ n (x) =
1
a
sin nπ

2a
x⎛

⎝⎜
⎞
⎠⎟ , n = 2,4,6,...

ψ n (x) =
1
a
cos nπ

2a
x⎛

⎝⎜
⎞
⎠⎟ , n = 1,3,5,...
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  Fourth example: Finite square well 

  Case 1: E < 0, (bound state) with -V0 ≤ E < 0 . Inside the well: 

  Outside the well: 

V (x) =
−V0, if x < a

0, if x > a

⎧
⎨
⎪

⎩⎪

V(x)!
a -a 

-V0!

E!

 

d 2ψ x( )
dx2

+ 2m
2

E −V (x)[ ]ψ (x) = 0

⇒
d 2ψ x( )
dx2

+α 2ψ (x) = 0, x < a  
α = 2m

2
V0 + E( ) = 2m

2
V0 − E( )

 

d 2ψ x( )
dx2

+ 2m
2

Eψ (x) = 0

⇒
d 2ψ x( )
dx2

− β 2ψ (x) = 0, x > a

 
with    β = − 2m

2 E = 2m
2 E

The energy: |E| = -E is the binding energy of the particle.  

x!
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  Like for the infinite potential, solution is either odd or even: 
1) Even function: 

•  Continuity of ψ(x) and dψ/dx: 

2) Odd function: 

•  Continuity of ψ(x) and dψ/dx: 

ψ (x) =
Bsin α x( ) , 0 < x < a

Ce−β x , x > a 

⎧
⎨
⎪

⎩⎪

Acos αa( ) = Ce−βa

−αAsin αa( ) = −βCe−βa
⇒αa tan αa( ) = βa (1) 

ψ (x) =
Acos α x( ) , 0 < x < a

Ce−β x , x > a          (since Deβ x x→∞⎯ →⎯⎯ ∞ ⇒  D = 0)

⎧
⎨
⎪

⎩⎪
      

Bsin αa( ) = Ce−βa

αBcos αa( ) = −βCe−βa
⇒αacot αa( ) = −βa (2) 

The energy levels of the bound states are found by solving the transcendental  
equations (1) and (2). These equations can not be solved analytically and have  
to be solved graphically or numerically.!
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  If we define the dimensionless quantity γ (strength parameter): 

(mVoa defines the value of γ) then we can solve the equations graphically: 
 
γ 2 ≡ αa( )2 + βa( )2 = 2m

2
V0 + E( )a2 − 2m

2
Ea2 = 2m

2
V0a

2

βa =αa tan αa( )      (for even states)
βa = −αacot αa( )    (for odd states)

γ=1 

Even states Odd states 

γ=5 

γ=1 γ=3 

γ=3 

γ=5 

γ

�!�

γ

8 

Solutions: odd and even states alternate 
•  For γ =1 we have one even state; for γ =3: two states (one odd, one 

even); and for γ =5: four states (two odd, two even) 

E1=-0.93V0 E2=-0.73V0 

E4=-0.04V0 E3=-0.41V0 

Case γ = 5: 

For V0→� � γ→�  
and we recover the  
infinite well solution 
with:  
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  Case 2: E > 0, scattering in the potential well  
–  The 1D Schrodinger equation is: 

–  The solution:  

–  Similar to the potential barrier (E>V0) but V0→-V0, k’→ α and a →L=2a !

ψ (x) =
Aeikx + Be− ikx , x < −a

Feiαx +Ge− iαx ,−a < x < a
Ceikx , x > a

⎧

⎨
⎪

⎩
⎪

 

d 2ψ x( )
dx2

+ 2m
2

E −V (x)[ ]ψ (x) = 0

 
with   k= 2mE

2 ,  α =
2m V0 + E( )
2

R =
B 2

A 2 = 1+ 4k2α 2

k2 −α 2( )2 sin2 αL( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= 1+
4E E +V0( )
V0
2 sin2 αL( )

⎡

⎣
⎢

⎤

⎦
⎥

−1

T =
C 2

A 2 = 1+
k2 −α 2( )2 sin2 αL( )

4k2α 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= 1+ V0
2 sin2 αL( )
4E E +V0( )

⎡

⎣
⎢

⎤

⎦
⎥

−1
R +T = 1

V(x)!

a -a 

-V0!

E!

x!
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  Transmission coefficients for γ=10 and γ=100:  

–  Transition maxima (T=1) occur when αL=nπ, i.e. when L is an integral 
or half-integral number of the de Broglie wavelength 2π/α. 

–  As E becomes large compared to V0, the transmission tends 
asymptotically to 1. 

–  For larger values of γ the minima become deeper. 

γ=10 γ=100 

αL=nπ %
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Ramsauer effect: 1D Potential Well 
–  Scattering of low energy electrons from atoms (normally noble gases 

such as Xenon or Krypton). 
–  Investigated by Ramsauer and Townsend independently in the 1920s 
–  Classically, it was expected that the probability of interaction would 

diminish with energy. 
–  However, it was observed that there were minima 

in the probability of interaction at �0.7eV for Xe. 
–  No classical explanation was available, and it 

could only be explained through QM.  
–  Assume the atoms are like potential wells. The 

minimum of probability (i.e. max T) should be at: 

 

α = nπ
L

⇒ Ek =
2α 2

2m
= h2

8mL2     for   n = 1

For L ~ 10-10m ⇒ Ek =
6.6 ×10−34( )2

32 × 9.1×10−31 10−10( )2 = 1.6 ×10−18 J ~ 10eV

(More accurate result if done in 3D) 
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Quantum wells:  
–  Semiconductor material with small 

energy gap (e.g. GaAs) is sandwiched 
between energy barriers from material 
with a larger energy gap (e.g. AlGaAs). 
A quantum well is formed between the 
barriers.  

–  Typical layer thicknesses ~ 1-10 nm.  
–  Quantization effects result in allowed 

energy bands, whose energy positions 
are dependent on the height and width 
of the barrier.  

–  This is used in the fabrication of 
specialised semiconductor devices 
such as: laser diodes, high electron 
mobility transistors (HFET or 
MODFET), quantum well infrared 
photodetectors (QWIP arrays). 

Laser diode!

False color image from a far IR!
1 megapixel GaAs QWIP camera!
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Energy of the alpha particle is lower than the Coulomb 
potential barrier in the nucleus → tunnelling occurs 

–  Example: 212Po (Z1=84), Eα= 8.78 MeV!
 Coulomb barrier  Vmax= 26 MeV,  R ≃ 9 fm,!
 Distance where Ebarrier = Eα is  Rc ≃ 27 fm!
 and Μ = 3727 MeV!

The transmission coefficient can be  
approximated by a product of potential  
step transmission coefficients: 

V (r) = 2(Z1 − 2)e
2

4πε0r
, r > R

Image credits: hyperphysics.phy-astr.gsu.edu! 
T  Ti

i
∏ (Vi ,a)

Vmax - - -!

R! RC
|
!

� r!
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Alpha decay (continued): 
•  The time between two attempts at the barrier walls is: 

•  For small values of the transmission, Τ and the number of attempts n 
before the probability to escape is ½ are related by 

•  The corresponding half-life for the α   decay is 

•  For 212Po, for example, we can calculate: Δt = 0.88×10-21s, T = 1.5×10-15  
so we can estimate n = 0.33x1015 and t1/2≃ 0.29 μs!

Δt = 2R
v

= 2R M
2Eα

nT ≈ 1
2

t1/2 ≈ nΔt ≈
Δt
2T

� in good agreement with the !
 measured value (in this case)!


