Grid Database Service Specification

Document | dentifier: GDSS-0.2
Date: 4™ October 2002

Authors: Amy Krause (EPCC, University of Edinburgh, James Clerk Maxwell
Building, Mayfield Road, Edinburgh EH9 3JZ, UK)

Susan Maaika (IBM Corporation, Silicon Valley Laboratory, 555 Bailey
Avenue, San Jose, CA 95141, USA)

Gavin McCance (Department of Physics and Astronomy, University of
Glasgow, Glasgow G12 8QQ, UK)

James Magowan (IBM United Kingdom Ltd, Hursley Park, Winchester S021
2JN, UK)

Norman W. Paton (Department of Computer Science, University of
Manchester, Oxford Road, Manchester M134 9PL, UK)

Greg Riccardi (Department of Computer Science, Florida State University,
Tallahassee, FL 32306-4530, USA. + National e-Science Centre, 15 South
College Street, Edinburgh EH8 9AA, UK)

Abstract: Data management systems are central to many applications across multiple
domains, and play a significant role in many others. Web services provide implementation
neutral facilities for describing, invoking and orchestrating collections of networked
resources. The Open Grid Services Architecture (OGSA) extends Web Services with
consistent interfaces for creating, managing and exchanging information among Grid
Services, which are dynamic computational artefacts cast as Web Services. Both Web and
Grid service communities stand to benefit from the provision of consistent, agreed service
interfaces to database management systems. Such interfaces must support the description and
use of database systems using Web Service standards, taking account of the design
conventions and mandatory features of Grid Services. This document presents a specification
for acollection of Grid Database Services. The proposal is presented for discussion within the
Global Grid Forum (GGF) Database Access and Integration Services (DAIS) Working Group,
in the hope that it will evolve into a formal standard for Grid Database Services. There are
several respects in which the current proposal isincomplete, but it is hoped that the material
included is sufficient to allow an informed discussion to take place concerning both its form
and substance.

Copyright (C) Global Grid Forum (4" October 2002). All Rights Reserved.

This document and trandations of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose
of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document
process must be followed, or as required to trandlate it into languages other than English.

The limited permissions granted above are perpetua and will not be revoked by the GGF or its successors or
assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL GRID
FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE."

Grid Database Service Specification 2

Contents
LO70] 01T 0| K= PP PP PP PPPTPPPPTTT 2
A | 011 7o [F ol 1 (o] o IO P PP PP PPPPPPRPPON 3
P @Y=V PR PUPRPRTTPR 4
3 GENETIC DEfiNIIONS.eiiiiiiiiie ittt ettt et e et e e e st e e e sbb e e e sbneeeean 7
31 GridDaaSEViCe POMTYPE. ... e ettt ettt ee e e e sneeeeneas 7
311 GridDataService PortType: Service Data Descriptions and Elements.............. 7
312 GridDataService PortType: Operations and Messages...........coovvereereeeeennenn 10
313 GridDataService POrtTYPE: TYPES......ooieieieeere et 10
3.2 GridDatal ranSpPOrt POMTYPE. ...cciiiieieieerieeiesie sttt 13
321 GridDataTransport PortType: Service Data Descriptions and Elements......... 15
322 GridDataTransport PortType: Operations and MeSSages...........ccovvvereeerennnn 15
323 GridDataTransport PortType: Typesand examples.........ccooeoeveneeievenienns 16
4 Relational Databhase SEIVICES........ciiiiiiiiiiiiiiie ettt e e 25
41 GridDataSerViCe POMTYPE. ..ottt ene s 25
411 GridDataService PortType: Service Data Descriptions and Elements............ 25
4.1.2 GridDataService PortType: Operations and Messages...........covvereeneeerennenn 30
413 GridDataService POrtTYPE: TYPES......coieiieeereeeeie e 30
4.2 NOtiIfiCatioNSOUICE POMTYPE.....cvieeeeeeieriesiesie sttt ene s 32
5 XML DAt@baSE SEIVICESceiiiiiiiiiitiiiee ittt ettt s 32
51 GridDataServiCe POITYPE.....ccuiiiirieieieieirie sttt 32
511 GridDataService PortType: Service Data Descriptions and Elements............ 32
51.2 GridDataService PortType: Operations and MesSages..........cccevvveerereereennns 33
513 GridDataService POrtTYPE: TYPES.....ccvreririerenieieeeesiesiesie st 33
5.2 NOtificatioNSOUrCe POMTYPE ..ottt 34
6 Remote ProCedure Call...........ouiiiiiiiiie e 34
6.1 GENEIIC OPEIAIONS......ccuiiueeieitieierierteee st eee st se e et seeseesaeeeeseeeneeneesseeneensesneeeenns 34
6.2 Relational Database SPECITIC......c.oviirirerieieirirese s 36
6.3 XML Datahase SPECITIC.cceuirieirieiirieerieisieesie e 38
6.4 Relating RPC and Document APProaChes...........ccovvererieiieininenese e 39
A @70 ol 11 13 To] o L= PSPPI 40
8 REIEIEINCES. ...ttt 40

Grid Database Service Specification 3

1 Introduction

This document presents a specification for a collection of Grid Database Services. The
proposal is not ab initio, in that the following documents (at least) have been important in
shaping our understanding of Grid Database Services [Atkinson 02, Bell 02, Collins 02,
Krause 02, Paton 02, Raman 02].

The following principles have guided the devel opment of the specification.

1

The specification is intended to provide service-based access to existing database
systems. As such, it isassumed that there is no such thing as a Grid Database System,
but rather that existing databases require the provision of certain middleware
components to make them available with a Grid or Web Services setting. The
specification seeks to make as few assumptions as possible about the functionality,
architecture, data model and language interfaces of databases that might be used
within a Grid setting.

As there are several widely used database paradigms (e.g., relational, object, XML),
the specification seeks to accommodate the different paradigms within a consistent
framework. Thus those aspects of a service interface that are independent of the kind
of database being accessed are shared by services that support the different
paradigms. For example, it is held that result delivery facilities and transaction
models are essentially orthogonal to the kind of database being accessed. The
specification presented here covers relational and XML databases.

A characteristic of Web and Grid Services is that metadata is important. In the
specification, it is assumed that a service must provide sufficient metadata to allow
the service to be used given the specification of the service and the metadata provided
by the service.

A Grid Database Service should peacefully coexist with other Web and Grid Service
standards. As such, the specification adopts XML Schema for describing structured
data and WSDL for describing service interfaces. Furthermore, the specification
seeks to stay clear of issues covered by other Web and Grid Service specifications
(e.g., it islargely silent on transactions, assuming that the WS-Transaction proposal
[Cabrera 02] is, or will evolve to be, sufficient and appropriate for characterising the
transactional behaviour of services). Overall, the proposal seeks to accommodate the
distinctive features of individual systems, while easing database access and
integration activities within a Grid setting.

The Grid Database Service specification should be orthogonal to the Grid
authentication and authorisation mechanisms. These mechanisms are required to
some extent by all Grid Services, so we rely on them being defined in a more general
context. Many database products define fine-grained access to the data they hold, for
example, down to the column and row level for relational databases. A Grid Database
Service implementation can choose the level of authorisation granularity exposed to
the Grid users; the specification does not seek to mandate this.

The specification adopts the document approach to service description. As such, there
are relatively few portTypes, and most functionality is described using document
definitions. This has the standard advantages (and disadvantages) of the document-
based approach. A Remote Procedure Call (RPC) style of interface is included in
Section 6 to illustrate how it can be used as an alternative or complement to the
document approach.

The specification is defined semi-formally. That is, the syntax of the specification is
presented formally, as WSDL and XML Schema documents, whereas the semantics
of these specifications is provided only informally in the accompanying text. It is
intended that the OGSA-DAI project

Grid Database Service Specification 4

(http://umbriel .dcs.gla.ac.uk/NeSC/general/projectsOGSA_DAI/) will provide
implementations and user documentation for these services in due course. The
European DataGrid project is providing an implementation and user documentation
for a Remote Procedure Call (RPC) based service (http://cern.ch/hep-proj-spitfire).

8. The specification seeks to support higher-level information-integration and federation
services. As such, features such as metadata description and data delivery support,
have been designed with a view to providing the necessary ‘hooks’ for the developers
of such services.

Some familiarity is assumed with XML Schema [Fallside 01], WSDL [Christensen 01] and
the Open Grid Services Architecture (OGSA) [Tuecke 02] is assumed in what follows. This
document is written in the context of Draft 3 (17" July 2002) of the OGSA Specification.

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY” AND “OPTIONAL” are to
be interpreted as described in RFC2119 (http://ietf.org/rfc/rfc2119.txt).

2 Overview

In this specification, we describe the messages that flow between a client application (or
library) and a data source, enabling clients to access or modify the content of data sources and
their associated schemas. The portTypes that describe these messages define the interface to a
Grid Database Service.

Although the specification is not prescriptive in this regard, each data source could be
associated with many Grid Database Service instances, each representing a currently active
client. In such a context, each client has its own unique relationship with the data source it is
accessing expressed through the Grid Service Handle (GSH) [Tuecke 02] of the Grid
Database Service instance. The GSH enables the application to locate a Grid Database
Service and hence a data source. It is anticipated that a Grid Database Service is likely to map
directly to a database session or connection of an underlying data management system. A
common practice for large-scale systems is to share connections across many clients (called
connection pooling). The same concept is likely to apply to Grid Database Services, but is
transparent to the clients, and thus is not included explicitly in the specification provided here.

This section provides an overview of the specification, indicating its scope, and how this
maps onto elements within the specification, which is presented in detail in the following
sections. The following portTypes are specified or used:

» GridDataService. This is a new portType that provides functionality for accessing a
database service [Atkinson 02]. The following operation is specified on
GridDataService:

0 GridDataService::perform. This operation allows statements to be sent to the
database, such as for query or update, and specifies how inputs to and results
from such a request are handled.

As this operation may take and return complex documents, much of the functionality
of a GridDataService is actually represented in the XML Schema definitions of the
operands.

* CGridDataTransport. This is a new portType that provides functionality for
communicating results between networked resources. In the context of
GridDatabaseServices, it is used to support flexible delivery of query results and
flexible receipt of statement inputs. The following operation is specified on
GridDataTransport:

0 GridDataTransport::perform.

Grid Database Service Specification 5

As with GridDataService, the documents passed to and returned from this operation
may be complex in nature. A Grid Database Service MAY support the
GridDataTransport portType.

e GridService. Thisisthe mandatory portType for Grid Services that provides access to
information about a service [Tuecke 02], which is described as Service Data Elements
(SDEs). The specification provides XML Schema definitions for SDEs for
GridDataServices, and as such provides information on the content and capabilities
of the service.

