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Quantum Mechanics - Part II

Wave functions

Applications of the Schrédinger Equation:

Solution of the 1-dimensional Time Independent Schrédinger Equation (TISE) for the potential

step and potential barrier.

Interpret the solutions: the tunneling process.
Solve the TISE for potential square wells of finite and infinite depth.

Discuss the resulting quantised and continuous energy levels, eigenvalues and quantum

numbers.

Show that the TISE for the (1d) simple harmonic oscillator results in Hermite’s equation, with

solutions which are Hermite functions.
Show that the boundary conditions result in the quantization of its energy levels.

Use the optical spectroscopy of quantum wells in semiconductors and alpha particle decay as

examples.

Angular Momentum:

Review "Classical" angular momentum.
Motivate the angular momentum operators in quantum mechanics and derive their

commutation relations.

Solve the angular part of the TISE for a central potential and define spherical harmonics and

Legendre polynomials in terms of eigenfunctions of angular momentum.

Provide an elementary treatment of the addition of angular momenta by analogy to vectors.
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Operators

— In Quantum Mechanics, all information about a particle is contained in

its wave function: ¥(x,t)
— Probability of finding particle in region x to x+dx is

P(x,0)dx =¥ * (x,1 )P (x,1)dx =W (x,0)|” dx
— The particle must be somewhere in space (normalization condition):
[Iw.of dx=1

— The behaviour of a particl_gis described by the time-dependent
Schrodinger equation:

p .
in ST _ fpien)
ot
~ n hz 82
where H is the Hamiltonian operator: H =———+V(x)

2m dx>
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— In QM, dynamical variables are replaced by operators, e.g. O
— The eigenvalue equation is: O¥(x,t)=0,¥(x,t)

— Operators:
Quantity Operator Representation
Momentum - —ihi
P: dx
Position ),(\j X
Kinetic energy o Pl -n* 9°
2m 2m ox*
Potential energy 1% V(x)
Total energy A A oA -n* 0
(Hamiltonian) H=T+V 2m ox® TV
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The Schrddinger Equation

Free particle

We performed a separation of variables
Y(x,0)=T@)y(x)

and 2 9?
0¥ (or) 0 0¥ (xt) V)W (x.0)=

ot 2m  9x>
LoT(r) - 0 dy(x)
i Py ()=~ ST O+ VY (T (1)

We have separated the spatial part of the Schrédinger equation. This is
called the Time-Independent Schrodinger Equation - TISE (in 1D):
o1 dy(x)

om v(x) ox’

+V((x)=E

This is an eigenvalue problem [:Il,u(x) =Ey(x)

1 Inthis case V(x)=0

Probability density

1 The probability density, when B=0 in eq. (2), was defined as:
Pey=¥ ) =|ad™ ] = |
1 The probability current density was defined as

NEHE L[‘{J*(x,t)(vw(x,t))—(V\P*(x,z))\v(x,t)}= Re[\v*(x,z)(ivwx,t)ﬂ
i2m m

i
and in this case

J(x,0)= Re[A*e-"”“‘“’” .iAike"(’“‘“”)} = 2K = | ap
m m

from which
J(x,t)=vP(x,1) BP(x,t)+aj(x7t) _

ot ox
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7 dy(x) . 2mE
—%7—1':'!//()(7)=0 = II/(X)=A€kX+B€ b with k= e
o Full wave function including the time-dependant part was:
P(x,)=(Ae™ +Be™)e™  where o= - )
i.e. the sum of two plane waves. E is the energy of the system.
1 This solution is not normalisable: we can normalise the wavefunction
only if the particle is confined to a region of space.
0 Momentum can be defined with:
= _ J"\P* ) i _ [ op¢ ke ik 3
P.= |V (x.1)| —ih—Y¥(x.t) |dx = JA e “khAe™dx = hk
dx
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Potential step
E<V E>V
0 0
V(x) Vo £ V(x) vy
£ N
0 X 0 X
2 2
by dy(x
V) ey =0 Lx<0 V) ey=0 x<0
dx dx
d*y (x d*y (x
#—Kﬁ//(x)zO x>0 "’S )+k'21//(x)=0 x>0
dx dx
2mE 2m meE . [2m
k= h2 , K= F(VO—E) k= h2 . k'= h—Z(E_VO)
k,x eR" E>V, kk'eR"




