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Switching to 3D: Angular Momentum
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– Angular(momentum(is(important(and(used(in(
many(domains(of(physics(to(describe(atomic,(
molecular(and(nuclear(spectra,(the(spin(of(
elementary(par7cles,(magne7sm,(etc.

– Classically,(it(is(a(constant'of'mo*on,(i.e.(a(
conserved(quan7ty(in(an(isolated(system

– In(a(central(poten7al(dL/dt=0(
– There(are(also(typical(QM(angular(momenta(

with(no(classical(equivalents(

– SternBGerlach(experiment(
– Zeeman(effect(and(applica7ons:(NMR,(

magne7c(resonance(imaging((MRI)(and(
Mössbauer(spectroscopy

– General(QM(proper7es(of(angular(momenta(
follow(from(commuta7on(rela7ons(between(
the(associated(operators
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8. Angular Momentum

Notations: 
L - orbital((with(classical(equivalent)
S - spin((with(no(classical(equivalent)
J - total((J=L+S)(or(any(arbitrary((((((((((((((((
angular(momentum
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 Review of commutation relations for operators:
– The commutator was defined as:
�

In general, for operators in QM:                   (non-Abelian algebra)  
– Momentum and position operators do not commute:

�                                                                                        (Shown in QM Part 1)

– Commutator algebra reminders:

8. Operators recap

Â, B̂⎡⎣ ⎤⎦ = ÂB̂ − B̂Â

 
x̂, p̂x[ ] = i  with  x̂ = x  and  p̂x = −i( ) d

dx

Â, B̂⎡⎣ ⎤⎦ ≠ 0

1) Â, B̂⎡⎣ ⎤⎦ = − B̂, Â⎡⎣ ⎤⎦;

2) α Â,β B̂⎡⎣ ⎤⎦ =αβ Â, B̂⎡⎣ ⎤⎦;

3) Â, B̂ ± Ĉ⎡⎣ ⎤⎦ = Â, B̂⎡⎣ ⎤⎦ ± Â,Ĉ⎡⎣ ⎤⎦
4) Â, B̂Ĉ⎡⎣ ⎤⎦ = Â, B̂⎡⎣ ⎤⎦Ĉ + B̂ Â,Ĉ⎡⎣ ⎤⎦;

5) Â, B̂,Ĉ⎡⎣ ⎤⎦⎡
⎣

⎤
⎦ + B̂, Ĉ, Â⎡⎣ ⎤⎦⎡

⎣
⎤
⎦ + Ĉ, Â, B̂⎡⎣ ⎤⎦⎡

⎣
⎤
⎦ = 0
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 Quantum mechanical operators are Hermitian, i.e. �

Eigenvalues of Hermitian operators are real. Proof:

8. Hermitian operators

 

Q̂ϕ x( ) = qϕ x( )⇒

ϕ * x( )
−∞

∞

∫ Q̂ϕ x( )( )dx = ϕ * x( )
−∞

∞

∫ qϕ x( )( )dx = q ϕ * x( )
−∞

∞

∫ ϕ x( )dx = q

Q̂ϕ x( )( )*
−∞

∞

∫ ϕ x( )dx = qϕ x( )( )*
−∞

∞

∫ ϕ x( )dx = q* ϕ * x( )
−∞

∞

∫ ϕ x( )dx = q*

q = q∗ ⇔ q∈
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ψ * x( )
−∞

∞

∫ Q̂ϕ x( )( )dx = Q̂ψ( )*
−∞

∞

∫ ϕ(x)dx
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 A complete set of commuting observables is a set of commuting 
operators whose eigenvalues completely specify the state of a system.

 If there exists a complete set of functions ψn, such that each function is an 
eigenfunction of two operators Â and B, then the observables of the 
operators are said to be compatible.

�

�������������������������������
– If A and B commute, the measurement of one observable has no effect on 

the result of measuring the other.
– In Quantum Mechanics the only measurements that can be performed 

simultaneously are those of operators that commute. The Heisenberg 
uncertainty relation arises because the momentum and position operators 
cannot be measured simultaneously, since their operators do not 
commute.

8. Compatible observables

Âψ n = anψ n

B̂ψ n = bnψ n

⇒ ÂB̂ψ n = Âbnψ n = anbnψ n = bnanψ n = B̂Âψ n

Two compatible observables commute!
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 In Quantum Mechanics, angular momentum is a fundamental 
concept. Let us introduce it step by step.