» NotificationSource. This is the optiona portType for Grid Services that enables a
service to send notification messages [Tuecke 02]. The specification comments on
how OGSA natifications can be used in the context of Grid Database Services.

It is intended that subsequent versions of the specification also include a portType that
supports data translation/transformation. Such a portType should be relevant both for data
being supplied to the Grid Database Service and to results supplied by the service.

The specification includes paradigm-dependent and paradigm-independent parts. The
paradigm independent parts are presented first, and are shared by the specifications for
relational and XML database services. The following are paradigm-independent:

e the names of the operations and various aspects of their parameters in the
GridDataService portType;

o all aspects relating to the description and control of GridDataTransport — the data
that is transported may be paradigm-dependent, but the description of how it is to be
transported is paradigm independent; and

» certain of the SDEs of a service — for example, those relating to transport.
The following are paradigm-dependent:

» the language used to convey requests to a database service — for example, this could
be SQL for relational database services and XQuery for XML database services;

e the types used to convey parameters into and results from the operations of the
GridDataService portType; and

« the notification messages that may be generated by a database service.

We note that a single database system may support multiple paradigms — for example,
relational vendors are increasingly providing storage and query facilities for XML data; this is
accommodated by the specification.

The specifications in this document do not address discovery or creation of Grid Database
Services directly. Thus it is assumed for now that a service can be discovered using an
existing service registry, and that different practices may be pursued in the creation of Grid
Database Service instances. To outline one possible approach, which is illustrated in Figure 1,
a Grid Database Service instance could be created to represent a session over a database. Thus
the service instance is created by a call to a factory, with a lifespan managed using the
operations of the GridService portType [Tuecke 02]. In such a model, the service instance
acts as a “proxy” for the database, as (at least for the meantime) data management systems do
not support the portTypes described in this document directly.

The interfaces described in this document are also intended be used by data federating
services to access other data sources. Some additional interfaces are likely to be required by
data federating services, e.g., to retrieve a data source’s optimization module, which are not
covered in this draft.

Grid Database Service Specification 6

Grid Service
Registry

Grid Data Service
/ Factory

<find factory>

<create Grid Data Service>
<factory GSH>

<Grid Data Service GSH>

Client

Create Grid Data
Service

Grid Data Service

<data request>______——P

<data document>________—T

Figure 1. Creating and Using a Grid Data Service.

Once a service instance has been created or discovered, Figure 2 illustrates how the
GridDataService portType introduced above can be used. The most straightforward usage
pattern is that a query specification is sent from the requester to the Grid Data Service
instance using GridDataService:: perform, and the results of the query are returned directly to
the requester as the operation result.

Grid Data Service

Requester A /<query specification>
GridDataService
\ Port

<data document>

Figure 2. Requester Retrieving Data from a Grid Data Service.

In general, there are three parts to an interaction of a requester with a GridDataService, as
illustrated in Figure 3. In the first part, the requester uses the GridService portType (e.g., by
way of the FindServiceData operation) to access metadata on the service (e.g., relating to the
schema of the database). If the requester already knows enough about the service to use it,
this part can be omitted. In the second step, the perform operation of the GridDataService
portType is used to convey a request to the GridDataService, for example, to evaluate a
query. The results of the query could be returned to the requester directly, or a third step can
take place. In the third step, the perform operation of the GridDataTransport portTypeis used
to request delivery of the result of the query. This delivery could be to one or severd
destinations. In essence, this document makes a proposal that seeks to characterise the
possible behaviours of each of these steps.

Grid Database Service Specification 7

Grid Data Service
find service data

<service data>"" GridService
/ Port

|__<query specification>

Requester A

GridDataService
<response> ———— Port

\<transport specification> :I:)
| GridDataTransport
J

<data document> Port
\—/

.

Figure 3. Requester Using Grid Data Service Ports.

The remainder of this document is structured as follows. Section 3 describes the two principal
portTypes of this specification, namely GridDataService and GridDataTransport. In each
case, following the structure of [Tuecke 02], service data descriptions and el ements associated
with each portType are described first, followed by descriptions of the operations supported
by the portType. In Section 3, features associated with particular database models or
languages are kept to a minimum. Sections 4 and 5 each cover the same ground as Section 3,
but provide definitions for use with relational and XML databases, respectively. The
portTypes described in Sections 3 to 5 are document-based, and thus sit at one end of a
spectrum of possible approaches to service design. By contrast, Section 6 provides an RPC-
based interface, whereby core functionalities can be accessed without the use of potentially
complex documents. The two approaches can be considered to be complementary, in that
users with straightforward requirements may find the RPC-based interface more
straightforward to use. Section 7 presents some conclusions.

3 Generic Definitions

3.1 GridDataService PortType

The GridDataService portType is the principal context for database-specific operations and
metadata. Although integrating database functionalities with a Grid middleware potentially
involves integration of database capabilities with many other services (e.g., transactions,
transport, security), most such functionalities are not specific to database access. Thus the
GridDataService portType supports fairly rudimentary functionality, with an emphasis on
request submission and result handling. However, making metadata available in a consistent
manner is also considered important, and sufficient metadata SHOULD be made available by
a service to allow its use given only the metadata and the documentation supplied with the
service.

3.1.1 GridDataService PortType: Service Data Descriptions and Elements

The GridDataService portType is associated with serviceData elements conformant to the
following serviceDataDescription elements:

<gsdl : servi ceDat aDescri ption

name=""LogicalSchema”

type="xsd:anyType”’

minOccurs=""1"

maxOccurs=""unbounded”

mutability="mutable”>

<wsdl :documentation>
An XML document that contains a description of the
logical schema. This should be precise enough to

Grid Database Service Specification

all ow creation of a corresponding schena at anot her
| ocati on.
</ wsdl : docunment at i on>
</ gsdl : servi ceDat aDescri pti on>

<gsdl : servi ceDat aDescri ption
name=""PhysicalSchema”
type="xsd:anyType”’
minOccurs="1"
maxOccurs=""unbounded”
mutability="mutable”>
<wsdl :documentation>
An XML document that contains a description of the

physical schema. This should be precise enough to allow

higher-level services to allow a cost model to make
predictions, for example, on query result sizes.
</wsdl :documentation>
</gsdl :serviceDataDescription>

<gsdl:serviceDataDescription
name=""StatementNotationTypes”
type="xsd:anyURI”
minOccurs="1"
maxOccurs=""unbounded”
mutability="mutable”>
<wsdl :documentation>

The list of notations that can be performed over the

service.
</wsdl :documentation>
</gsdl :serviceDataDescription>

<gsdl:serviceDataDescription
name="ResultFormatTypes”
type="xsd:anyURI"”
minOccurs=""1"
maxOccurs=""unbounded”
mutability="mutable”>
<wsdl :documentation>
The list of query result formats that can be
returned by the database.
</wsdl :documentation>
</gsdl :serviceDataDescription>

<gsdl:serviceDataDescription
name=""DatabaseType”’
type=""gname”
minOccurs="1"
maxOccurs="unbounded”
mutability="constant”>
<wsdl :documentation>

The type of database the service purports to be (e.g.

relational, XML).
</wsdl :documentation>
</gsdl :serviceDataDescription>

<gsdl:serviceDataDescription
name=""SystemName”
type=""gname”
minOccurs="1"
maxOccurs="1"
mutability="mutable”>

Grid Database Service Specification 9

<wsdl : docunent at i on>
The systemthat is used to provide the service.
</ wsdl : docunent ati on>
</ gsdl : servi ceDat aDescri pti on>

<gsdl : servi ceDat aDescri ption
name="TransactionalCapability”
type="xsd:anyType”’
minOccurs="1"
maxOccurs="1"
mutability="constant”>
<wsdl :documentation>
The level of transaction support provided by the service.
</wsdl :documentation>
</gsdl :serviceDataDescription>

<gsdl:serviceDataDescription
name=""preparedStatements”
type="xsd:anyURI"”
minOccurs=""1"
maxOccurs=""unbounded”
mutability="mutable”>
<wsdl :documentation>
The identifiers of the currently prepared statements.
</wsdl :documentation>
</gsdl :serviceDataDescription>

<gsdl:serviceDataDescription
name="resultCol lections”
type="xsd:anyURI”
minOccurs="1"
maxOccurs=""unbounded”
mutability="mutable”>
<wsdl :documentation>
The identifiers of the currently available result
collections.
</wsdl :documentation>
</gsdl :serviceDataDescription>

The Logical Schema and Physical Schema SDEs provide information on the data model and its
implemented representation, respectively. The XML schemas required to represent the
database schemas are data model dependent, and thus defined separately for relational, object
and XML databases.

There are also several SDEs that provide information on the kind of database supported by the
service and its capahilities. The StatementNotationTypes SDE indicates the languages that can
be used to direct requests to the service (e.g., an XML repository may support both XQuery
and Xpath). The DatabaseType SDE indicates the kind of database service provided (for
example, this document includes specifications for both relational and XML databases). This
has a maxOccurs value of unbounded, as it is possible for a single database management
system to provide multiple views of the data stored within it. For example, there is a move
towards relational products being able to provide XML representations of their contents. In
such a case, a single system would support multiple DatabaseTypes, with correspondingly
many logical and physical schemas. The SystemName indicates which database platform is
providing the service (e.g., Oracle, DB2).

The Transactional Capability of a service indicates the willingness of a service to participate
in (potentialy distributed) transactions. It is assumed that Grid services will ultimately
support the WS-Transaction proposal [Cabrera 02], and thus no distinct proposal is made here

Grid Database Service Specification 10

for transaction-related portTypes. This document does not currently provide a model for
describing the transactional properties of a service.

3.1.2 GridDataService PortType: Operations and M essages
GridDataService::perform
Perform a statement on a Grid Database Service.
Input:

» gridDataServiceRequest: The document that describes the request.
Output:

» gridDataServiceResponse: The document that provides the result.
Fault:

e The document that describes problems processing the request.

Every GridDataService MUST implement the GridDataService:: perform operation. As the
operation takes a document as a parameter, its behaviour is characterised principally by the
documents that are taken as input and returned as results. These are described in the following
subsection.