Potential step

E<V, E>V,

Ae™ + Be™ | x<0 Ae™ + Be™ x<0

X)= X)= o
v @ De™ ;x>0 v Ce"”xZO

/ /

Coefficient C must be zero, else this This would be a plane wave coming from
term grows to infinity when x— the right, which we don’t have, so D must
be 0.
V(X v V(X
E ‘ E
VO
Aeikx Aelkx |————
s— De X ik'x
Be' - Be-ikx _ Ce
— B
X
X

Potential Barrier

V(x)
— The potential is defined as: Vo
0if x<O
V(x)=1V,if0<x<a a "
Oif x>a
d’y (x)

— The 1D Schrédinger equation is:

2m
o P [E-Vlw(0=0

— The particle is free in the regions x<0 and x>a. We assume that the
particle is incident from the left, with amplitude A, that there is a
reflected wave of amplitude B from left to right, and that there is a
transmitted wave of amplitude C and wave number k:

Ae™ +Be™ [ x<0
y=1 ", k= 20F
Ce ,X>a h
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Potential step

E<V, E>V,
Probability current density: Probability current density:
.h 0
J(x.)=R ~r Y 2 2 _ hk
(x,1) ({Wimax } v“d ﬁB|%x<Q v=—
. 2 2 J(x’t) = ,
KeR", |A| =|B| «—Standing wave v'|C|2 x>0, Vl:@
v(|A*-|B*)=0,x<0
J(x,t)= kk'eR", J(x,0)#0
0,x=20
Reflection and transmission coefficients:
Reflection and transmission coefficients: 5 R s
|5 S E I E S
L R VA AP (k+k)
vA" |4 2
v |C| _ 4kk'
The wave is totally reflected, even though - 2 = 2
there is a non-zero probability of finding the V|A| (k+ k )
particle at x>0. R+T =1 10
Potential Barrier with E<V,
The reflection and transmission coefficients:
—1
2 2.2 _ !
R:@: - 42k1.c : s 42EF%2 E)
|A| (K +x)sinh’ (ca) V2 sinh®(ka)
» 1 R+T =
|’ (k* +x2)sinh’ (ica) V2 sinh’(xa) |
|4 4k 4E(V,-E)
There is a non-zero probability of the particle leaking through the potential
barrier (barrier penetration, or tunnel effect). This is one of the remarkable
consequences of Quantum Mechanics.
Wavefunction squared
vl =[Af +|Bl" +2]4]| Blcos(2kx) _ W =|Fe + Ge

—_—

/\ /
ro-por \ /] \ [ \—"

\/ /|7
AN s )
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Potential Barrier with E<V,

]

For small values of the energy (E —0) we have: T—0
When the energy E approaches V, (the top of the barrier), then:

-1

. . V22m(V,-E)’ | V.a
lim 7 = lim 1+M = 1+%
E—V, E—V, 4E(V0 — E)h 2h
Also, when the opacit M is ver
, pacity —3 y @

large (ka>1) then: tip atoms

) e 16E(V, —E) 5,
sinh(ka)~—=T = #e e
2 V;) current4 |

This formula was relevant for
scanning electron microscopy where

contour maps as accurate as 101'm

sample atoms @

can be made.
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Applications of the Schrédinger Equation:

¢ Solution of the 1-dimensional Time Independent Schrédinger Equation (TISE) for the potential
step and potential barrier.

v Interpret the solutions: the tunneling process.

. Solve the TISE for potential square wells of finite and infinite depth.

. Discuss the resulting quantised and continuous energy levels, eigenvalues and quantum
numbers.

. Show that the TISE for the (1d) simple harmonic oscillator results in Hermite’s equation, with
solutions which are Hermite functions.

. Show that the boundary conditions result in the quantization of its energy levels.

. Use the optical spectroscopy of quantum wells in semiconductors and alpha particle decay as
examples.

Angular Momentum:

. Review "Classical" angular momentum.

. Motivate the angular momentum operators in quantum mechanics and derive their
commutation relations.

. Solve the angular part of the TISE for a central potential and define spherical harmonics and
Legendre polynomials in terms of eigenfunctions of angular momentum.

. Provide an elementary treatment of the addition of angular momenta by analogy to vectors.