 Orbital angular momentum is defined as:
– In classical mechanics: 

�  

– In Quantum Mechanics, we substitute 
� the operators:

�

8. Angular Momentum

 

r̂ = x̂, ŷ, ẑ( )

p̂ = p̂x , p̂y , p̂z( ) = −i( ) ∂
∂x
, ∂
∂y
, ∂
∂z

⎛
⎝⎜

⎞
⎠⎟

⇒

L =

i j k

x y z
px py pz

⇒

Lx = ypz − zpy
Ly = zpx − xpz
Lz = xpy − ypx

⎧

⎨
⎪⎪

⎩
⎪
⎪

L = r × p⇒ L = rpsinα

 

L̂x = −i y ∂
∂z

− z ∂
∂y

⎛
⎝⎜

⎞
⎠⎟

L̂y = −i z ∂
∂x

− x ∂
∂z

⎛
⎝⎜

⎞
⎠⎟

L̂z = −i x ∂
∂y

− y ∂
∂x

⎛
⎝⎜

⎞
⎠⎟

The(underline(is(used(
as(vector(symbol(here
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 The orbital angular momentum operator is then:
�                                     

The angular momentum operator is Hermitian, since r and p are Hermitian.
 Commutation relations:

– Since

   we get

   to obtain
   and similarly

8. Angular Momentum

 
L̂ = −i r ×∇( ) where       ∇ = ∂

∂x
, ∂
∂y

, ∂
∂z

⎛
⎝⎜

⎞
⎠⎟

 

x̂, p̂x[ ] = ŷ, p̂y⎡⎣ ⎤⎦ = ẑ, p̂z⎡⎣ ⎤⎦ = i                and

x̂, p̂y⎡⎣ ⎤⎦ = x̂, p̂z⎡⎣ ⎤⎦ = ŷ, p̂x[ ] = ŷ, p̂z⎡⎣ ⎤⎦ = ẑ, p̂x[ ] = ẑ, p̂y⎡⎣ ⎤⎦ = 0

 

x̂, L̂y⎡⎣ ⎤⎦ = iẑ, p̂x , L̂y⎡⎣ ⎤⎦ = ip̂z ,

x̂, L̂z⎡⎣ ⎤⎦ = −iŷ, p̂x , L̂z⎡⎣ ⎤⎦ = −ip̂y

 

x̂, L̂x⎡⎣ ⎤⎦ = ŷ, L̂y⎡⎣ ⎤⎦ = ẑ, L̂z⎡⎣ ⎤⎦ = 0

x̂, L̂y⎡⎣ ⎤⎦ = x̂, ẑp̂x[ ]− x̂, x̂p̂z⎡⎣ ⎤⎦ = x̂, ẑ[ ] p̂x + ẑ x̂, p̂x[ ]− x̂, x̂[ ] p̂z − x̂ x̂, p̂z⎡⎣ ⎤⎦ = iẑ

p̂x , L̂y⎡⎣ ⎤⎦ = p̂x , ẑp̂x[ ]− p̂x , x̂p̂z⎡⎣ ⎤⎦ = p̂x , ẑ[ ] p̂x + ẑ p̂x , p̂x[ ]− p̂x , x̂[ ] p̂z − x̂ p̂x , p̂z⎡⎣ ⎤⎦ = ip̂z
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 Using cyclic symmetry                                           we get also:

– A shorthand way of writing these relationships is:

                                                                         Levi-Civita                     

                                                                                                                           antisymmetric tensor
 Commutation relations of the angular momentum:

 Based on symmetry                                        we have:

8. Angular Momentum
x̂→ ŷ; ŷ→ ẑ; ẑ→ x̂

 
L̂x , L̂y⎡⎣ ⎤⎦ = ŷp̂z − ẑp̂y , L̂y⎡⎣ ⎤⎦ = ŷ p̂z , L̂y⎡⎣ ⎤⎦ + ŷ, L̂y⎡⎣ ⎤⎦ p̂z − ẑ p̂y , L̂y⎡⎣ ⎤⎦ − ẑ, L̂y⎡⎣ ⎤⎦ p̂y = −iŷp̂x + ix̂p̂y = iL̂z

 

x̂i , L̂ j⎡⎣ ⎤⎦ = iε ijk x̂k

p̂i , L̂ j⎡⎣ ⎤⎦ = iε ijk p̂k
with ε ijk =

1 ijk = 123, 231, 312
−1 ijk = 321, 213,132

0 otherwise

⎧

⎨
⎪

⎩
⎪

 