3.1.3 GridDataService PortType: Types
This section defines and describes the types of the parameters for GridDataService:: perform.

A dbSatement captures a request phrased over a Grid Database Service. It associates a
notation (e.g., a particular dialect of SQL) with a statement in that notation (e.g., a query or
update in SQL). It also defines a formatting for the result of the statement (e.g. providing a
document description for the bag of tuples returned by an SQL query).

<xsd:complexType name="dbStatement’>

<xsd:attribute name = “notation” type = ‘“xsd:anyURI”
use = “required” />
<xsd:attribute name = “returnFormat” type = ‘“xsd:anyURI”
use = “required” />
<xsd:attribute name = “statementType’>
<simpleType>

<restriction base="NMTOKEN”’>
<enumeration value="query”/>
<enumeration value="update”/>
<enumeration value="procedureCall”/>
<enumeration value="bulkLoad”/>
<enumeration value="schemaUpdate’/>
</restriction>
</simpleType>
<xsd:element name = “‘expression” type = ‘“xsd:string”
minOccurs="1" maxOccurs="1"/>
</xsd:complexType>

A preparedSatement associates a statement with an identifier by which it will subsequently
be known. In general in databases, a statement can be prepared for execution (e.g., compiled
and optimised) before it is actually run. Each time the statement is executed, which may be
many times, it may be provided with parameters. The terminationTime indicates the time after
which the Grid Database Service MAY remove the statement and any resources it is
consuming. If no terminationTime is provided, it is assumed that the statement will continue
to exist until the Grid Database Service instance is destroyed. As the lifespan of a Grid
Database Service instance may often be quite short (e.g. representing a session over the
database), this may be appropriate behaviour in many cases.

Grid Database Service Specification 11

<xsd:complexType name="preparedStatement’>
<xsd:sequence>
<xsd:element name = “dbStatement” type = “dbStatement”
minOccurs="1" maxOccurs="1"/>
<xsd:element name = “statementld” type = ‘“xsd:anyURI”
minOccurs="1" maxOccurs="1"/>
<xsd:element name = “terminationTime” type = “xsd:dateTime”
minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

A statementParameter associates a statementld with parameters to the identified statement.
Statement (and result) identifiers are represented here as having atype xsd:anyURI, but thisis
tentative. The parameterValue is of a type that differs from language to language, and thus
which is specified in the sections on specific models.

<xsd:complexType name=""statementParameter’>
<xsd:sequence>

<xsd:element name = “parameterValue” type = “xsd:anyType”
minOccurs="1" maxOccurs="1"/>
<xsd:element name = “statementld” type = “xsd:anyURI”

minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

An executeStatement captures which statement is to be executed. This can either be a given
dbSatement or the identifier of a previousy preparedSatement. The result of
executeStatement is an XML representation of the result of the request. For example, in the
case of an SQL query this may be a RowSet, as described in Section 4.1.3.

<xsd:complexType name=""executeStatement’”>
<choice>
<xsd:element name = “statement” type = “dbStatement” />
<xsd:element name = “statementld” type = “xsd:anyURI” />
</choice>
</xsd:complexType>

An executeStatementKeepResult is similar to executeSatement, but instead of returning a
result value, the result is stored internally by the service with the identifier resultiD. This
identifier can subsequently be used in requests to the GridDataTransport portType, as
described in Section 3.2. The behaviour of the terminationTime is the same as for
preparedStatement.

<xsd:complexType name="executeStatementKeepResult’>
<choice>

<xsd:element name

<xsd:element name

“statement” type = “dbStatement” />
“statementld” type = “xsd:anyURI” />

</choice>
<xsd:element name = “resultld” type = “xsd:anyURI” />
<xsd:element name = “terminationTime” type = “xsd:dateTime”

minOccurs="0" maxOccurs="1"/>
</xsd:complexType>

As both prepared statements and execution results can be identified and stored as state in a
service instance, there needs to be a mechamism by which these can be disposed of.
Furthermore, the terminationTime of identified artefacts may have to be changed. Such
behaviour is supported by the following definition. Setting the terminationTime to O discards
the identified artefact.

<xsd:complexType name="setTerminationTime”>
<xsd:element name = “identifier” type = “xsd:anyURI” />

Grid Database Service Specification 12

<xsd:element name = “terminationTime” type = “xsd:dateTime’>
</xsd:complexType>

A statement is any top-level statement. The GridDataService:: perform operation takes as
input a document that consists of one or more statements.

<xsd:complexType name="’gridDataServiceRequest’>
<choice maxOccurs="unbounded”’>

<xsd:element name = “executeStatement”

type = “executeStatement” />
<xsd:element name = “executeStatementKeepResult”

type = “executeStatementKeepResult” />
<xsd:element name = “preparedStatement”

type = “preparedStatement” />
<xsd:element name = ‘“‘statementParameter”

type = “statementParameter” />
<xsd:element name = “setTerminationTime”

type = “setTerminationTime” />
<xsd:element name = ‘““transportDescription”

type = “GridTransportDescription” />

</choice>
</xsd:complexType>

As an example of a document that could be used as a parameter to a
GridDataService::perform operation, the following XML document, when performed,
evaluates an SQL query over a database service, and returns the result directly to the
reguester.

<gridDataServiceRequest>

<executeStatement>
<dbStatement notation="http://www.gridforum.org/dais/lang/SQL92”
returnFormat=

”http://gridforum.org/dais/schema/webRowSet._xsd”

statementType="query”’>
<expression>select * from person where age = 2l</expression>
</dbStatement>
</executeStatement>
</gridDataServiceRequest>

As a more comprehensive example, the following XML fragment provides a
gridDataServiceRequest that contains three statements. The first such statement is a
preparedStatement, which provides an SQL query to the database service, and associates this
statement with the name myStatement. The “?” in the query string represents a parameter that
has yet to be bound. This parameter is set by the second statement, which indicates that the
first (and only) “?” is to be associated with the value 21. The third statement executes
myStatement. The prepared statement myStatement will continue to be available to subsequent
requests to the Grid Database Service.

<gri dDat aSer vi ceRequest >
<pr epar edSt at enent >
<dbStatement notation="http://gridforum.org/dais/lang/SQL92”
returnFormat=
”http://gridforum.org/dais/schema/webRowSet._xsd”
statementType="query”>
<expression>select * from person where age = ?</expression>
</dbStatement>
<statementld>nySt at enent </statementld>
</preparedStatement>

<statementParameter>

Grid Database Service Specification 13

<par amnet er Val ue>
<SQLParameter position="1"><value>21</value></SQLParameter>
</parameterValue>
<statementld>nySt at enent </statementld>
</statementParameter>

<executeStatement>
<statementld>nySt at enent </statementld>
<executeStatement>
</gridDataServiceRequest>

The above definitions constitute the input to GridDataService:: perform. The result of perform
corresponds to the following XML Schema definition:
<xsd:complexType name=""gridDataServiceResponse”>

<choice maxOccurs=""unbounded”>
<xsd:element name “executeStatementResponse”

type = “xsd:anyType” />
<xsd:element name = “executeStatementKeepResultResponse”
type = “xsd:string” />
<xsd:element name = “preparedStatementResponse”
type = “xsd:string” />
<xsd:element name = “statementParameterResponse”
type = “xsd:string” />
<xsd:element name = ““transportDescriptionResponse”
type = “GridTransportResponse” />

</choice>
</xsd:complexType>

In essence, when a gridDataService request is performed by a GridDataService, each
statement is performed in turn, and its response collected to yield agridDataServiceResponse.
When a statement fails, no subsequent statement is performed. An executeStatementResponse
is the XML document that is the result of the request. An
executeStatementK eepResultResponse, a preparedStatementResponse, a
statementPar ameter Response or a setTerminationTimeResponse is either ok or an error report.
The results of transport requests are described in Section 3.2.3.7.

3.2 GridDataTransport PortType

This section specifies and illustrates the receiving of data from and sending of datato a GDS.
As with the GridDataService portType, each request to the GridDataTransport portType
includes a document that specifies a change of state to the GDS and specifies a response to be
returned to the requester. In most cases, GridDataTransport documents can be included in
GridDataService documents and sent to the GridDataService port of a Grid Data Service.

The general strategy for using the GridDataTransport portType isto first specify one or more
data queries or updates using GridDataService documents, and then to issue one or more
transport requests. Transport requests to receive data can be used to send queried data directly
to the requester, send data to one or more third parties, or distribute data among many third
parties. Transport requests to send data to the GDS can be used for updating of data directly
from the requester or from athird party.

Figure 4 and Figure 5 illustrate some of the possible interactions where data from a GDS is
sent to one or more recipients. Each pair of arrows represents a single request and the
response of the GDSto it.

In Figure 4, requester A sends a query specification document containing a request to
executeStatementKeepResult to the GDS, as described in Section 3.1. The requester
subsequently sends a document containing a transport specification that references the result
of the query and receives the result data from the query in response.

Grid Database Service Specification 14

Grid Data Service

Port

<query specification> GridDataService]

Requester A

¢—— <query response>

<transport specification

GridDataTransport
Port
<data document>

Figure 4. Direct query request and delivery to the requester

Figure 5 illustrates delivery of a single data set to multiple clients. Requester A first sends a
query to the GDS, and then sends the result identifier to requesters B and C. Finally B and C
send documents to the GDS that request the transportation of the result data. The result data
of the query istransmitted to both B and C in response to their requests.

/

Requester A e - -
q |_—<query specification> Grid Data Service
/ '<\query response> GridDataService
Port
query
identifier
\ Requester B T~ <transport specification>
<data document> GridDataTransport
Port
<transport specification>
Requester C < /
<data document>

Figure 5. Query request with delivery to 2 third parties

For both receiving (get) and sending (put) data, the GridDataTransport portType supports
direct and indirect operations. Block transfers (sequences of partial deliveries) are also
supported for sending and receiving data.

The transport requests in Figure 4 and Figure 5 al represent requests to get data directly from
the GDS. The response to a direct get request is the return of the appropriate data to the
requester in the response document.

Anindirect request to get datafrom a GDS identifies the data query source and the recipients.
The recipients must be serversthat are capable of delivering the data on request. The response
to the indirect request is an acknowledgement to the requester and does not contain the
requested data. The GDS will initiate the data transfer to the recipient servers.

For sending data (put) to the GDS, a direct request identifies the update statement that will
receive the data and the values of the data. These data values are included in the request
document.