15
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Potential Barrier with E>V,,

0 Solution in the barrier region is similar to the case when E<V,, but now:

ik —ik' 2m(E-V,
v(x)=Fe" " +Ge ™" ,0<x<a  withk'= %
1 The solutions are:
i ’k” I 4E(E-v) T
- S a 0
2 pE: k'22‘2k' ! 2 2 NT =>R+T=1
[ e a] [ v
4] 4K%k" 4E(E-V),)

The transmission coefficient is less than unity: T< 1. In classical physics, when E>V, the
particle would always pass the barrier.

T=1 only when k’a=um, 2m, 37, ....(when the thickness of the barrier is equal to a half-
integral or integral number of de Broglie wavelengths: 1’ = 27/k’

0 Case E=V,can only be investigated as a limit case for EsV,,
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Infinite Potential Well
Potential V(x)
e 0]
if -a<x<a
V(x)= .
if |x|>a E
Schrédinger equation:
dw(x) 2m @ a .
w+—2Ey/(x)=0 for —-a<x<a
dx h
Solution:
: . . 2mE
v(x)=A'e"™ +B'e™ = Acoskx+ Bsin kx k=\[ pe
Boundary conditions (wave function must be zero at both walls) has as consequence the
quantisation of the wave number:
T T
cos(ka)=0= k,=——="" " 5=135,.
2a L
. T T
sin(ka)=0= k== =" pn=246,.
2a L 16



Infinite Potential Well

Wave functions can be normalised:

wn(x):%cos(;—ﬂx), n=1,3,5,... symmetric (even function)
@« v, (0)=y,(-x)

1 . (nr
v, (x)= ﬁsm(%)‘} n=2,46,.. antisymmetric (odd function)
Yn(X)==Wu(=X)

The solutions have a definite parity (either odd or even).
Corresponding de Broglie wavelength:
nmw
ky=2-= /ln=2—”=§ n=1234,...
a k, n
Only half integer and integer wavelengths fit in the box.

The energy is quantized
_p? WPk, WPrPn® _ nPaln’
" 2m 2m 8ma® 2ml?®

Wavefunctions are normalisable for a confined particle.

Finite Potential Well
E<V, E>V,

Bound state
Vi) ‘

-a a X

-a a X

-VO

Schrodinger equation outside the well:

d’ 2
_ngx) +oEp(x)=0
2.
zddvjc—g)c)—ﬂzy/(x)=0, |x|>a

with f= —;—TE: ;—T|E|

Finite Potential Well

E<V,

Bound state where E is the binding energy:
Vix)

-a a X

'VO

Schrodinger equation inside the well:

dw(x) 2m

dxg )+;[E—V(x)]w<x>=o

2

ﬁdw—gx)+azl//(x):0, |4 <a
dx

o= \/i—T(VO +E) =\/2h—'f(Vo ~|E)

E>V,

Scattering in a potential well:
Vix)

-a a X

_Vo

The Schroédinger equation:

'y (x) 2 @)y (=0

—_—

dx* h?

/ ’2 E
use ke 2m2E = m(V02+ )
/] h

Finite Potential Well

E<V,

Solutions (even and odd):

- Acos(ax), 0<|d<a

x)=

v Ce™ P s |x| >a
» Bsin(ax), 0<|q<a
xX)=

v Ce P |x| >a

Continuity conditions lead to transcedental
equations which could be solved
graphically or numerically.

aatan(oa)= Pa
aacot(aa)=—Pa
For V,—00 = y—oo we recover the
infinite well solution.

E>V,
Solutions:
Ae™ + Be™ x<-—a
Y(x)=3 Fé +Ge ™ ~a<x<a
Cce™ | x>a

Reflection and transmission coefficients:

_@_{ AE(E+V,) T

R= =
|A° Vy sin’ (L)

2 2.2 !
T:Q: 1_'_Vosm (aL)
|4 4E(E+V,)

T<1I with maxima (T=1) occurring when
al=nm, i.e. when Lis an integral or half-
integral number of de Broglie wavelengths.
As E»V,, T tends asymptotically to 1. 20




Finite Potential Well effects and applications

* Ramsauer effect: the scattering of low energy electrons off atoms in a gas could not be
explained classically, since they behave as QM finite potential wells

Y
1O

*Semiconductor applications: “quantum wells” - obtained
by sandwiching materials with different energy gaps -
have applications in specialised semiconductor devices
like: laser diodes, HFET and MODFET transistors, QWIPs
(quantum well infrared photodetectors)