ŷ, L̂x⎡⎣ ⎤⎦ = −iẑ, p̂y , L̂x⎡⎣ ⎤⎦ = −ip̂z ,

ŷ, L̂z⎡⎣ ⎤⎦ = ix̂, p̂y , L̂z⎡⎣ ⎤⎦ = ip̂x  

ẑ, L̂x⎡⎣ ⎤⎦ = iŷ, p̂z , L̂x⎡⎣ ⎤⎦ = ip̂y ,

ẑ, L̂y⎡⎣ ⎤⎦ = −ix̂, p̂z , L̂y⎡⎣ ⎤⎦ = −ip̂x

x̂→ ŷ; ŷ→ ẑ; ẑ→ x̂

 
L̂x , L̂y⎡⎣ ⎤⎦ = iL̂z; L̂y , L̂z⎡⎣ ⎤⎦ = iL̂x; L̂z , L̂x⎡⎣ ⎤⎦ = iL̂y
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 A shorthand way of writing all three commutator relations is:

– Because the three commutator relations are non-zero, the components of the 
angular  momentum are not compatible, so we cannot have simultaneous 
eigenstates of Lx and Ly, of Ly and Lz or of Lx and Lz.

 The square of the angular momentum is:

Similarly:

8. Angular Momentum

 

L̂z , L̂
2⎡⎣ ⎤⎦ = L̂z , L̂x

2⎡⎣ ⎤⎦ + L̂z , L̂y
2⎡⎣ ⎤⎦ + L̂z , L̂z

2⎡⎣ ⎤⎦ = L̂z , L̂x⎡⎣ ⎤⎦ L̂x + L̂x L̂z , L̂x⎡⎣ ⎤⎦ + L̂z , L̂y⎡⎣ ⎤⎦ L̂y + L̂y L̂z , L̂y⎡⎣ ⎤⎦ =

= iL̂y L̂x + iL̂x L̂y − iL̂x L̂y − iL̂y L̂x = 0

L̂x , L̂
2⎡⎣ ⎤⎦ = L̂y , L̂

2⎡⎣ ⎤⎦ = 0 ⇒ L̂ , L̂2⎡⎣ ⎤⎦ = 0

L̂2 = L̂x
2 + L̂y

2 + L̂z
2

 L̂ × L̂ = iL̂

Therefore, it is possible to have simultaneous eigenstates of L2 and Lz. These can 
define a complete set of observables for the angular momentum. Note that we could 
have also chosen L2 and Lx or L2 and Ly.

 

ux uy uz

L̂x L̂y L̂z
L̂x L̂y L̂z

= ux L̂yL̂z − L̂z L̂y( ) + uy L̂z L̂x − L̂x L̂z( ) + uz L̂x L̂y − L̂y L̂x( ) = i uxL̂x + uyL̂y + uzL̂z( )
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 It is convenient to work in polar coordinates:

– Therefore:

– The components of the operator will be:

8. Angular Momentum

 

L̂x = −i −sinϕ ∂
∂θ

− cotθ cosϕ ∂
∂ϕ

⎛
⎝⎜

⎞
⎠⎟

L̂y = −i −cosϕ ∂
∂θ

− cotθ sinϕ ∂
∂ϕ

⎛
⎝⎜

⎞
⎠⎟

L̂z = −i ∂
∂ϕ

⇒ ∇ = ur
∂
∂r

+ uθ
1
r
∂
∂θ

+ uϕ
1

r sinθ
∂
∂ϕ

x = r sinθ cosϕ
y = r sinθ sinϕ
z = r cosθ r = urr

z

y

x

r=|r|

θ
0
φ

 
L̂ = −ir ×∇ = −i uϕ

∂
∂θ

− uθ
1
sinθ

∂
∂ϕ

⎛
⎝⎜

⎞
⎠⎟

no(radial(dependence(B
L  does(not(depend(on(ur

r ≥ 0, 0 ≤θ ≤ π , 0 ≤ϕ ≤ 2π

12

– The square of the angular momentum can be calculated with:

– Hence:

– We will choose L2 and Lz as our compatible set of observables for 
angular momentum. 

– We perform a separation of variables by introducing:

8. Angular Momentum

 

L̂2 = −2 r ×∇( ) ⋅ r ×∇( ) = −2 r ⋅∇ × r ×∇( )

= −2 r ⋅∇ × uϕ
∂
∂θ

− uθ
1
sinθ

∂
∂ϕ

⎛
⎝⎜

⎞
⎠⎟

Ylm θ ,ϕ( ) =Θ θ( )Φ(ϕ )
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L̂2 = −2 1

sinθ
∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ +

1
sin2θ

∂2

∂ϕ 2

⎛
⎝⎜

⎞
⎠⎟
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 Eigenfunctions and eigenvalues of                    :
– Let us write the eigenvalues as      :

– Solution:

– For the solution to be single-valued in φ=0 we must have:

     
   i.e. the z-component of the orbital angular momentum is quantised.