An indirect request to put data into a GDS identifies the update statement and the source of
the data. The data source must be a server that is capable of delivering the data on request.

Grid Database Service Specification 15

The response to the request is an acknowledgement. The GDS will initiate the data transfer
from the source.

Block transfers allow clients to control the amount of data that moves to or from a GDS. A
client can create a block transfer and then transfer the data as required. Some examples of
block transfers are described in Section 3.2.3.5.

3.21 GridDataTransport PortType: Service Data Descriptions and
Elements

The GridDataTransport portType is associated with serviceData elements conformant to the
following serviceDataDescription el ements:

<gsdl : servi ceDat aDescri ption
name=""gds:Logical lySupportedTypes”
type="xsd:anyURI"”
minOccurs="1"
maxOccurs=""unbounded”
mutability="mutable”>
<wsdl :documentation>
An XML document that identifies the types of transport
available from this service.
</wsdl :documentation>
</gsdl :serviceDataDescription>

<gsdl:serviceDataDescription
name=""gds:PhysicalPropertiesOfTypes”
type="xsd:anyType”
minOccurs=""1"
maxOccurs=""unbounded”
mutability="mutable”>
<wsdl :documentation>
An XML document that describes the physical properties of
the types of transport available from this GDS.
</wsdl :documentation>
</gsdl :serviceDataDescription>

<gsdl :serviceDataDescription
name=""activeBlocks”
type="xsd:anyURI"”
minOccurs=""1"
maxOccurs="unbounded”
mutability="mutable”>
<wsdl :documentation>
The identifiers of the currently active blocks.
</wsdl :documentation>
</gsdl:serviceDataDescription>

3.2.2 GridDataTransport PortType: Operationsand M essages

As with the GridDataService portType, the GridDataTransport portType has a single
operation.

GridDataService::perform
Perform a statement on a GDS.
Input:
e GridDataTransportSatement: The document that describes the request.
Output:

Grid Database Service Specification 16

* GridDataTransportResponse: The document that provides the result.
Fault:

» GridDatabaseTransportFault: The document that provides the fault. Thisfault occurs
when the GDS cannot process a request for any reason.

Every GridDataTransportService MUST implement the GridDataTransportService::perform
operation. As the operation takes a document as a parameter, its behaviour is characterised
principally by the documents that are taken as input and returned as results. These are
described in the following subsection.

Every GridDataTransport document must include parameters direction and mode, as
described in Table 1. The value of parameter direction specifies whether data is travelling
from the GDS (get) or toward the GDS (put). The value of parameter mode specifies how the
dataisto be moved. The two basic data movement strategies are values direct in which datais
transferred directly to or from the client as part of the request or response document, and
indirect in which data is transferred to or from a third-party server. Operations block,
directNext and indirectNext support incremental movement of data in blocks in response to
multiple requests.

Table 1. Required Transport parameters and their meanings

Parameters
di rection | node Meaning
Parameter | get di rect Return the result of a query to the
values requester as part of the response
document
i ndirect Send the result of a query to another
server
bl ock Setup anew block transfer for a query
di rect Next Return the next block of datafrom an
block transfer as part of the response
document
i ndi rect Next Send the next block of data to another
server
put di rect Receive datathat isincluded in the
request document for an update
i ndirect Get data from another server for an
update
bl ock Setup a new block transfer to receive
datafor an update
di rect Next Receive the next block of datathat is
included in the request document for an
update
i ndi rect Next Get the next block of data from another

server for an update

3.2.3 GridDataTransport PortType: Typesand examples

Each call on the perform operation on a GridDataTransport portType must provide a
GridTransportDescription document as input and will receive a GridTransportResponse
document as its result. This section illustrates the roles that such documents play in
representative scenarios.

Grid Database Service Specification 17

3.2.3.1 Direct transfer of datafrom a GDS

The simplest GridTransportDescription documents are for direct get operations on query
result data. Table 2 shows samples of a gridDataServiceRequest document (a), a
GridTransportDescription document (b), and a GridTransportResponse document (c). The
GridTransportDescription document of Table 2 (b) can be used for all of the requests for
Figure 4 and Figure 5. In each case a single query request is followed by one or more
transport requests. Each transport requests returns an identical copy of the data. The maxSze
attribute of GridTransportDescription gives the maximum number of dataitems the requester
iswilling to accept. Argument timeout issimilar. A value of 0 means no limit.

Table 2. GridServiceDescription and GridTransportDescription and
GridTransportResponse documents for Figure 4 and Figure 5

(a) Query specification.

<gri dDat aSer vi ceRequest >
<execut eSt at ement KeepResul t >

<dbStatement notation = “.” .>
<expression> select * from myData </expression>
</dbStatement>

<resultld> resultl </resultld>
</executeStatementKeepResult>
</gridDataServiceRequest>

(b) Direct get transport request for Figure 4 and Figure 5

<GridTransportDescription direction=""get" mode="direct"
maxSize="0" timeout="0">
<resultld> resultl </resultld>
</GridTransportDescription>

(c) Response to transport request

<GridTransportResponse direction=""get" mode="direct"
maxSize="0" timeout="0">
<resultld> resultl </resultld>
<ResultCollection>
data returned in appropriate XML form
</ResultCollection>
</GridTransportResponse>

3.2.3.2 Indirect transfer of datafrom a GDS

Anindirect operation to send data from a GDS to third-party serversisillustrated by Figure 6.
Requester A specifiesthat dataisto be sent to ftp servers B and C, asillustrated by the sample
XML fragment in Table 3 (a). Once the GDS has determined that the datais available and can
be sent to both targets, it sends requester A a DataTransportResult document like that in
Table 3 (b). This result document has a status of ok to indicate that the transport operation
could beinitiated. It does not imply that the entire operation has been completed successfully.

Grid Database Service Specification 18

Requester A — i)
<query specification> Grid Data Service

<query response> GridDataService l
Port

<get/indirect specification>

<get/indirect response>

.

<data document>

FTP Server C * > FTP client

<data document>

FTP Server B
GridDataTransport
Port

Figure 6. Indirect transfer of data to third-party servers

Table 3. GridTransportDescription and GridTransportResponse documents for
Figure 6

() Indirect get specification for Figure 6.

<G idTransportDescription direction="get" node="indirect">
<resultld> resultl </resultld>
<Transport Target protocol ="ftp" target="B" file="datal"/>
<Transport Target protocol ="ftp" target="C' fil e="data2"/>
</ GidTransport Description>

(b) Result of transport request

<G i dTransport Response direction="get" node="indirect">
<resultld> resultl </resultld>
<Transport Target protocol ="ftp" target="B" fil e="datal"
resul t ="ok"/ >
<Transport Target protocol ="ftp" target="C" fil e="data2"
resul t ="ok"/ >
</ Gri dTransport Response>

3.2.3.3 Direct transfer of update datatoa GDS

A request to directly load data, as illustrated in Figure 7, begins with the specification of the
update, as shown in Table 4 (a). The bulkLoad can be expected to name the portion of the
database to be updated. Table 4 (b) shows an XML fragment that specifies the direct data
transfer. The datato be loaded into the table isincluded in the document. The result document
in Table 4 (c) has status ok to indicate that the update operation was completed successfully.

Grid Data Service
<update specification> GridDataService
Port
Requester A
| ¢—— <update response>
<put/push specification>
GridDataTransport
<put/push response> Port

Figure 7. Direct delivery of update data to a GDS

Grid Database Service Specification 19

Table 4. GridServiceDescription, GridTransportDescription, and
GridTransportResponse documents for Figure 7.

(a) Update specification for Figure 7

<pr epar edSt at erent >

<dbStatement statementType="bulkLoad” notation = “.”.>
<expression> | oad tabl e MyNewTabl e </expression>
</dbStatement>

<statementld> statenent2 </statementld>
</preparedStatement>

(b) Direct put transport request for Figure 7

<GridTransportDescription direction="put"” mode="direct"
maxSize="0">
<statementld> statenent2 </statementld>
<LoadTable>
< .. data to be loaded in appropriate XML form/>
</LoadTable>
</GridTransportDescription>

(c) Result of transport request

<GridTransportResponse direction="put'” mode="indirect" status="ok'>
<statementld> statenent2 </statementld>
</GridTransportResponse>

3.2.3.4 Indirect transfer of update datatoa GDS

Figure 8 illustrates how data can be transferred from a third-party server to a GDS, and Table
5 shows sample XML fragments that specify the transfer. The requester A begins by creating
a description of the update operation. Table 5 (a) shows the transport document that describes
transferring a file from ftp server D to be stored in the table. The result document of Table 5
(b) has status ok to indicate that the update operation could be initiated. It does not imply that
the entire operation has been completed successfully.

Requester A |_—<update specification> Grid Data Service

<update response> GridDataService
4\\ Port

<put/indirect specification>

<put/indirect response>

GridDataTransport l

Port
ftp request
FTP Server D e \

————<data document>_"> FTP Client

Figure 8. Indirect transfer of data from a third-party server

Table 5. GridServiceDescription and GridTransportDescription and
GridTransportResponse documents for Figure 8

(b) Indirect put transport request for Figure 8.

<GridTransportDescription direction="put" mode="indirect"
protocol="ftp" source="D" file="data" maxSize="0">
<statementld> st atement 2 </statementld>
</GridTransportDescription>

(c) Result of transport request

Grid Database Service Specification 20

<G i dTransport Response directi on="put" node="indirect" status="ok">
<statementld> statenment2 </statenentl|d>
</ Gri dTransport Response>

3.2.3.5 Block transfer of query result datafrom a GDS

The GridDataTransport portType provides afacility for creating and using block transfers, as
illustrated in Figure 9. In this case, requestor A, after specifying the query, requests the
initialization of an block transfer. A then sends the block identifier to B who initiates a
sequence of directNext requests from the GDS. Table 6 shows sample XML fragments for
these operations.