Laser diode

* Alpha decay: radioactive half-time can be calculated by
modelling alpha as a particle behind a potential barrier:

Modeling 2'2Po,3,‘
1 301 alpha decay
nT =~— T=[]7,.a) Vaar] = -
2 i §2o—
2R M =
At=—=2R | — g }
’ AZE“ Gwopllll] oy
t TATAL
tp=nAt=— Vi
2T uch a simplistic model P | ,
does not always work though R[i0 20r. 30 40 o1
Separation of centers (fermis)
Harmonic Oscillator
o Defined l:lay a quac;ratlc potential: Vi)
V(x)=—kx’* = =mw’x’ E
2 2 £
3
0 Schrédinger equation: EEZ
L
X
me dzl//(x) 2mE mlo®
— + - X x)=0
(P2 )0 20y
2E mo d*w )
a=—, fB=,— and y=px = +lo— =0
. B=y{~ y=pr = ey
1 The solutions involve Hermite polynomials
ﬂ2 1/4 ,
v.0=\5 | = | ¢ "H,0»,  n=012,.
2"n!
n 2 dn —y2
H, (y)=(D"e —(e7) Wave functions are normalisable
dy because the particle is confined.
23
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Applications of the Schrédinger Equation:

¢’ Solution of the 1-dimensional Time Independent Schrédinger Equation (TISE) for the potential
step and potential barrier.

v Interpret the solutions: the tunneling process.

v Solve the TISE for potential square wells of finite and infinite depth.

(4 Discuss the resulting quantised and continuous energy levels, eigenvalues and quantum

numbers.

Show that the TISE for the (1d) simple harmonic oscillator results in Hermite’s equation, with

solutions which are Hermite functions.

Show that the boundary conditions result in the quantization of energy levels.

Use the optical spectroscopy of quantum wells in semiconductors and alpha particle decay as

examples.

AN

Angular Momentum:

. Review "Classical" angular momentum.

. Motivate the angular momentum operators in quantum mechanics and derive their
commutation relations.

. Solve the angular part of the TISE for a central potential and define spherical harmonics and
Legendre polynomials in terms of eigenfunctions of angular momentum.

. Provide an elementary treatment of the addition of angular momenta by analogy to vectors.

22
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Harmonic Oscillator

0 Energies are quantised (because again, the particle is confined):

n

E = n+l hiw
2

0 The energy levels are equidistant: £ —F = ho

ho
0 Ground state energy is non-zero: E, = 7 >0

o This is a very important physical result because it tells us that the energy of a
system described by a harmonic oscillator potential cannot have null energy.

There is no classical equivalent to this.

0 Physical systems such as atoms in a lattice or in molecules of a diatomic gas cannot
have zero energy even at absolute zero temperature (7=0K).

1 For example this zero point energy is what prevents liquid 4He from freezing at
atmospheric pressure, no matter how low the temperature.

Quantum Mechanics (P304H) Lectures - University of Glasgow 24



Harmonic Oscillator

o The Hermite polynomials can be calculated recursively
o The first four normalised wave function solutions:

mo " mao )" mox®
) el

v, (x)= ( ) ( j x exp[— meox” ]
H,(y)=1 — 2n
H,(y)=2y ( ) [(Zma)j ) } (mwsz
v,(x)= x"—1|exp| —
H,(y)=4y’-2 h h 2h
Hy(0)=8y' =12y W;(x)=($) & ) Kzrgw)’”—sx]exp(_mfhxz

with the corresponding energies:
1 3 7
E,=—hw, E=—hw, E, =-hw, E,=—ho
2 2 2 2

Discrete energy levels are a characteristic of confined particles in QM.

Quantum Mechanics (P304H) Lectures - University of Glasgow
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Uncertainty principle and the harmonic oscillator

o The harmonic oscillator offers a nice illustration of the Uncertainty
Principle:

For the ground state:

<x2>=ﬁ’ <pf>=%mhw, (x)=0 and (p )=0

Then AxAp = \/ )(<px> <x>2)=

Remr

The non-zero ground state energy can be interpreted as the smallest
energy allowed by the uncertainty principle.