– Then the eigenvalues of Lz are: 0, ±ħ, ±2ħ, … 

– Notice that, again, quantisation comes from imposing a boundary 
condition.

8. Angular Momentum

Φm (ϕ ) =
1

2π( )1/2
eimϕ

 
L̂zΦm (ϕ ) = mΦm (ϕ ) ⇒ − i ∂

∂ϕ
Φm (ϕ ) = mΦm (ϕ )

 e
i2πm = 1 ⇒ m = 0, ±1, ± 2,…

 
L̂z = −i ∂

∂ϕ

“magnetic 
 quantum 
 number”

 m
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 Simultaneous eigenfunctions of L2 and Lz:
– Let us assume that the eigenvalues of L2 are l(l+1)ħ2. Since Ylm(θ,φ) are 

common eigenfunctions of the two operators, then:

�

– In polar coordinates:

– Physical solutions must be in the range –π/2 ≤ θ ≤ π/2. We can do a change 
of variable to

            and write:  

8. Angular Momentum

− 1
sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ +

1
sin2θ

∂2

∂ϕ 2

⎛
⎝⎜

⎞
⎠⎟
Ylm θ ,ϕ( ) = l(l +1)Ylm θ ,ϕ( )

⇒ 1
sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ + l(l +1)− m2

sin2θ
⎧
⎨
⎩

⎫
⎬
⎭

⎛
⎝⎜

⎞
⎠⎟
Θlm θ( ) = 0

Flm (w) =Θlm (θ )    where   w = cosθ (−1≤ w ≤1)

1−w2( ) d
2

dw2 − 2w
d
dw

+ l(l +1)− m2

1−w2

⎛
⎝⎜

⎞
⎠⎟
Flm w( ) = 0

 

L̂2Ylm θ ,ϕ( ) = l(l +1)2Ylm θ ,ϕ( )
L̂zYlm θ ,ϕ( ) = mYlm θ ,ϕ( ) we(will(see(

later(on(why
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 For m=0:

This is Legendre’s differential equation. Its solutions are the Legendre
polynomials Pl(w):

Recursively:

8. Angular Momentum

1−w2( ) d
2

dw2 − 2w
d
dw

+ l(l +1)
⎛
⎝⎜

⎞
⎠⎟
Fl0 w( ) = 0
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Pl (w) =
1
2l l!

dl

dwl (w
2 −1)l⎡⎣ ⎤⎦

- After normalisation we have our 
solution as a polynomial of order l: Fl0 (w) =

2l +1
2

⎛
⎝⎜

⎞
⎠⎟
1/2

Pl (w)

(l +1)Pl+1(w) = (2l +1)wPl (w)− lPl−1(w)

P0 (w) = 1, P1(w) = w

 The Legendre polynomials are orthogonal polynomials with alternating odd 
and even symmetry. Orthogonality:

 The first six Legendre polynomials:

8. Angular Momentum

P0 (w) = 1
P1(w) = w

P2 (w) =
1
2
3w2 −1( )

P3(w) =
1
2
5w3 − 3w( )

P4 (w) =
1
8
35w4 − 30w2 + 3( )

P5 (w) =
1
8
63w5 − 70w3 +15w( )

Pm (w)Pn (w)dw = 2
2n +1

δmn
−1

1

∫ where          δmn =
1 if m = n
0 otherwise

⎧
⎨
⎩
Kronecker(delta
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8. Angular Momentum

 Adrien-Marie Legendre (1752-1833) 
– French mathematician
– Worked on number theory, statistics, 

algebra, analysis, celestial mechanics, 
elliptic integrals, Fermat’s last theorem for 
n=5, …

– Named after him: Legendre transformation, 
Legendre differential equation, Legendre 
polynomials, Legendre symbol, etc.

– His work inspired or was the starting point 
for work done by Abel, Galois and Gauss

– His name is one of the 72 names inscribed 
on the Eiffel Tower

– Like Hermite, he could not have anticipated 
the use of his equations in Quantum 
Mechanics
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Watercolor caricature of Legendre 
by artist Julien-Leopold Boilly (1820)


