

- Third example: Infinite Potential Well
 - The potential is defined as:

$$V(x) = \begin{cases} 0 & \text{if } -a < x < a \\ \infty & \text{if } |x| > a \end{cases}$$

- The 1D Schrödinger equation is:

$$\frac{d^2\psi(x)}{dx^2} + \frac{2m}{\hbar^2}E\psi(x) = 0 \quad \text{for} \quad -a < x < a$$

 The solution is the sum of the two plane waves propagating in opposite directions, which is equivalent to the sum of a cosine and a sine (i.e. standing waves), with wave number k:

$$\psi(x) = A'e^{ikx} + B'e^{-ikx} = A\cos kx + B\sin kx \qquad k = \sqrt{\frac{2mE}{\hbar^2}}$$

The wave function must be zero at both walls of well:

$$A\cos(ka) + B\sin(ka) = 0$$

$$A\cos(-ka) + B\sin(-ka) = 0 \implies A\cos(ka) - B\sin(ka) = 0$$

$$\Rightarrow A\cos(ka) = 0 \text{ and } B\sin(ka) = 0$$

We look at each condition separately

$$\cos(ka) = 0 \Rightarrow k_n = \frac{n\pi}{2a} = \frac{n\pi}{L}, \quad n = 1, 3, 5, ...$$

$$\sin(ka) = 0 \Rightarrow k_n = \frac{n\pi}{2a} = \frac{n\pi}{L}, \quad n = 2, 4, 6, ...$$

Quantization of the wave number

Normalization condition:

$$\int_{-a}^{a} \psi_{n} * (x) \psi_{n}(x) dx = 1 \Longrightarrow \int_{-a}^{a} |A|^{2} \cos^{2} kx \, dx = |A|^{2} \frac{1}{2} (a - (-a)) = 1 \quad \Longrightarrow \quad A = \frac{1}{\sqrt{a}}$$

Quantum Mechanics (P304H) Lectures - University of Glasgow

5. Potential Well

Solutions:

$$\psi_n(x) = \frac{1}{\sqrt{a}} \cos\left(\frac{n\pi}{2a}x\right), \quad n = 1, 3, 5, \dots \qquad \text{symmetric (even function)} \\ \psi_n(x) = \frac{1}{\sqrt{a}} \sin\left(\frac{n\pi}{2a}x\right), \quad n = 2, 4, 6, \dots \qquad \text{antisymmetric (odd function)} \\ \psi_n(x) = -\psi_n(-x)$$

The solution has to have a definite *parity* (either odd or even).

We can evaluate the de Broglie wavelength:

$$k_{\rm n} = \frac{n\pi}{2a} \Longrightarrow \quad \lambda_n = \frac{2\pi}{k_n} = \frac{2L}{n} \quad n = 1,2,3,4,\dots$$

Only half integer and integer wavelengths fit in the box. The energy is quantized, i.e. only certain energy values are allowed (*energy eigenvalues*)

$$E_n = \frac{p^2}{2m} = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 \pi^2 n^2}{8ma^2} = \frac{\hbar^2 \pi^2 n^2}{2mL^2}$$

n=3n=2n=1

4

3

Fourth example: Finite square well

$$V(x) = \begin{cases} -V_0, & \text{if } |x| < a \\ 0, & \text{if } |x| > a \end{cases}$$

• Case 1: E < 0, (bound state) with $-V_0 \le E < 0$. Inside the well:

$$\frac{d^2\psi(x)}{dx^2} + \frac{2m}{\hbar^2} [E - V(x)]\psi(x) = 0$$
$$\Rightarrow \frac{d^2\psi(x)}{dx^2} + \alpha^2\psi(x) = 0, \quad |x| < a$$

$$\alpha = \sqrt{\frac{2m}{\hbar^2} (V_0 + E)} = \sqrt{\frac{2m}{\hbar^2} (V_0 - |E|)}$$

Outside the well:

$$\frac{d^2\psi(x)}{dx^2} + \frac{2m}{\hbar^2} E\psi(x) = 0 \quad \text{with} \quad \beta = \sqrt{-\frac{2m}{\hbar^2}} E = \sqrt{\frac{2m}{\hbar^2}} |E|$$
$$\Rightarrow \frac{d^2\psi(x)}{dx^2} - \beta^2\psi(x) = 0, \quad |x| > a$$

The energy: |E| = -E is the *binding energy* of the particle.