Requester A ificati
q /<query specification> Grid Data Service

<query response> GridDataService
\ Port
<get/block specification>
block
GridDataTransport
Port

identifier <get/block response>
<get/directNext response>

_ <get/directNext specification>
Requester B

Figure 9. Direct block transfer of data

Table 6. GridTransportDescriptions and GridTransportResponse documents for
iterating as in Figure 9

(a) Block transfer specification for Figure 9

<G i dTransportDescription direction="get" node="bl ock">
<resultld> resultl </resultld>
<bl ockl d> bl ockl </ bl ockl d>

</ GidTransport Descri ption>

(b) Result of block request

<G i dTransport Response direction="get" node="bl ock" status="ok">
<resultld> resultl </resultld>
<bl ockl d> bl ockl </ bl ockl d>

</ Gri dTransport Response>

(c) Direct request for next block of data from requester B

<G idTransportDescription direction="get" node="directNext"
unit="rows" quantity="100">
<resultld> resultl </resultld>
<bl ockl d> bl ockl </bl ockl d>
</ GidTransport Descri ption>

(d) Result of directNext request

<G i dTransport Response direction="get" mnpode="direct Next"
unit="rows" quantity="100" status="ok">
<resultld> resultl </resultld>
<bl ockl d> bl ockl </ bl ockl d>
<Resul t Tabl e>
100 rows of data returned in appropriate XM. form
</ Resul t Tabl e>
</ Gri dTransport Response>

(e) Result of final direct request

Grid Database Service Specification 21

<G i dTransport Response direction="get" mnpde="direct Next"
unit="rows" quantity="100" status="done">
<resultld> resultl </resultld>
<bl ockl d> bl ockl </bl ockl d>
<Resul t Tabl e>
| ast rows of data returned in appropriate XM. form
</ Resul t Tabl e>
</ Gri dTransport Response>

The requester continues to issue the transport requests until a result document like in Table 6
(e) is received. The status attribute with value done indicates that no more results are
available.

Block transfers can be used to provide distribution and sharing of data, as illustrated in the
XML fragments of Table 7. In Table 7 (a), requester A initiates 2 block transfers, named
block2 and block3. A then sends the identifier for block2 to requesters B and C and sends
identifier block3 to D. When B and C request data using block2, they will be sent different
rows of the result data. The values of quantity in Table 7 (b) and Table 7 (c) mean that each
request from B returns 100 rows and each request from C returns 1000 rows. Once both B and
C have finished their block transfers, the result data will have been distributed between them.
The number of rows each receives will depend on how many requests each one makes.
Requester D, however, is using independent block transfer block3 and so will receive all of
the result data of the query.

Table 7. GridTransportDescriptions and GridTransportResponse documents for
sharing and distributing data

(a) Request from A to setup 2 block transfers

<G idTransportDescription direction="get" node="bl ock">
<resultld> resultl </resultld>
<bl ockl d> bl ock2 </ bl ockl d>

</ GridTransportDescription>

<G idTransportDescription direction="get" node="bl ock">
<resultld> resultl </resultld>
<bl ockl d> bl ock3 </ bl ockl d>

</ GridTransportDescription>

(b) Distributed directNext get request for ablock of datafrom requester B

<G idTransportDescription direction="get" node="directNext"
units="rows" quantity="100" naxSize="0">
<resultld> resultl </resultld>
<bl ockl d> bl ock2 </bl ockl d>
</ GidTransport Descri ption>

(c) Distributed directNext get request for ablock of data from requester C

<G idTransportDescription direction="get" node="direct Next"
uni ts="rows" quantity="1000" maxSi ze="0">
<resultld> resultl </resultld>
<bl ockl d> bl ock2 </ bl ockl d>
</ GridTransport Descri ption>
(d) Shared directNext get request for ablock of datafrom requester D

<G idTransportDescription direction="get" node="directNext"
uni ts="rows" quantity="1000" maxSi ze="0">
<resultld> resultl </resultld>
<bl ockl d> bl ock3 </ bl ockl d>
</ GridTransportDescription>

Note that the distribution of data shown in Table 7 (b) and Table 7 (c) will only work properly
when the blocks of data are semantically consistent. This example is of the distribution of

Grid Database Service Specification 22

data by rows to multiple processes. The processes must be capable of processing these partial
results. It isunlikely that a distribution of datawith units="Kbytes”, for example will produce
blocks of data that can be shared among multiple processes.

The other modes of block transfer are similar. Block transfers can be specified for both put
and get directions and for indirect and direct modes.

3.23.6 Sending Data from One GDSto Another

The final example shows how to move data from one GDS to another. No new techniques are
introduced. Instead, several service requests are combined to create the transfer of data.
Figure 10 shows the basic architecture of the service requests used to send data from GDS Y
to GDS X. Table 8 includes the sample documents that are used to create the data movement.

Grid Data Service X

GridDataService
Port

<update specification>
GridDataTransport
Port

Requester A <put/direct specification>

— Grid Data Service Y
<query specification>

KRN

GDS Client

(. .
GridDataService
Port
<get/indirect specification>
GridDataTransport
Port

Figure 10. Sending data from one GDS to Another (responses omitted)

Table 8. GridServiceDescription and GridTransportDescription and
GridTransportResponse documents for Figure 10.

(a) Bulk load of data

<pr epar edSt at emrent >

<dbStatement statementType="bulkLod” notation = “.”.>
<expression> | oad t abl e MyNewTabl e </expression>
</dbStatement>

<statementld> st atenent 3 </statementld>
</preparedStatement>

(b) Query of datato be moved

<gridDataServiceRequest>
<executeStatementKeepResult>

<dbStatement notation = *“.” .>
<expression> select * from myData </expression>
</dbStatement>

<resultld> result4 </resultld>
</executeStatementKeepResult>

Grid Database Service Specification 23

</ gri dDat aSer vi ceRequest >

(c) Indirect request to transfer datato X

<G idTransportDescription direction="get" node="indirect">
<resultld> result4 </resultld>
<Transport Target protocol ="CGDS" target="X">
<statenentld> statenent3 </statenmentl| d>
</ Transport Tar get >
</ Gri dTransport Descri ption>

(d) Delivery of datato X: GDSY actsasaclient of X

<G idTransportDescription direction="put" node="indirect">
<statementld> statement3 </statenentl|d>
<LoadTabl e>
data fromresult4 in appropriate XM. form
</ LoadTabl e>
</ GidTransport Descri ption>

Four service documents are shown in Figure 10 and Table 8. The interaction begins when
requester Request A sends document (a) to GDS X. Document (a) requests that X prepare to
receive data and to store in the table called MyNewTable. This operation is labelled as
statement3. The next step isfor A to send document (b) to GDS Y. Document (b) requests that
Y evaluates a query and labels the result result4. After these two documents have been
processed, X and Y are ready to accept data transport documents.

The third step is for A to tell Y to send the data to X using the GDS protocol. That is,
document (c) tells Y to send datato X asa GDS client of X. GDS 'Y must extract the data from
result4 and create document (d) as a request for a GDS to accept data to be delivered to
update statement3. After creating the document, Y sends it to X and thus transfers the data. X
receives the data that is included in document (d) and loads it into table MyNewTable. X can
then send a response to Y to indicate a successful direct put, and Y can send a response to
requester A to indicate a successful indirect get.

3.2.3.7 XML Schema Definition

Thefollowing isthe XML Schema definition for the examples provided earlier in this section.

<xs: el ement nane="Gi dTransport Description">
<xs: conpl exType>
<Xs:sequence>
<xs:element ref="statenentld"/ m nCccurs="0">
<xs:elenment ref="resultld"/ m nCccurs="0">
<xs: el enent ref="TransportTarget" mni nCccurs="0"
maxCQccur s="unbounded"/ >
<xs: el emrent ref="LoadTabl e" m nCccurs="0"/>
<xs: el ement ref="blockld" m nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="direction" use="required">
<xs: si npl eType>
<xs:restriction base="xs: NMTOKEN" >
<xs:enuneration val ue="get"/>
<xs:enuneration val ue="put"/>
</xs:restriction>
</ xs: si npl eType>
</ xs:attribute>
<xs:attribute nanme="node" use="required">
<xs:si npl eType>
<xs:restriction base="xs: NMTOKEN" >
<xs:enuneration val ue="bl ock"/>
<xs:enuneration value="direct"/>
<xs:enuneration val ue="directNext"/>

Grid Database Service Specification 24

<xs:enuneration value="indirect"/>
<xs:enuneration val ue="indirect Next"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute name="maxSi ze" type="xs:int"/>
<xs:attribute name="tineout" type="xs:int"/>
<xs:attribute name="protocol" type="xs:string"/>
<xs:attribute name="source" type="xs:string"/>
<xs:attribute name="file" type="xs:string"/>
<xs:attribute name="unit" type="xs:string"/>
<xs:attribute name="quantity" type="xs:int"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el enent nane="Gi dTransport Response" >
<xs: conpl exType>
<Xs: sequence>
<xs:elenent ref="statenentld"/ mi nCccurs="0">
<xs:elenment ref="resultld"/ m nCccurs="0">
<xs: el enent ref="bl ockld" m nCccurs="0"/>
<xs: el enment ref="ResultTable"/>
</ xs: sequence>
<xs:attribute name="direction" type="xs: NMTOKEN'
use="required"/>
<xs:attribute nanme="node" use="required">
<xs:si npl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration value="direct"/>
<xs:enuneration val ue="indirect Next"/>
</xs:restriction>
</ xs:si npl eType>
</xs:attribute>
<xs:attribute name="unit" type="xs:string"/>
<xs:attribute name="quantity" type="xs:int"/>
<xs:attribute name="status" type="xs:string"/>
<xs:attribute name="maxSi ze" type="xs:int"/>
<xs:attribute name="tineout" type="xs:int"/>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement nane="LoadTabl e" type="xs:string"/>
<xs: el enent nane="Resul t Tabl e" type="xs:string"/>
<xs: el enent nane="Transport Target">
<xs: conpl exType>
<XS:sequence>
<xs:elenment ref="statenentld" nm nCccurs="0"/>
<xs:elenment ref="resultld"/ mnOccurs="0">
</ xs: sequence>
<xs:attribute name="protocol" use="required">
<xs: si npl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="GdS"/>
<xs:enuneration value="ftp"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute name="target" use="required">
<xs: si npl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="B"/>
<xs:enuneration value="C'/>
<xs:enuneration val ue="X"'/>

Grid Database Service Specification 25

</xs:restriction>
</ xs: si npl eType>
</ xs:attribute>
<xs:attribute name="file">
<xs: si npl eType>
<xs:restriction base="xs: NMTOKEN' >
<xs:enuneration val ue="datal"/>
<xs:enuneration val ue="data2"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: el ement >
<xsd:element name = “‘setTerminationTime” minOccurs="0">
<xsd:complexType>
<xsd:element name
<xsd:element name
type
</xsd:complexType>
</xsd:element>
<xs:element name="blockld" type='"'xs:anyURI"/>
<xs:element name="gridtransports'>
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element ref="CGridTransportDescription"/>
<xs:element ref="GridTransportResponse"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="'statementld" type="'xs:anyURI"/>
<xs:element name="'statementld" type="'xs:anyURI"/>

4 Relational Database Services

“identifier” type = “xsd:anyURI” />
“terminationTime”
“xsd:dateTime”>

4.1 GridDataService PortType

4.1.1 GridDataService PortType: Service Data Descriptions and Elements

A Relational Database Service MUST make available all service data elements defined in
Section 3.1. Several of these, such as the LogicalSchema and PhysicalSchema include
relational model-specific features, for which XML schema definitions are provided in this
section.