Quantum Mechanics (P304H) Lectures - University of Glasgow
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Harmonic Oscillator at the classical limit

The correspondence principle: “results of
quantum mechanics tend towards classical

mechanics in the classical limit.”
Classical

n=0 probability 1/vy n=2
As the quantum number and, Quantum .
correspondingly, the energy probability ¥ <
increase, the quantum L L L L TR

picture approaches the
classical scenario

—X

Classical
probability

Classical limit

credits: Hype
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Applications of the Schrédinger Equation:

¢ Solution of the 1-dimensional Time Independent Schrédinger Equation (TISE) for the potential
step and potential barrier.

v Interpret the solutions: the tunneling process.

v Solve the TISE for potential square wells of finite and infinite depth.

(4 Discuss the resulting quantised and continuous energy levels, eigenvalues and quantum
numbers.

¢~ Show that the TISE for the (1d) simple harmonic oscillator results in Hermite’s equation, with
solutions which are Hermite functions.

v Show that the boundary conditions result in the quantization of energy levels.

(4 Use the optical spectroscopy of quantum wells in semiconductors and alpha particle decay as
examples.

Angular Momentum:

Review "Classical" angular momentum.

Motivate the angular momentum operators in quantum mechanics and derive their

commutation relations.

. Solve the angular part of the TISE for a central potential and define spherical harmonics and
Legendre polynomials in terms of eigenfunctions of angular momentum.

. Provide an elementary treatment of the addition of angular momenta by analogy to vectors.

Quantum Mechanics (P304H) Lectures - University of Glasgow
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Operators and their properties

Hermitian operators and compatible observables

0 Commutation relations for operators:
— The commutator was defined as: [A,é]: AB— BA

In general, for operators in QM: [A,é}tO (non-Abelian algebra)

— Momentum and position operators do not commute:
A AT e e A A o\ d
[.p.]=ih with §=x and p, = (_Zh)a (Shown in QM Part 1)

— Commutator algebra reminders:

0 Quantum mechanical operators are Hermitian, i.e.

v ()(Gn()dr = [ (Ov) ptads

—oco

0 Eigenvalues of Hermitian operators are real.

1 A complete set of commuting observables is a set of commuting
operators whose eigenvalues completely specify the state of a system.

0 If there exists a complete set of functions ,, such that each function is

an eigenfunction of two operators A and B, then the observables of the
operators are said to be compatible

Ay, =ay,
By,=by,

= ABy, = Aby, =aby,=bay, = BAy,
Two compatible observables commute!

Quantum Mechanics (P304H) - University of Glasgow
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Switching to 3D: Angular Momentum

Angular Momentum

— Angular momentum is important and a concept necessary in
many domains of physics to describe atomic, molecular and
nuclear spectra, the spin of elementary particles, magnetism, etc.

— Classically, it is a constant of motion, i.e. a conserved quantity in
an isolated system

— In a central potential dL/dt=0

— There are also typical QM angular momenta with no classical
equivalents

— Stern-Gerlach experiment
— Zeeman effect

General QM properties of angular momenta follow purely from commutation
relations between the associated operators

Starting from the classical definition of L, we have constructed our operator L

— We've construgted va[ious observables, we have found that [iz,iz]z 0 and
have chosen L’ and L_for our set of compatible observables

In polar coordinates 2
L2=—h2( ! i(sin@i)+ L ) (1)

sin@ 00 06 ) sin’ @ d¢’
A 0
L =—ih—
=i @)
— We were looking for the eigenfunctions and eigenvalues of these operators
lA‘ZYlm (6’(p) = l(l + l)hZYIm (9’(p) (3)
Izz}]lm (9’(p): mh}’lm (9’(p) (4)

where by Yi,(0,¢) we have denoted the wave function (for reasons we will discover
later on).



Quantum Mechanics - Part 11 Polar coordinates

Applications of the Schrédinger Equation: o ltis convenient to work in polar coordinates:
v/ Solution of the 1-dimensional Time Independent Schrédinger Equation (TISE) for the potential X = rSinGCOS(p 0 190 1 0

step and potential barrier. . . = V=u —+ Ug——tU,————
v Interpret the solutions: the tunneling process. y= rsmGsm(p — T9r "rad@ “‘rsind a(p
v Solve the TISE for potential square wells of finite and infinite depth.
v/ Discuss the resulting quantised and continuous energy levels, eigenvalues and quantum z=rcosf r=ur

numbers. -7 .
v/ Show that the TISE for the (1d) simple harmonic oscillator results in Hermite’s equation, with — Therefore: no radial dependence -

