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5. Potential Well

. - . Vi
o Third example: Infinite Potential Well iR ) 0
— The potential is defined as:
E
0 if —-a<x<a
V(x)= :
oo if |X| >da
-a a
— The 1D Schrédinger equation is:

d’ 2
ZCEX)—F hTEl//(x):O for —-a<x<a

— The solution is the sum of the two plane waves propagating in
opposite directions, which is equivalent to the sum of a cosine
and a sine (i.e. standing waves), with wave number £:

y(x)=A'e¢™ +B'e™ = Acoskx+ Bsinkx k=

2mE
=\




5. Potential Well

The wave function must be zero at both walls of well:

Acos(ka)+ Bsin(ka)=0
-
Acos(—ka)+ Bsin(—ka)=0 = Acos(ka)— Bsin(ka)=0

= Acos(ka)=0 and Bsin(ka)=0

We look at each condition separately

mr niw
cos(ka)=0= k,=—=—, n=1,3,5,...
2Cl L Quantization of
the wave number

Mm_It o =246,

sin(ka)=0= k, = ,
2a L
Normalization condition:

> eg. 1
[ v, oy, (0de=1=]" |4 cos” ke dx =| 4] (a (a)=1 = A=
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5. Potential Well

o Solutions:
v (x)= cos( il x), n=135,.. symmetric (even function)
Va 24 v, (1) =y,(-x)

v, (x)= %Sin(ﬂx), n=2,4,6,... antisymmetric (odd function)
a \la Va(X)=—,(~X)

The solution has to have a definite parity (either odd or even).
oo We can evaluate the de Broglie wavelength:

: kn:ﬂﬁ ln :2”:£ n=1,2,3,4,....
2a k, n

Only half integer and integer wavelengths fit in the box
The energy is quantized, i.e. only certain energy values
are allowed (energy eigenvalues)
p2 h2k 2 hz 2 2 h2n.2n2
En e — 2 2
2m  2m 8ma 2mL




5. Potential Well

o Fourth example: Finite square well V)
-a a
-V, if|x<a :
Vix)= 0 | | | E X
0, 1f|x| >a -V,

o Case 1: E <0, (bound state) with -V,< E < 0. Inside the well:
dzl//(x) 2m

i T ETVE=0 2m 2m
dy (x) =57 o B) =5z (A
:T+a2w(x)=0, x|<a
X
o Outside the well:
d’w(x) 2m . 2m 2m
—dxg )+?El//(x):0 with Bz\/—?E: F|E|
2
:dW_()‘)_ﬁZW(x):o, x>a

dx’
The energy: |El = -E is the binding energy of the particle.

5. Potential Well

o Like for the infinite potential, solution is either odd or even:
1) Even function:
Acos(ax), 0<|+<a
l//()C) = ~BlA . BlA X—>o0
Ce , |x|>a (since D™ ———>c0 = D =0)
« Continuity of y(x) and dy/dx:  Acos(oa)=Ce ™"

_aASin(aa):_ﬁCe,ﬁa :>0!atan(aa):ﬁa (1)

2) Odd function:
. Bsin(ax), 0<|x<a
Yx)=
Ce P, |x| >a
. Continuity of w(x) and d’l/)/dx BSil’l((Xa) = Ce‘ﬁa

aBcos(aa)=—BCe = aacot(aa)=-Pa (2)

The energy levels of the bound states are found by solving the transcendental
equations (1) and (2). These equations can not be solved analytically and have
to be solved graphically or numerically.



5. Potential Well

o If we define the dimensionless quantity y (strength parameter):

y* =(aa) +(Ba) =27

2 2
(V, +E)d’ —h—TEaz - },l—’?voa2

(mV a defines the value of y)then we can solve the equations graphically:

Pa=caatan(aa) (for even states)

Ba=-oaacot(aa) (for odd states) y
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5. Potential Well

Solutions: odd and even states alternate

« Fory =1 we have one even state; for y =3: two states (one odd, one
even); and for y =5: four states (two odd, two even)

Case y= 5: pa T A
| VAR
For V.00 = Y300 25 2 a5 4 05 9 05 1 15 2 25 @ 25 m1 05 o 05 1 15 2 2
0 64 84
and we recover the 68 \\j/
infinite well solution -+
with: E,=-0.93V, E,=-0.73V,
aa:nz, n=12,... / N\ N
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v | AR L
:>E = — =3 ——ig — z —— S I
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5. Potential Well

|

d*y(x) 2m

[E-V(@)]y(x)=0

dx* i

The solution:

hZ

Ae™ + Be™ x<-a

v(x)=<Fe +Ge™ —a<x<a

ikx
Ce™ |,

xX>a

-1

Case 2: E > 0, scattering in the potential well
The 1D Schrodinger equation is:

V(x)

v

2m(V,+ E
with k=,/—2sz , azqf—m( 0 )
h n

Similar to the potential barrier (E>V,) but V,—-V,, k’'— a and a ->L=2a

-1

18 _ o 4k’ [, 4E(E+V)
A ] (kz—a2)2sin2(ocL)_ | Vysin®(alL)
- . o N R+T =1
:@: 1+(k2—0¢2) sin® (L) _ 1+Vozsin2(ocL)
A 4k’o’ | 4E(E+Y,) |
5. Potential Well
o Transmission coefficients for y=10 and y=100:
TR /N (AN A
S AN NN IIANAWAWS
SO0 I N N N WAWAVAVAY i
N WAVAY
e AN S :
Y=1((:J) 02 04 06 08 ELN\\E% 2 Y=1OO E,;Io . .

Transition maxima (7=1) occur when alL=nm, i.e. when L is an integral

or half-integral number of the de Broglie wavelength 2m/c.

asymptotically to 1.

For larger values of y the minima become deeper.
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As E becomes large compared to V,, the transmission tends
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6. Examples and applications

Ramsauer effect: 1D Potential Well

— Scattering of low energy electrons from atoms (normally noble gases
such as Xenon or Krypton).

— Investigated by Ramsauer and Townsend independently in the 1920s

— Classically, it was expected that the probability of interaction would
diminish with energy.

or — However, it was observed that there were minima

[ in the probability of interaction at ~0.7¢V for Xe.

— No classical explanation was available, and it
could only be explained through QM.

oe| — Assume the atoms are like potential wells. The
minimum of probability (i.e. max 7) should be at:

08

o

06 -

-

PROBABILITY OF SCATTERING P,

02

nw ho’ K
o0 , ) ) ) (x:T = E = m :8mL2 for n=1
[+] i 2 3 4
ELECTRON MOMENTUM (/VOLTS) (6‘6 x 107 )2
Fi6. 4. The probability of scattering P, as a function of ForL~10"m = E, = ~ 2 1.6x107"°J ~10eV
(V—V.)\, where V'—V, is the electron energy. Ionisation 32x9.1x107'(107°)

oceurs at I (More accurate result if done in 3D) 1

6. Applications

Quantum wells:

— Semiconductor material with small
energy gap (e.g. GaAs) is sandwiched
between energy barriers from material
with a larger energy gap (e.g. AlGaAs).
A quantum well is formed between the
barriers.

— Typical layer thicknesses ~ 7-10 nm.

— Quantization effects result in allowed
energy bands, whose energy positions
are dependent on the height and width
of the barrier.

— This is used in the fabrication of
specialised semiconductor devices
such as: laser diodes, high electron
mobility transistors (HFET or
MODFET), quantum well infrared
photodetectors (QWIP arrays).

Laser diode

Image credits: Wikipedia and NASA

12



6. Alpha decay bt T .8

=
Energy of the alpha particle is lower than the Coulomb 4;':@ &i‘;’
potential barrier in the nucleus — tunnelling occurs v
D P A % o
4me,r
— Example: 2'?Po (Z,=84), E,= 8.78 MeV
Coulomb barrier V, =26 MeV, R = 9 fm, Modeling *'*Pog,
Distance where E, .., = E, is R, =27 fm 30__ | Spracewy
and M = 3727 MeV %’?‘; I
The transmission coefficient can be 2
approximated by a product of potential § . LI ,"ll .'”'l f

step transmission coefficients:

TZH]-;(‘/i’a) R[i0  20R, 30 40

r

Separation of centers (fermis)

Image credits: hyperphysics.phy-astr.gsu.edu 13

6. Examples of 1-D Potentials: a decay

Alpha decay (continued):
* The time between two attempts at the barrier walls is:

Ar=2R_op | ML
v 2E,

* For small values of the transmission, 7' and the number of attempts n
before the probability to escape is V2 are related by

1
nl =—
2
* The corresponding half-life for the oo decay is
At
t, =nAt=—
1/2 2T

* For 212Pg, for example, we can calculate: Ar = 0.88x10%!s, T = 1.5x10°3

so we can estimate n = 0.33x10"° and t;,= 0.29 us
N in good agreement with the
measured value (in this case)
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