4.1.1.1 LogicalSchema

A Relational DataService MUST support the Logical Schema SDE. The Logical Schema SDE
of a Relational DataService contains an XML document describing the tables available within
the Relational Database and the columns available for selection within those tables. It MAY
also include Primary Key information and full datatypes for the columns [ISO 9075].

The root element of this document is a databaselogical Schema. A databasel ogical Schema
contains 1 or more tables, which in turn contain 1 or more columns. The followingisan XML
schemafor the databasel ogical Schema SDE:

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlIns:xs="http://www.w3.0rg/2001/XMLSchema’'>

<xs:element name="‘document' type="'databaselogicalSchema'"/>
<xs:complexType name="databaselLogicalSchema">
<xs:sequence>
<xs:element name="table" type=""tableDefinition"

Grid Database Service Specification 26

m nCccur s="1" maxCccur s="unbounded"/ >

</ xs: sequence>

<XS.

attribute nane="nanme" use="required" type="xs:string"/>

</ xs: conpl exType>

<xs: conpl exType name="tabl eDefinition">

<XS:

sequence>
<xs: el ement nane="col um" type="col umbDefinition"
m nCccurs="1" maxQccur s="unbounded"/ >
<xs: el enment nane="pri maryKey" type="pri maryKeyDefinition"
m nQOccur s="0" maxCccurs="1"/>

</ xs: sequence>

<XS.

attribute nane="nanme" use="required" type="xs:string"/>

</ xs: conpl exType>

<xs: conpl exType name="col utmbDefi nition">

<XS:

sequence>
<xs: el enent nane="sql Type" type="typeKeyword"/>

</ xs: sequence>

<XS:

<XS:

<XS:

<XS.

<XS:

<XS.

<XS:

<XS:
<XS.

<XS:

<XS:

<XS.

<XS:

<XS.

<XS:

<XS:

<XS.

<XS:

<XS.

<XS:

attribute nane="name" use="required" type="xs:string"/>

attribute nane="full Nane" use="required" type="xs:I1D'/>

attribute nanme="Iength" type="xs:integer"
use="optional "/ >

attribute nane="maxLength" type="xs:integer"
use="optional "/ >

attribute nane="charact er Set Nane" type="xs:string"
use="optional "/ >

attribute nane="col |l ation" type="xs:string"
use="optional "/ >

attribute nane="precision" type="xs:integer"
use="optional "/ >

attribute nane="scal e" type="xs:integer" use="optional"/>

attribute nane="nmaxExponent" type="xs:integer"
use="optional "/ >

attribute nane="nmi nExponent" type="xs:integer"
use="optional "/ >

attribute nanme="userPrecision" type="xs:integer"
use="optional "/ >

attribute nane="1|eadi ngPreci sion" type="xs:integer"
use="optional "/ >

attribute nane="nmaxEl enents" type="xs:integer"
use="optional "/ >

attribute nane="cat al ogNane" type="xs:string"
use="optional "/ >

attribute nane="schemaNanme" type="xs:string"
use="optional "/ >

attribute nane="domai nNanme" type="xs:string"
use="optional "/ >

attribute nane="typeNane" type="xs:string"
use="optional "/ >

attribute nane="mappedType" type="xs:string"
use="optional "/ >

attribute nane="rmappedEl enent Type" type="xs:string"
use="optional "/ >

attribute nanme="final" type="xs:bool ean" use="optional"/>

</ xs: conpl exType>

<xs: conpl exType nanme="pri naryKeyDefinition">

<XS.

sequence>
<xs: el ement nane="col umFul | Nane" type="xs: | DREF"
m nQccur s="1" maxQccur s="unbounded"/ >

Grid Database Service Specification 27

</ xs: sequence>
</ xs: conpl exType>

<xs: si npl eType nane="t ypeKeyword">
<xs:restriction base="xs:string">

<xs:enuneration val ue="CHAR'/ >

<xs:enuneration val ue="VARCHAR'/ >

<xs:enuneration val ue="CLOB"/>

<xs:enuneration val ue="BLOB"/>

<xs:enuneration val ue="NUMERI C'/ >

<xs:enuneration val ue="DEClI MAL"/ >

<xs:enuneration val ue="| NTEGER"'/ >

<xs:enuneration val ue="SMALLI NT"/ >
<xs:enuneration value="BlI G NT"/>

<xs:enuneration val ue="FLOAT"/ >

<xs:enuneration val ue="REAL"/ >

<xs:enuneration val ue="DOUBLE PRECI SI ON'/ >
<xs:enuneration val ue="BOOLEAN'/ >

<xs:enuneration val ue="DATE"/ >

<xs:enuneration val ue="TI ME"/ >

<xs:enuneration value="TIME WTH TI ME ZONE"/ >
<xs:enuneration val ue="TI MESTAMP"/ >
<xs:enuneration val ue="TI MESTAMP W TH Tl ME ZONE"/ >
<xs:enuneration val ue="| NTERVAL YEAR'/>
<xs:enuneration val ue="| NTERVAL YEAR TO MONTH'/ >
<xs:enuneration val ue="1 NTERVAL MONTH'/ >
<xs:enuneration val ue="| NTERVAL DAY"/>
<xs:enuneration val ue="| NTERVAL DAY TO HOUR'/ >
<xs:enuneration val ue="| NTERVAL DAY TO M NUTE"/ >
<xs:enuneration val ue="| NTERVAL DAY TO SECOND'/ >
<xs:enuneration val ue="| NTERVAL HOUR'/ >
<xs:enuneration val ue="| NTERVAL HOUR TO M NUTE"/ >
<xs:enuneration val ue="| NTERVAL HOUR TO SECOND'/ >
<xs:enuneration val ue="| NTERVAL M NUTE"/ >
<xs:enuneration val ue="|1 NTERVAL M NUTE TO SECOND"'/ >
<xs:enuneration val ue="| NTERVAL SECOND"'/ >

</ Xxs:restriction>
</ xs: si npl eType>
</ xs: schema>

Even when a Grid Data Service instance relates to only one data source, databases can contain
thousands of tables with thousands of columns. This means the databasel ogical Schema
defined above can become voluminous and volatile. Further Logica Schema information
could be returned, this may include stored procedures, triggers etc. Schemas already exist for
fully representing a databases logical structurein XML.

4.1.1.2 PhysicalSchema

The following describes the relational physical schema SDE, databasePhysical Schema. There
are two parts to this schema; the part describing the database size and the part describing the
SQL capabilities of the database.

The schema for the database size part contains only two elements, database size and database
free space, referring to the entire database backend.

The schema for the SQL capability list is taken from the ISO/IEC 9075 (SQL/Framework)
standard [ISO 9075], Section 6.3. It describes the variant of SQL supported by the
GridDataService, the level of conformance to the standard and which optional parts and
packages of the standard are supported. The parts refer to those discussed in documents
ISO/IEC 9075-n, while the packages refer to those discussed in [ISO 9075] Appendix A.
Refer to [1SO 9075] for discussion of the parts and packages of the SQL standard and the

Grid Database Service Specification 28

meaning of ‘level of conformance’. Only a simple version of the schema is given here in
XML; a service SHOULD implement all of the schema given here, and MAY implement
further parts of the schema described in [ISO 9075].

<?xm version="1.0" encoding="UTF-8">
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema’>
<xs:element name=""document” type="databasePhysicalSchema”>

<xs:complexType name="databasePhysicalSchema'>
<xs:element name="databaseSize"™ type='"sizeDef"
minOccurs="1" maxOccurs="1"/>
<xs:element name="'SQLSupport” type=""SQLSupportDef”
minOccurs="1" maxOccurs="1"/>
</xs:complexType>

<xs:complexType name="sizeDef’>
<xs:element name=""sizeBytes” type="Xxs:int”
use=""required”>
<xs:element name=""freeSpaceBytes” type="xs:int”
use="required”’>
</xs:complexType>

<xs:complexType name="SQLSupportDef’>
<xs:element name="sql-variant” type="variantDef”
minOccurs="1" maxOccurs="1"">
</xs:complexType>

<xs:complexType name="variantDef’>
<Xs:sequence>
<xs:element name="sql-edition” type="editionDef”
minOccurs="1" maxOccurs="1"">
<xs:element name="sql-conformance”
type=""conformanceDef”
minOccurs="1" maxOccurs="1">
</Xs:sequence>
</xs:complexType>

<xs:simpleType name="editionDef”’>
<restriction base=""NMTOKEN”>
<enumeration value="1992"">
<enumeration value="1999”>
</restriction>
</xs:simpleType>

<xs:complexType name="conformanceDef”’>
<xs:sequence>
<xs:element name=""level” type="levelDef”
minOccurs="0" maxOccurs=""1"">
<xs:element name=""parts” type=""partsDef”
minOccurs="0" maxOccurs="1"">
<xs:element name=""packages” type=""packagesDef”
minOccurs="0" maxOccurs=""1"">
</xs:sequence>
</xs:complexType>

<xs:simpleType name="levelDef’>
<restriction base="NMTOKEN">
<enumeration value="low”>
<enumeration value="intermediate”>
<enumeration value="high”>
</restriction>

Grid Database Service Specification

</ xs:si npl eType>

<xs:complexType name="partDef’>
<Xs:sequence>
<xs:element name=""partl” type=""partNDef”
minOccurs="1" maxOccurs="1"">

<xs:element name=""partN” type=""partNDef”
minOccurs="1" maxOccurs="1"">
</Xs:sequence>
</xs:complexType>

<xs:simpleType name="PartNDef’>
<restriction base=""NMTOKEN”>
<enumeration value="yes”>
<enumeration value="no”>
</restriction>
</xs:simpleType>