solutions which are Hermite functions. / L does not depend on u;
v/ Show that the boundary conditions result in the quantization of energy levels. N 0 1 9
v Usethe optical spectroscopy of quantum wells in semiconductors and alpha particle decay as L=—ihirxV=—ifil u —Ug——(—

examples. - T 89 ~"sinf dg 2

— The components of the L operator were: r=Ir|
Angular Momentum: -
- . .0 d

v/ Review "Classical" angular momentum. L, =—in _Smﬁoa_ - cmecosﬁoa_
¢/ Motivate the angular momentum operators in quantum mechanics and derive their 0 @ 9

commutation relations. R by J 0,
. Solve the angular part of the TISE for a central potential and define spherical harmonics and L =—ih —cosQp—— COtOsin(p— y

Legendre polynomials in terms of eigenfunctions of angular momentum. Y 00 a(p
. Provide an elementary treatment of the addition of angular momenta by analogy to vectors. 3

X

L =—ih—
4 8(p \ rz0, 0<0<m, 0<@<2nm
simplest
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Angular Momentum Solutions Solutions for m=0

— Without implying any properties for the numbers [ and m, we have chosen for — For the special case m=0
convenience to write the eigenvalues of L* and L_as
d’ d
A =11+ )R [(1—w2)d 72w +l(l+1)J ,(w)=0
A=mh

we had the solution (normalised)
— We've performed a separation of variables by writing Y, (9,([)) = @(9) D(p) 21+1

— With (2), we’ve solved the eigenvalues equation (4) for ®(¢) and from F,(w)= (T) P (w) &)
boundary conditions we’ve found out that m must be quantised m=0,%1,%2, ...
— Using the substitution F,, (w)=0,,(0) with w=cosf (-1<w<l)
we have obtained from (1) and (3) the equation

where by Pi(w) we denote the Legendre polynomial or order [, given by the

formula:
d’ d m’
w) oL - - P(w w? 1)
where
— This we have identified as Legendre’s equation - the solutions of which are
Known. B(w)=1, P(w)=w (+DB, (w)=Q2l+1DwP(w)—IP_ (W)

Quantum Mechanics (P304H) Lectures - University of Glasgow 7 Quantum Mechanics (P304H) Lectures - University of Glasgow



Solutions when m#0

g Whenm z0:

aw?

2 2
[(1—w2) d 2wdi+l(1+1)— ~ JF
w

— Note that this equation is independent of the sign of m; its solutions depend

onlyon/and |m].

O The solutions of this equation are known to be of the form F,, (w)= P,l"" (w)

or more exactly:
Phase factor

F,m(w>:(—1)’”[
)

m

Em(W) = (_1

F,

1-w?

Normalisation

2(1

/ 1/2
2A+1)(1-m)]
i

m] w),

(w)=0

Im

Associated Legendre

/ polynomial

w), m=0

m<0

where P" (w) are called associated Legendre functions.

(6)

Associated Legendre Functions

Full solution

0 The associated Legendre functions are defined as:
B (w)=(1- wz)@ ﬂP(w)
! aw" ™!
where P(w) is the Legendre polynomial defined in (5).
0 They satisfy the orthogonality relation:

1
2 (1+]m])!
PP (wydw = —3+ L5
J] BT 20+1(1=|m|)1™"
0 They can be obtained by recurrence
QI+DwP" =(+1-m)P}, +({+m)P",

Ql+IW1-w*P"" =p"

m
I+ Pl—l
1 There are 2/+1 allowed values for m:

Iml <l = —1,—-1+1,..,0,...1-1,1

1 Remember that the full solution for the wave function was

Y, (6,0)=0(6) d(p)

0 Hence, the normalised eigenfunctions Y, (0,¢0) common to the

operators L2 and L, are:

w [(2U+1)(1—m)!
ar(l+m)!

