Quantum Mechanics (P304H)
Part 2 - Lecture 16

Dr. Dan Protopopescu, Room 524
dan.protopopescu@glasgow.ac.uk

Angular Momentum Recap

— General QM properties of angular momenta follow purely from commutation
relations between the associated operators

— Starting from the classical definition of L, we have constructed our operatori

— We've construgted various observables, we have found that [iz,f,z] =0 and
have chosen L’ and L_for our set of compatible observables

— In polar coordinates 2
L2=—h2( ! i(sin@i)+ I 9 ] (1)

sin6 06 90 ) sin’0 dp>
A 0
L =—-ih—
c=mihg 2)
— We were looking for the eigenfunctions and eigenvalues of these operators
LY, (6.9) =11+ DY, (6.9) (3)
LY, (6.9)=mhY,,(6.) @)

where by Yi,(0,¢) we have denoted the wave function (for reasons we will discover
later on).



Angular Momentum Recap

— Without implying any properties for the numbers / and m, we have chosen for
convenience to write the eigenvalues of L’ and L_as

A =1(+DR’
A=mh

— We’ve performed a separation of variables by writing Y, (9,(/)) = @(9) D(p)

— With (2), we’ve solved the eigenvalues equation (4) for (@) and from
boundary conditions we’ve found out that m must be quantised m=0,+1,+2, ...

— Using the substitution F, (Ww)=0, (0) with w=cosf (-1<w<1)

we have obtained from (1) and (3) the equation

d? d m’
1—w? —2w—+I([+1)- F =0
(( W)d wdw+(+) 1 jlm(w)

2 2
w

— This we have identified as Legendre’s equation - the solutions of which are
known.
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Angular Momentum Recap

— For the special case m=0

W d? d
((l—w )dw2 —2wd—w+l(l+1)JF;0(w)=0

we had the solution (normalised)

20+1)"

Fiy(w)= ( ) P(w) (5)
where by P,(w) we denote the Legendre polynomial or order [, given by the
formula:

1 d
Pw)=———| (W' =1)
: 211 dw' [ ]

— We will continue today with the more general case when m=0
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8. Angular Momentum (cont.)

O The case when m = 0:
d? d m?
1-w? F, =0 6
(( W =2w— l_wzj i () (6)

— Note that this equation is independent of the sign of m; its solutions depend
onlyon/and |m]|.

3 The solutions of this equation are known to be of the form F, (w)= P)m| (w)
or more exactly:

Phase factor Norma/isat'ion Associated Legendre
polynomial
21 1 12 /
+
(w) P"(w), m=0
l + m
(W) m F;|m|(w) m<0

where P" (w) are called associated Legendre functions.

8. Angular Momentum

0 The associated Legendre functions are defined as:

P,'m| (w)= (1 —w? )7
where P(w) is the Legendre polynomial defined in (5).

0 They satisfy the orthogonality relation:
1
. . 2 (l[+|m]|)!
jP,' (W)P" (w)dw = (£:+]m]) S,
20+1(1-|m|)!
O There are 2/+1 allowed values for m.:

Im|<l = —1,-1+1,..,0,..,1-1,1
Proof: > > > ~ ~
<L>=<Lx>+<Ly>+<LZ>Z<LZ> = I(l+D)=>m’

and therefore: [=0 = m=0
=1 = m=-1,0,1
[=2 = m=-2,-1,0,1,2




8. Angular Momentum

J The associated Legendre functions also satisfy the recurrence relations:
QI+DwP" =(+1-m)P] +(l+m)P",
@+ INT-w' R = B~ B,
d The first few associated Legendre functions are:
Rwy=(1-w")"
Prw)=3(1-w*) " w
P} (w)= 3(1—w2
Pl(w)= %(l—wz)m (5w*-1)
P} (w)=15w(1-w")

Piw)=15(1-w?)"
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8. Angular Momentum

O Remember that the full solution for the wave function was
Y, (0,0)=0(6)®(p) where ©O(0)=F, (w), w=cosf

3 Hence, the normalised eigenfunctions Y, (6,¢0) common to the
operators L2 and L_ are:

o [RLED(I=m) i
Y,,(0,0)=( 1)\/ az(l+m) P"(cos6)e™, m=0
Y, (0,0)= (_1)m Y1|tn| 6,0, m <0

1 These functions are called spherical harmonics. They are orthonormal:

1 2r n
[¥.,.0.0)Y,,0.9)dQ = dp[dBsin6Y,, (0.0)Y,,0.0)=5,5,,
-1 0 0

e

Prove this
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8. Angular Momentum