5. Potential Well

Like for the infinite potential, solution is either odd or even:

1) Even function:

.

$$\psi(x) = \begin{cases} A\cos(\alpha x), & 0 < |x| < a \\ Ce^{-\beta|x|}, & |x| > a \quad (\text{since } De^{\beta|x|} \xrightarrow{x \to \infty} \to D = 0) \end{cases}$$

• Continuity of $\psi(x)$ and $d\psi/dx$: $A\cos(\alpha a) = Ce^{-\beta a} = -\alpha A\sin(\alpha a) = -\beta Ce^{-\beta a} \Rightarrow \alpha a \tan(\alpha a) = \beta a$ (1)
2) Odd function:

$$\psi(x) = \begin{cases} B\sin(\alpha x), & 0 < |x| < a \\ Ce^{-\beta|x|}, & |x| > a \end{cases}$$

• Continuity of
$$\psi(x)$$
 and $d\psi/dx$: $B\sin(\alpha a) = Ce^{-\beta a}$
 $\alpha B\cos(\alpha a) = -\beta Ce^{-\beta a} \Rightarrow \alpha a\cot(\alpha a) = -\beta a$ (2)

The energy levels of the bound states are found by solving the *transcendental* equations (1) and (2). These equations can not be solved analytically and have to be solved graphically or numerically.

5

• If we define the dimensionless quantity γ (strength parameter):

$$\gamma^{2} \equiv (\alpha a)^{2} + (\beta a)^{2} = \frac{2m}{\hbar^{2}} (V_{0} + E) a^{2} - \frac{2m}{\hbar^{2}} E a^{2} = \frac{2m}{\hbar^{2}} V_{0} a^{2}$$

 $(mV_o a$ defines the value of γ) then we can solve the equations graphically:

5. Potential Well

Solutions: odd and even states alternate

For γ =1 we have one even state; for γ =3: two states (one odd, one even); and for γ =5: four states (two odd, two even)

7

- Case 2: E > 0, scattering in the potential well
- The 1D Schrodinger equation is:

$$\frac{d^2\psi(x)}{dx^2} + \frac{2m}{\hbar^2} [E - V(x)]\psi(x) = 0$$

- The solution:

$$\psi(x) = \begin{cases} Ae^{ikx} + Be^{-ikx} , x < -a \\ Fe^{i\alpha x} + Ge^{-i\alpha x} , -a < x < a \\ Ce^{ikx} , x > a \end{cases} \quad \text{with} \quad k = \sqrt{\frac{2mE}{\hbar^2}} , \alpha = \sqrt{\frac{2m(V_0)}{\hbar^2}} \end{cases}$$

- Similar to the potential barrier ($E > V_0$) but $V_0 \rightarrow V_0$, $k' \rightarrow \alpha$ and $a \rightarrow L=2a$

$$R = \frac{|B|^2}{|A|^2} = \left[1 + \frac{4k^2\alpha^2}{(k^2 - \alpha^2)^2 \sin^2(\alpha L)}\right]^{-1} = \left[1 + \frac{4E(E + V_0)}{V_0^2 \sin^2(\alpha L)}\right]^{-1}$$
$$R + T = 1$$
$$T = \frac{|C|^2}{|A|^2} = \left[1 + \frac{(k^2 - \alpha^2)^2 \sin^2(\alpha L)}{4k^2\alpha^2}\right]^{-1} = \left[1 + \frac{V_0^2 \sin^2(\alpha L)}{4E(E + V_0)}\right]^{-1}$$

V(x)

-a

E

х

+E)

а

 $-V_0$

5. Potential Well

Transmission coefficients for $\gamma = 10$ and $\gamma = 100$:

- Transition maxima (T=1) occur when $\alpha L = n\pi$, i.e. when *L* is an integral or half-integral number of the de Broglie wavelength $2\pi/\alpha$.
- As *E* becomes large compared to V_0 , the transmission tends asymptotically to 1.
- For larger values of γ the minima become deeper.