Ylm (9,(P) = (_l)m Y[[:n‘ (9’(1’),

Ylm (9’(P) = (_1)

1 2 T
[¥.,.©0.0)Y,,0.9)dQ = dp[dosineY,, ©0.0)Y,,0.0)=5,8,,
-1 0 0

P"(cosB)e™, m=0

m<0

Quantum Mechanics (P304H) Lectures - University of Glasgow

where ©(0)=F,,(w), w=cosf

0 These functions are called spherical harmonics. They are orthonormal:

Quantum Mechanics (P304H) Lectures - University of Glasgow 10
0 The expressions and 3D-graphs of some spherical harmonics:
)’U‘"z\‘ti YY :\%cr-sﬁ? Yy =\ 1? (3cos?6 —1)
Y w A7
Y :—\‘ésinﬁe"“ Y} :—\ i—isin&cc-sﬁ:‘"” .
o [3 oo M. B 1 I=I;
Yy =\§smt?:' Y =\§smﬁcusﬁc' . Mi m=+1
2 o 15 e mEateeEe ) ,‘- """"" =
Y? =\ sin” 6 e* 4 o “;:: -
M5 I=1; m=0 X
o

1=2;

1=2; m=+2



The Stern-Gerlach experiment

Spin

— Experiment performed in 1922 by Otto Stern and Walter Gerlach to test the
Bohr—Sommerfeld hypothesis that the direction of the angular momentum of
a silver atom is quantised.

— Neutral atoms do not get deflected in a uniform magnetic field

— However, if an atom with a magnetic moment u, isinan

inhomogeneous magnetic field B(x) parallel to z,

then a force emerges: T
Oven
0B(x
F= ,uz ( ) Magnet
ax pole

Beam of
silver

— Stern and Gerlach used a “
beam of Ag atoms that
was passing through a
non-uniform magnetic

. . Zerofield  on

field before falling onto Photographic pattern <@ Classical expectation

plate —

a collection plate <> Experimental resul

Inhomogeneous
magnetic fieid

Quantum Mechanics - Part 11

Applications of the Schrédinger Equation:

v/ Solution of the 1-dimensional Time Independent Schrédinger Equation (TISE) for the potential
step and potential barrier.

v Interpret the solutions: the tunneling process.

v’ Solve the TISE for potential square wells of finite and infinite depth.

v/ Discuss the resulting quantised and continuous energy levels, eigenvalues and quantum
numbers.

¢/ Show that the TISE for the (1d) simple harmonic oscillator results in Hermite’s equation, with
solutions which are Hermite functions.

v/ Show that the boundary conditions result in the quantization of energy levels.

v Usethe optical spectroscopy of quantum wells in semiconductors and alpha particle decay as
examples.

Angular Momentum:

v/ Review "Classical" angular momentum.

v/ Motivate the angular momentum operators in quantum mechanics and derive their
commutation relations.

4 Solve the angular part of the TISE for a central potential and define spherical harmonics and
Legendre polynomials in terms of eigenfunctions of angular momentum.

. Provide an elementary treatment of the addition of angular momenta by analogy to vectors.

Quantum Mechanics (P304H) Lectures - University of Glasgow

— Classically, if the atom is in the ground state (/=0) then the deflection should
be random and the image on the collection plate should be symmetrical
about the centre

— Quantum Mechanics predicts that the beam will split into 2/+1 parts

— The two lines observed by Stern and Gerlach observed two lines fited with
neither the classical case nor with any possible

2[+1 multiplicity

— The two lines observed
implied that

Wy irtr, andii Ko, Cvtrct DAL frid,
ZL"“‘& 71!.1,‘4(,&1 WL, Juite V18 11252) Yeu o nincirafell backicers
1 po’ O st s
A+1=2 = 1= .

ey ;
— The explanation ol | \ . K el
required a new, purely Mgl ‘ i j
QM concept: the spin "o R Yy

s=1/2
— The spin is an intrinsic
QM property with no
classical equivalent

14
Matrix representation
1 The matrix representation of angular momentum:
— A general angular momentum state can be written as:
W)= a| L) +a) |l I=1)+...+ay | L,=1+ 1)+ ay,, | 1,~1) (1)
— We can write this “| ket ) function as a column matrix:
a
v)=| :
Ay
— And the ”(bm “function as a row matrix:
<W| :|: ap, o Ay J
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Hermitian conjugate

— An operator acting on the wave function is then represented as a matrix
multiplying the vector.