2 The expressions and 3D-graphs of some spherical harmonics:

.04 0.08

N\

8. Angular Momentum

0 We have written the eigenvalues of I* and I:Z as [(I+1h* and mh.

2 The possible values of the angular momentum are

L=\Il(l+1h

rather that the values L = [71 suggested by the Bohr model.

n=3 .
L=nh with n=0,1,2,...
n=2 / (n = principal quantum number)
n=1 * VWV P
*hge AE=HV For the n™ orbit: m vr, = nh
+Ze
n’n’ Ze'k,
r = —— e —
" Ze’k,m, 2r,
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8. Angular Momentum

3 The vector interpretation of angular momentum:

The angular momentum vector L can only
have a fixed number of orientations with

respect to the z axis (the L_ component). For

example when [=2, there is no state where

the angular momentum is parallel to the z
axis and the possible values of L, will be:

-2h, -h, 0, h, 2h

3 Angular momentum is measured experimentally by observing the effect of
magnetic fields on the motion of particles.
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8. Angular Momentum

J  Experimental measurement of angular momentum:

— Classical electron moving with angular velocity w on an orbit of radius R:

: e
L=m,w R*= Magnetic moment: { = —Z—L
K m,
~ e A~
— Thisin QM correspondsto y=———4L
- 2m,

— If a component of the magnetic moment is measured

along z one measures angular momentum L_
— Inside a magnetic field, the energy of the interaction
is:
A .o~ eB »
AH=Uu-B=—-1L,
- 2m,

— If the system is in an eigenstate of L_ with eigenvalue m#, a measurement of the
interaction energy will give:

h
AE=uB=mu,B where U,= 26— is the Bohr magneton

e

— The dependence on m will therefore introduce a split of the energy levels.
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8. Angular Momentum

d The Stern-Gerlach experiment:
— Experiment performed in 1922 by Otto Stern and Walter Gerlach to test the

Bohr—Sommerfeld hypothesis that the direction of the angular momentum of

a silver atom is quantised.
— Neutral atoms do not get deflected in a uniform magnetic field

— However, if an atom with a magnetic moment y_is in an

inhomogeneous magnetic field B(x) parallel to z,
then a force emerges:

dB(x)

4
ax Beam of
silver

F=u

— Stern and Gerlach used a
beam of Ag atoms that

Inhomogeneous

magnetic field
was passing through a
non-uniform magnetic ,
Zerofield  on
field before falling onto Phatographic pattern ¢~ Classical expectation

I —
a collection pIate plate <> Experimental result

8. Angular Momentum

d The Stern-Gerlach experiment continued:

— Classically, if the atom is in the ground state (/=0) then the deflection should
be random and the image on the collection plate should be symmetrical
about the centre

— Quantum Mechanics predicts that the beam will split into 2/+1 parts

— However, Stern and Gerlach observed two lines

— This fits with neither the classical case

nor with any possible - T
C e ey Mon Dirter | audid 3o Fovbochicioyg Vi, vt

21+1 multiplicity Z&‘ ,W}d f,';{w-K VL. Juite it6. hz/’ji‘?‘*-“f-“‘www leackicero
pf a7 b o A N
Y g e -.:; ‘\.
Cee , p
I 0 v 3

Collection plates from the original Ho peliclinins o /1(:,{4‘!‘,;” Biimea, ettty ‘7”"{"1.
Stern-Gerlach experiment | 7en<z ! st fomfmcbd “ucpe R "ntfelads
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8. Angular Momentum

' The Stern-Gerlach experiment (cont.):

— The two lines observed implied that

2i1=2 = [=
2

— An explanation was given in 1926 by
Uhlenbeck and Goudsmit who introduced
a quantised intrinsic angular momentum
named spin

, m ==

N | —

— The electron spin must be considered to
be a purely quantum mechanical concept,
without any classical analogy

— The electron is not a spinning charged
sphere!

< IM FEBRUAR 1922 WURDE IN DIESEM GEBAUDE DES ¥

PHYSIKALISCHEN VEREINS, FRANKFURT AM MAIN,

VON OTTO STERN UND WALTHER GERLACH DIE
FUNDAMENTALE ENTDECKUNG DER RAUMQUANT!SIERUNG
DER MAGNETISCHEN MOMENTE IN %\_T&)MEN GEMACHT‘

"PHYSIKALISCH-TECHNISCHE ENTWICKLUNGEN D
- WIE KERNSPlNRES?AII\IANZMETHODE ATOMUF

DE 1943 FUR D

Plaque at the Frankfurt FFM institute
commemorating the experiment

L
’
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