6. Examples and applications

Ramsauer effect: 1D Potential Well

- Scattering of low energy electrons from atoms (normally noble gases such as Xenon or Krypton).
- Investigated by Ramsauer and Townsend independently in the 1920s
- Classically, it was expected that the probability of interaction would diminish with energy.

ELECTRON MOMENTUM (JUDITS) FIG. 4. The probability of scattering P. as a function of FOI

FIG. 4. The probability of scattering P_s as a function of $(V-V_s)^{1/2}$, where $V-V_s$ is the electron energy. Ionisation occurs at "I".

- However, it was observed that there were minima in the probability of interaction at ~0.7eV for Xe.
- No classical explanation was available, and it could only be explained through QM.
 - Assume the atoms are like potential wells. The minimum of probability (i.e. max T) should be at:

$$\alpha = \frac{n\pi}{L} \implies E_{k} = \frac{\hbar^{2}\alpha^{2}}{2m} = \frac{\hbar^{2}}{8mL^{2}} \text{ for } n = 1$$

For $L \sim 10^{-10}m \implies E_{k} = \frac{\left(6.6 \times 10^{-34}\right)^{2}}{32 \times 9.1 \times 10^{-31} \left(10^{-10}\right)^{2}} = 1.6 \times 10^{-18} J \sim 10 eV$
(More accurate result if done in 3D)

6. Applications

Quantum wells:

- Semiconductor material with small energy gap (e.g. GaAs) is sandwiched between energy barriers from material with a larger energy gap (e.g. AlGaAs). A quantum well is formed between the barriers.
- Typical layer thicknesses ~ 1-10 nm.
- Quantization effects result in allowed energy bands, whose energy positions are dependent on the height and width of the barrier.
- This is used in the fabrication of specialised semiconductor devices such as: laser diodes, high electron mobility transistors (HFET or MODFET), quantum well infrared photodetectors (QWIP arrays).

6. Alpha decay

Energy of the alpha particle is lower than the Coulomb potential barrier in the nucleus \rightarrow tunnelling occurs

$$V(r) = \frac{2(Z_1 - 2)e^2}{4\pi\varepsilon_0 r}, \quad r > R$$

- Example: ²¹²Po (Z_1 =84), E_a = 8.78 MeV Coulomb barrier V_{max} = 26 MeV, $R \approx 9 \text{ fm}$, Distance where $E_{barrier} = E_a$ is $R_c \approx 27 \text{ fm}$ and M = 3727 MeV

The transmission coefficient can be approximated by a product of potential step transmission coefficients:

$$T \simeq \prod_i T_i(V_i, a)$$

Image credits: hyperphysics.phy-astr.gsu.edu 13

6. Examples of 1-D Potentials: α decay

Alpha decay (continued):

• The time between two attempts at the barrier walls is:

$$\Delta t = \frac{2R}{v} = 2R \sqrt{\frac{M}{2E_{\alpha}}}$$

• For small values of the transmission, T and the number of attempts n before the probability to escape is $\frac{1}{2}$ are related by

$$nT \approx \frac{1}{2}$$

- The corresponding half-life for the α decay is

$$t_{1/2} \approx n\Delta t \approx \frac{\Delta t}{2T}$$

• For ²¹²Po, for example, we can calculate: $\Delta t = 0.88 \times 10^{-21}s$, $T = 1.5 \times 10^{-15}$ so we can estimate $n = 0.33 \times 10^{15}$ and $t_{1/2} \approx 0.29 \ \mu s$

∧ in good agreement with the measured value (in this case)