— The eigenvalue equation takes the form:

A is the eigenvalue
/

) Ay o A, a a,
Aly)=| &+ " Dol=Al with  n=21+1
Anl Arm an an
which is equivalent to: Ap=A A,
: ’ : =0
Anl Ann -2
— The Hermitian conjugate of matrix A is defined as:
Complex
A:l . A:l conjugate,
AAA =] - : / transpose
A:n e A:Vl
— Therefore a matrix is called Hermitian if: Al.j = Aj.l.
17
Ladder Operators
— We introduced /adder operators defined by:
$‘+ = S‘X + iS‘ The ladder operator S, increases
R n Ay eigenvalue of S_ by 7 and operator
S_=§, -, S lowers it by #.
with the property
S =8
PO U A 1/~ =
— Thenwehave: S| =—(S++S,) S, =—_(S+—S,)
2 20
(8.8, ]=[5..8, ]+i[8..8, | = inS, +i(~in)$, = +1S,
5.8 |=-nS . .
[3:5] S,=nf O 1| §op 00
0 0 1 0

)
4
| I—

PO PPN i A 1/~ & h j
S-368)-2 0 0] sea-s)-2 0 G
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Spin in matrix representation

— Similar to orbital angular momentum L
— We denoted by XX,mS the simultaneous eigenstates of S? and S’Z:

S K, =s(s+ DR Y,

— For spin 1/2 we have only two states:

Xinazs Xip-n ‘1 1> ‘1 1>
+—= ),

‘spinup’ (T) ‘spin down’ ()

— Where we introduced:

: 1o |l 11\ [0
Hom, ) ’5’+5>:[0} ‘5’_E>:H

18
Pauli Spin Matrices
The Pauli Spin Matrices are 2x2 complex matrices, Hermitian and unitary:
A 1 ~ | 0 =i ~ |1 0
o,.= , O0,=| | , O,=
1 0 ’ i 0 : 0 -1
A B
— Suchthat § = —0
2
— And we had the properties
’ 4 10 i 0 i 0 10
| A S R | NPV R F )
4 0 —i 0 210 -1
SZ:A3+A2_+§"2:§}‘12 10 = [527§x:|:|:$2"§v:|:|:$27§7:|:O
Tt 4 0 1 iy :
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Addition of Angular Momenta

We can have particles with both orbital angular momentum and intrinsic
angular momentum (spin).

We need to calculate the total angular momentum z: L+S
L|Lm)=10+1)1°|Lm)  §|s,m)=s(s+1)5]s,m,)
I:z l,m,) =mh l,m,) S'z s,mx> =mh s,ms>

L and S are independent, so any component of L commutes with any component
of §,i.e. L2, L, §? and S, form a complete set of observables with eigenstates that

will be the direct product of the individual eigenstates:
220 . of . 21 .
I jom) = j(j+1)R*] jm)

Lm)i(s.m ))=|jm) = .
‘( z)( )> |J > Jz|j,m>=mh|j,m>

We use my for the L. quantum numbers and m for the eigenvalues of J. !

jmax :l+s

_ = |l-s<j<l+s m=m,+m,

]min :|l_s|
+examples .... .

Zeeman Effect

a

Splitting of a spectral line into several components in the presence of a static
magnetic field.

When the magnetic interaction
is stronger than the spin-orbit

interaction (strong field): 8/2
+1/2
AE = u,B(m,+2m
HyB(m, +2m,) Pap s
In the case of a weak magnetic -3/2
ﬁeld.(when the spin-orbit term p i a2
dominates): 12 " 175
AE, =gu,Bm,
! B E; E>
with the Landé g factor given by

i(j+1 -1 +1 —_ T H/2
g1 JUHDESGED=IUED S, | N
2j(j+D —-1/2

Transitions between the
energy levels of atomic hydrogen. The r.h.s. split occurs

Referred to as the ‘anomalous’ € The
in the presence of a weak magnetic field

Zeeman effect before the

electron spin was discovered. .

Vector interpretation

0 Take as example j=[+s, with [=1 and s=1/2

J./h
S e The orbital angular momentum vector L
3/2771‘ 7777777777 has 3 possible orientations.
L B e The spin S can have 2 possible
12 orientations.

e The total angular momentum J can then

\ have 6 possible orientations.
B R >

e The component J, can have 4 distinct

32 ] values:

-3/2h, -1/2h, 1/2h, 3/2h
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Heisenberg is out for a drive when
he's stopped by a traffic cop. The cop says:
"Do you know how fast you were going?”
Heisenberg says:
"No, but | know where | am.”

Quantum Mechanics is easy.

If you have any questions before the exams please feel free to
email me or drop by my office:
Dr. Dan Protopopescu, Room 524
dan.protopopescu@glasgow.ac.uk