<xs:complexType name="packageDef’>
<XSs:sequence>
<xs:element name="packagel” type=""partNDef”
minOccurs="1" maxOccurs="1">
</Xs:sequence>
</xs:complexType>

<xs:simpleType name=""PackagelDef’>
<restriction base="NMTOKEN”’>
<enumeration value="yes”>
<enumeration value="no”>
</restriction>
</xs:simpleType>

An example of the relational physical schema SDE is given below:

<databasePhysicalSchema>
<databaseSize>
<sizeBytes>13832145</sizeBytes>
<freeSpaceBytes>195730041</freeSpaceBytes>
</databaseSize>
<SQLSupport>
<sgl-variant>
<sgl-edition>1999</sqgl-edition>
<sqgl-conformance>
<parts>
<partl>yes</partl>
<partl>yes</partl>
<part2>yes</part2>
<part3>yes</part3>
<partéd>yes</part4>
<part5>yes</part5>
<part6>yes</part6>
<part7>yes</part7>
<part8>no</part8>
<part9>no</part9>
<partlO>no</partl0>
<partll>no</partll>
<partl2>no</partl2>
<partl3>no</partl3>

Grid Database Service Specification 30

<part 14>yes</ part 14>
</ parts>
<packages>
<package00l1l>yes</ package001>
<package002>yes</ package002>
<package003>no</ package003>
<package004>no</ package004>
<package005>no</ package005>
<package006>no</ package006>
<package007>no</ package007>
<package008>no</ package008>
<package009>no</ package009>
</ packages>
</ sql - conf or rance>
</ sql -vari ant >
</ SQLSupport >
</ dat abasePhysi cal Schena>

4.1.2 GridDataService PortType: Operationsand M essages

A Relational Database Service MUST provide the operations and messages defined in the
generic section of this document. It does not support any additional operations and messages.

4.1.3 GridDataService PortType: Types

Each call on the GridDataService:: perform operation must provide a gridDataServiceRequest
document as input and will receive a gridDataServiceResponse document as its resullt.

Although the most common query language for relational databasesis likely to be SQL, the
standard permits the service to support others, for example XQuery and specific versions of
SQL; the language is specified in the notation attribute of doStatement in Section 3.1.3.

We will assume that the result of an SQL query to a GridDataService is an XML document
(complete or a fragment) containing the result set or a partial result set. The standard permits
services to support many return formats for this document, specified by the returnFormat
attribute of dbSatement. For the moment, the only recommended format for relational
databases is based upon the Java WebRowSet (www.jcp.org/jsr/detail/114.jsp). This has
methods to convert a JDBC result set into XML.

The following example shows arelational request formatted in SQL 92. The example given is
of a simple customer database, with four fields requested, name, address, age and cross-
reference index. It makes no reference to transport, so the default, direct pull, is assumed by
the service.

<gri dDat aSer vi ceRequest >
<exect ueSt at ement >
<dbStatement notation="http://www.gridforum.org/dais/lang/SQL92”
returnFormat=
”http://gridforum.org/dais/schema/webRowSet._xsd”
statementType="query”’>
<expression>select name, address, age, numericalindex
from Customer where totalDebt > ?</expression>
</dbStatement>
</executeStatement>
</gridDataServiceRequest>

The following shows a sample document returned as a result of the above request. For
brevity, not al of the defined elements in the WebRowSet schema are included here (these can
be assumed to be empty).

<gridDataServiceResponse>

<executeStatementResponse>
<RowSet>

Grid Database Service Specification

31

<pr ope

</ prop

<met ad

rties>
<key- col ums>
<col um>Nane</ col unm>
<col um>Nuneri cal | ndex</ col um>
</ key- col ums>
<r ead- onl y>true</read-onl y>
<max-r ows>1000</ max-r ows>
<url></url>
erties>

at a>

<col um- count >3</ col unm- count >

<col umm-definiti on>
<col umm-i ndex>1</ col um-i ndex>
<aut o-i ncr enent >f al se</ aut o-i ncr enent >
<nul | abl e>f al se</ nul | abl e>
<case-sensitive>true</case-sensitive>
<col umm- nane>Nane</ col umm- nane>
<col umm- scal e>100</ col unm- scal e>
<col um- | abel >Cust oner nane</ col um-1| abel >
<t abl enane>Cust oner </ t abl enanme>
<col um-t ype>xsd: stri ng</col um-type>

</ colum-definition>

<col umm-definiti on>
<col um- i ndex>2</ col umm- i ndex>
<aut o-i ncr enent >f al se</ aut o-i ncr enent >
<nul | abl e>f al se</ nul | abl e>
<case-sensitive>true</case-sensitive>
<col umm- nane>Addr ess</ col unm- nane>
<col um- scal €>200</ col um- scal e>
<col um- label>Customer’s Address</column-label>
<tablename>Customer</tablename>
<column-type>xsd:string</column-type>

</column-definition>

<column-definition>
<column-index>3</column-index>
<auto-increment>false</auto-increment>
<nullable>true</nullable>
<column-name>Age</column-name>
<column-precision>1</column-precision>
<column-label>Customer’s age</column-label>
<tablename>Customer</tablename>
<column-type>xsd: integer</column-type>

</column-definition>

<column-definition>
<column-index>4</column-index>
<auto-increment>true</auto-increment>
<nullable>false</nullable>
<column-name>Numerical Index</column-name>
<column-precision>1</column-precision>
<column-label>Quick index</column-label>
<tablename>Customer</tablename>
<column-type>xsd: integer</column-type>

</column-definition>

</metadata>

<data>

<row>
<col>Gavin McCance</col>
<col>Gav’s place, Glasgow</col>
<col>26</col>
<col>1</col>

Grid Database Service Specification 32

</ row>
<r ow>
<col >Janes Magowan</ col >
<col>James” house</col>
<col>null</col>
<col>2</col>
</row>
</data>
</RowSet>
</executeStatementResponse>
</gridDataServiceResponse>

4.2 NotificationSour ce PortType

A Relational Grid Data Service MAY allow notification of changes in its Service Data
Elements using subscribeByServiceDataName [Tuecke 02].

Relational databases provide triggering capability and it is not yet clear how or if this should
be exposed through the GridDataService. This would allow natification based on changes to
dataitems that are not necessarily Service Data Elements.

5 XML Database Services

5.1 GridDataService PortType

5.1.1 GridDataService PortType: Service Data Descriptions and Elements

A XML Database Service MUST make available all service data elements defined in Section
3.

5.1.1.1 LogicalSchema

The LogicalSchema SDE of an XML Database Service contains an XML document
describing the hierarchy of the collections in the database. It MAY also provide XML
schemas or DTDs for the documents stored in a collection. Note that documents in an XML
collection do not need to satisfy a schema.

The root element of this document is a collection. A collection can contain O or more
collections and O or more XML schemas. The following is an XML schema for the
Logical Schema SDE:

<xs:schema xmlns:xs=http://www.w3.0rg/2001/XMLSchema>
<xs:element name="‘document' type="‘collectionType"/>
<xs:complexType name="collectionType'>
<XS:sequence>
<xs:element name="collection" type="collectionType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="'schema'" type="'xs:anyType"
minOccurs="0" maxOccurs="unbounded'/>
</xs:sequence>
</xs:complexType>
</xs:schema>

5.1.1.2 PhysicalSchema

As there are no standards or conventions for physical schemas yet in XML databases, we
make some suggestions for possible Physical Schema content:

¢ Number of collections.
¢ Number of schemasin a collection.
* Number of documentsin a collection.

Grid Database Service Specification 33

e Location and nature of indexes.

5.1.2 GridDataService PortType: Operations and M essages

An XML database service MUST provide the operations and messages defined in Section 3.1
of this document. It does not support any additional operations and messages.

5.1.3 GridDataService PortType: Types

Each call on the GridDataService:: perform operation must provide a gridDataSer viceRequest
document as input and will receive a gridDataServiceResponse document as its result. The
type of the result document will depend on the language of the request and the delivery
reguirements.

5131 XPath

The XPath 2.0 working draft from 16™ August 2002 states that the value of an XPath
expression is aways a sequence, which is an ordered collection of zero or more items. An
item is either an atomic value or a node (see http://www.w3.org/TR/xpath20/, section 2:
Basics).

We will assume that the result of an XPath query to a GridDataService is an XML document
(complete or afragment) containing a sequence of serialised items.

A client MAY specify a GridDataTransport description with the query. The default
behaviour of the data service is direct delivery (direction="get” and mode="direct” as
described in Section 3.2). The data service MAY support the GridDataTransport port type,
providing other options like iteration or distributed delivery.

The following shows a sample document for a simple query to an XML data service.
Consider a mail repository containing XML documents of the following form:

<posti ng>

<t 0>Bob</t 0>

<frompAl i ce</frone

<subj ect >Exanpl e</ subj ect >

<body>This is an exanple for a docunent</body>
</ posti ng>

Here is the document for a single query request using the XPath query language. The data will
be returned directly to the client.

<gri dDat aSer vi ceRequest >
<execut eSt at ement >
<st at enent
notation="http://www.w3.0rg/TR/1999/REC-xpath-19991116”
statementType="query”’>
<expression>//posting/to[text()="Bob”]</expression>
</statement>
</executeStatement>
</gridDataServiceRequest>

The result document of this query is:

<gridDataServiceResponse>
<executeStatementResponse>
<result xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance
type=""xsizany”’>
<posting>

<to>Bob</to>
<from>Alice</from>
<subject>Example</subject>
<body>This is an example for a document</body>

L1}

Grid Database Service Specification 34

</ posti ng>
</result>
<result>

</result>
</ execut eSt at enent Response>
</ gri dDat aSer vi ceResponse>

5132 XQuery

The XQuery 1.0 working draft from 16™ August 2002 states that the result of an XQuery
request is a sequence. A sequence is an ordered collection of zero or more items. An item may
be anode or asimple value (See http://mww.w3.org/TR/xquery/, Section 2: Basics).

We will assume that the result of an XQuery request to a GridDataService is a XML
document containing a sequence of serialized items. A client MAY include the delivery
description in the XQuery string or MAY append a GridDataTransport description to the
operation.

5.2 NotificationSource PortType

An XML Grid Data Service MAY allow notification of changes in its Service Data Elements
using subscribeByServiceDataName [Tuecke 02]. Unlike in the relational model, there is as
yet no standard for specifying triggers over XML databases.

