Beam Matching Measurements

Ryan Bayes

May 18, 2015

(ロ)、(型)、(E)、(E)、 E) の(の)

Questions Needed Before Block Simulation Resumption

- What are the properties of the beam transport through the full beam line?
- What is the current prediction of the emittance reduction through the absorbers?
 - What cuts/acceptance criteria should be assumed?
- Can we produce a better match between the conventional and solenoid channels?
 - Jaroslaw has proposed new beam settings (Match1) to improve the match.

Two stage analysis

- Extract good reconstruction events from batch analysis and place in a new tree file.
 - Required because batch analysis mainly produces events with no trigger.
 - Only keep events that produce slab hits in TOF2(1).
 - Reduces a 16 G set of root files to one file of 1.8 G
 - Extracted reconstructed TOFEvent, CkovEvent, KLEvent, SciEvent, and EMREvent objects and MCEvent objects.

• Extract ensembles of muons that pass acceptance criteria.

- Calculate mean values of phase space parameters.
- Calculate emittance and beta functions.
- Plot beam spots.

Acceptance Criteria

- (TOF space points not working) Event must produce one slab hit in each TOF plane.
- Time of flight between station 0 and 1 between 42 ns and 48 ns.
- Apply elliptical cut at 6 σ

Future Considerations

- TOF space point reconstruction known to be result of using G4beamline.
 - Can be corrected with clever definition of particle time zero.
- Should use global PID
- Could use some weighting method to reduce impact of cuts(?)

Beam spots for $6\pi 200 \text{ MeV/c}$ Batch Simulation

- Beam spots derived from tracker reconstruction.
- Correlations suggest (counter-)clockwise beam orbits for up(down)stream tracker.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Channel is in flip mode.
- Taken from "pass2" batch simulation.

Beam spots for $6\pi 200 \text{ MeV/c}$ Batch Simulation

- Beam spots derived from tracker reconstruction.
- Correlations suggest (counter-)clockwise beam orbits for up(down)stream tracker.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Channel is in flip mode.
- Taken from "pass2" batch simulation.

Summary of $6\pi 200 \text{ MeV/c}$ Batch Simulation

	Upstream	Downstream
N _{tracks}	3356	3356
< X >[mm]	2.5±0.6	$-10.4{\pm}0.6$
< Y >[mm]	-3.6±0.6	$16.6 {\pm} 0.6$
< <i>Z</i> >[mm]	$15049.7{\pm}0.6$	18868.2±0.8
$< P_x > [MeV/c]$	-5.3±0.5	$-10.6 {\pm} 0.5$
$< P_y > [MeV/c]$	9.0±0.5	-5.8±0.5
$< P_z > [MeV/c]$	$204.0{\pm}0.1$	$187.9{\pm}0.1$
ϵ_{xy} [mm]	6.05±0.10	$5.91{\pm}0.10$
β_{xy} [mm]	427.5±7.4	365.2 ± 6.3

- A total of 42953 events accepted from TOF2 "trigger".
- Relaxing or displacing momentum cut increases emittance difference.

Beam spots for $6\pi 200 \text{ MeV/c}$ Match1 Batch Simulation

- Ran simulation with the same G4Beamline seed, Match 1 quad currents.
- Simulation generated less than half the number of successful simulations with 24 wall time in comparison to pass 2 simulation
 - ▶ 3.6% of TOF2 triggers produce selected events in Match1.
 - ▶ 7.8% of TOF2 triggers produce selected events in Match0.
 - Used maus v0.9.4 for simulation (rather than v0.9.2).

Beam spots for $6\pi 200 \text{ MeV/c}$ Match1 Batch Simulation

- Ran simulation with the same G4Beamline seed, Match 1 quad currents.
- Simulation generated less than half the number of successful simulations with 24 wall time in comparison to pass 2 simulation
 - ▶ 3.6% of TOF2 triggers produce selected events in Match1.
 - ▶ 7.8% of TOF2 triggers produce selected events in Match0.
 - Used maus v0.9.4 for simulation (rather than v0.9.2).

Summary of Match 1 correction to $6\pi 200 \text{ MeV/c}$

	Upstream	Downstream
N _{tracks}	544	544
< X > [mm]	5.3±2.3	-2.3±2.4
< Y > [mm]	-0.0±2.0	0.1±2.6
< Z > [mm]	$15049{\pm}1.5$	18864.7±1.7
$< P_x > [MeV/c]$	$-1.6{\pm}1.4$	$-1.1{\pm}1.8$
$< P_{y} > [\text{MeV/c}]$	$-1.0{\pm}1.7$	$-2.9{\pm}1.9$
$< P_z > [{\rm MeV/c}]$	202.6±0.4	$181.3{\pm}0.6$
$\epsilon_{x,y}$ [mm]	10.0±0.4	$11.0{\pm}0.5$
$\beta_{x,y}$ [mm]	482±21	546±23

- 14996 events accepted from TOF2 trigger.
- Cannot select a beam with a reduction in emittance.

- Less than half the fraction of reconstructed tracks over TOF2 triggers when compared with the M0 setting
 - ▶ The Match 1 setting does not out-perform the M0 setting.

Comparison of Beam Settings in Virtual Planes

- Why does the Match 1 setting underperform?
- Used virtual plane analysis to evaluate behaviour away from the reference planes.

- Emittance reduction in MC of a similar magnitude for the two settings.
- Beta function is larger in the solenoid channel for M1 than M0 setting.
- MC selection is independent of selection from reconstruction.
 - Does not remove events that might leave the solenoid bore.
 - May alter the emittance inconsistency, and reduce the beta function.

Beam spots from the virtual plane analysis.

- ▶ Seeds for a "Fast" $6\pi 200 \text{ MeV/c}$ Batch Simulation.
- Could simulate particles using the pregenerated beamspots as the source distributions (i.e. interface at z_{hall} = 1 m).

Beam spots from the virtual plane analysis.

- Seeds for a "Fast" $6\pi 200 \text{ MeV/c}$ Batch Simulation.
- Could simulate particles using the pregenerated beamspots as the source distributions (i.e. interface at z_{hall} = 1 m).

・ロン ・ 理 と ・ ヨ と ・ ヨ ・ うらつ

Beam spots from the virtual plane analysis.

- ▶ Seeds for a "Fast" $6\pi 200 \text{ MeV/c}$ Batch Simulation.
- Could simulate particles using the pregenerated beamspots as the source distributions (i.e. interface at z_{hall} = 1 m).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions

- Simulation suggests that the 6π200 MeV/c Match1 simulation does not improve on M0 beam tune.
- Statistics for simulations is still low.
 - Consequence of the available G4 Beam line events and the simulation time.
 - Can use the beam behaviour from the existing simulation to model the behaviour of further simulations.