6 Remote Procedure Call

Although the primary interface uses the web services document model, there are a number
cases for which the web services Remote Procedure Call (RPC) model is appropriate [Bell
02]. While therigidity of RPC encoding limits flexibility, it provides a number of advantages
for ease of implementation and use, chief among these being the possibility of dynamic
creation of client stubs from the service definition, and the ability of client code to link
against these RPC stubs in a straightforward manner. The transport and encoding is not
defined here, however the definition is given so as to be suitable for the standard web-services
encoding, SOAP-RPC (www.soaprpc.com).

The RPC operations defined here are synchronous, i.e. the direct transport is used with the
result being returned to the client immediately. Transactional support and session support are
not discussed; these are left for the next version of the RPC interface. The purpose hereisto
show how the RPC operations are related to the document approach of the generalised
GridDataService. A GridDataService MAY implement one or more of the following
operations. Some operations are generic; others are specific to the database type. Upon error
these operations MUST throw afault, e.g. a SOAPFault in the SOAP-RPC case. It is assumed
that all operations here will throw a fault in the case of an authentication or authorisation
failure.

6.1 Generic Operations
GridDataSer vice:: ShowDatabases
Return the names of all the databases held by the service.
Input
* None.
Output

o Databaselist: The list of databases held by the service. This SHOULD be formatted
as XML.

Fault

Grid Database Service Specification 35

* None.

GridDataService: :ExecuteUpdate
Execute a database update using the specified query notation.
Input

* Notation: The query notation for the update request. A database MAY support many
update notations. Currently defined notations are specified using a URI.

» DatabaseName: The database to update.
» UpdateRequest: The update string describing the request.

» UpdateResult: The result of the update. This SHOULD be an integer describing how
many database elements were affected (e.g. rows in the case of relational databases).
It SHOULD be formatted in XML.

« InvalidNotation: Requested notation is not supported.
e InvalidFormat: The request could not be parsed.

* InvalidOperation: The request failed for some reason (e.g. database does not exist).
The fault SHOULD contain specifying the exact reason for the failure, subject to
security policies.

GridDataSer vice: : ExecuteSchemaUpdate
Execute a database schema update in the specified query notation.
I nput

e Notation: The query notation for the schema update request. A database MAY
support many schema update notations. The currently defined notation is SQL,
specified using the URI above.

» DatabaseName: The database to update.
» SchemaUpdateRequest: The schema update string describing the request.

e SchemaUpdateResult: The result of the schema update MAY be returned. Thisis an
integer describing how many schema items were affected (e.g. tables in the case of
relational databases). If present, it should be formatted in XML.

« InvalidNotation: Requested notation is not supported.
e InvalidFormat: The request could not be parsed.

e InvalidOperation: The request failed for some reason (e.g. database does not exist).
The fault SHOULD contain a message specifying the reason for the failure, subject to
security policies. The response of the database should be encoded in this message, for
example, the SQLSTATE and SQLCODE for SQL database errors.

GridDataService::ExecuteQuery
Will execute a database query using the specified query notation.

Grid Database Service Specification 36

I nput

* Notation: The query notation for the request. A database MAY support many query
notations. Currently defined notations are identified using a URI.

o DatabaseName: The database to query.
* Query: The query string.

e Maximum: The maximum number of data units to return. The data unit is defined by
the database type.

e QueryResult: The result of the query. The full result should be given, up to the
maximum specified. This SHOULD be in a suitable XML format, for example, an
XML WebRowSet for SQL requests.

« InvalidNotation: Requested notation is not supported.
e InvalidFormat: The query could not be parsed.

* InvalidOperation: The query failed for some reason (e.g. database does not exist).
The fault SHOULD contain specifying the exact reason for the failure, subject to
security policies.

6.2 Relational Database Specific
Most of these return information concerning the schema of the relational database.
GridDataService::ShowTables

Return the names of the tables held in a specific database. This operation is likely to need
refining (including, for example, LIKE clauses) to limit the number of table names returned.

Input

» DatabaseName: The database name whose tables are to be listed.
Output

e Tablelist: Thelist of tablesin the database. This SHOULD be formatted in XML.
Fault

* NonexistentDb: The specified database does not exist.

GridDataService::ShowTableColumns

Return the column names defined for a specific table. It is likely that the following specific
operations will be combined with the ShowTables operation at alater date.

I nput

» DatabaseName: The database name.

e TableName: The table whose columns are to be listed.
Output

¢ ColumnList: The list of columns in the database. This SHOULD be formatted in
XML.

Fault
* NonexistentDb: The specified database does not exist.
* NonexistentTable: The specified table does not exist in the given database.

Grid Database Service Specification 37

GridDataService::ShowTableColumnTypes
Returns the types of the columns for a specific table.
Input
o DatabaseName: The database name.
e TableName: The table whose columns are to be listed.
Output

e ColumnTypeList: The list of types of the columns in the database. This SHOULD be
formatted in XML.

Fault
* NonexistentDb: The specified database does not exist.
* NonexistentTable: The specified table does not exist in the given database.

GridDataService:: ShowFullSchema
Returns the full schema of the table or view requested, including all the stored triggers and
indices.
Input
e DatabaseName: The database name.
e TableName: The table whose schemaisto be returned.
Output

e TableSchema: The full schema describing the table. This should be formatted in
XML.

Fault
* NonexistentDb: The specified database does not exist.
* NonexistentTable: The specified table does not exist in the given database.

GridDataService: :bulkL oad

Inserts the bulkData into the specified table. This operation is appropriate for small loads that
can be reasonably accomplished in one transaction. Further work needs to be done on the
interface to permit more flexible bulk loading and error recovery. For larger loads, the
approach illustrated in Section 3.2.3.4 is more appropriate.

Input
o DatabaseName: The database name.
e TableName: The table into which to insert.
* BulkData: The data to insert. The format of BulkData is in the XML WebRowSet

schema.
Output
* Rowslnserted: The number of rows successfully inserted. It SHOULD be formatted in
XML.

Fault
* NonexistentDb: The specified database does not exist.

Grid Database Service Specification 38

* NonexistentTable: The specified table does not exist in the given database.
* |nvalidBulkDataFormat: The bulk datais not in the correct XML format.

* SchemaMismatch: The schema of the bulk data and the schema of the table being
inserted into do not match.

6.3 XML Database Specific
GridDataService::ShowCollections
Returns the names of collections in the database.
I nput

* None
Output

¢ CollectionList: Thelist of collectionsin the database. This SHOULD be formatted in
XML.

Fault
« None.

GridDataService:: ShowSchemas
Will return the XML schemas corresponding to a specific collection.
Input
* Collection
Output

e SchemalList: Thelist of XML schemas of the collection. This SHOULD be formatted
in XML.

Fault
* NonexistentCollection: The specified collection does not exist.

GridDataService:: ShowDocuments
Returns the names of the documents held in a specific collection.
I nput
» Collection: The collection name whose documents are to be listed.
Output

¢ DocumentList: Thelist of documentsin the collection. This SHOULD be formatted in
XML.

Fault
* NonexistentCollection: The specified collection does not exist.

GridDataService::BulkL oad

Inserts an XML document into the specified collection. This operation is appropriate for small
loads that can be reasonably accomplished in one transaction. For larger loads, the approach
illustrated in Section 3.2.3.4 is more appropriate.

Input
« Collection: The collection into which the document will be inserted.

Grid Database Service Specification 39

e Document: The document to insert.
Output
* None.
Fault
* NonexistentCollection: The specified collection does not exist.

e InvalidDocumentFormat: The document is not formatted correctly according to its
schema.

e SchemaMismatch: The document is not of the appropriate schemafor this collection.

6.4 Relating RPC and Document Approaches

For the web-services SOAP transport, all these operation calls, parameters and returned
results are encoded in an XML document using the SOAP-RPC schema. The preceding
sections in this document describe the standard for the XML GridDataService schema. Since
al the possible operations of the above RPC requests are simply a subset of the generalised
GridDataService request, the mapping between the two schemas is simply an XML
transform. A service implementing the RPC operations defined above MAY choose whether
to implement these natively (i.e. directly) or whether to transform them first using a transform
service into the appropriate document based request.

The purpose of the example that follows is to compare the XML message formats for two
messages that make the same query upon the service. The first message is that generated by a
SOAP-RPC client stub when the RPC operation GridDataService: : ExecuteQuery is called.
The second is the same query described in the more general GridDataService document
format discussed in the previous sections.

The SOAP RPC message corresponding to the call

Gri dDat aSer vi ce: : Execut eQuer y(
“http://www.gridforum.org/dais/lang/SQL92”,
“select * from person where age = 21”, 100)

is shown below (only the SOAP body is shown):

<SOAP-ENV:Body>
<gds:executeQuery xmlns:gds="http://gridforum.org/dais/gds'>
<notation xsi:type='"'xsd:string">
http://www._gridforum.org/dais/lang/SQL92
</notation>
<databaseName>Customer</databaseName>
<query xsi:type="xsd:string'>
select * from person where age > 21
</query>
<maximum Xxsi:type="xsd:integer”>100</maximum>
</gds:executeQuery>
</SOAP-ENV:Body>

The corresponding GridDataService document message has two parts, the
gridDataServiceRequest part that describes the query, and the gridDataTransportDescription
that requests a full synchronous return (pull) of no more than 100 rows.

<gridDataServiceRequest>

<executeStatement>
<dbStatement notation="http://www.gridforum.org/dais/lang/SQL92”
returnFormat=

”http://gridforum.org/dais/schema/webRowSet.xsd”
statementType="query”’
databaseName=""Customer”>

Grid Database Service Specification 40

<expressi on>sel ect * from person where age = 21</expression>
</ dbSt at enent >
<st at enent | d>st at ement 1</ st at enent | d>
</ execut eSt at enent >

<G idTransportDescription direction="get" node="direct"
maxSi ze="100" ti meout="0">
<st at enent | d>st at ement 1</ st at enent | d>
</ GidTransport Descri pti on>
</ gri dDat aSer vi ceRequest >

It can be seen that, assuming some default behaviour for the Remote Procedure Call, both of
these messages will result in the same query upon the database and are related by an XML
transform.

7 Conclusions

This document has described a proposal for a collection of Grid Database Services, which
includes support for multiple database paradigms and flexible data transport. The services
proposed are Grid services, in that they conform to and make use of the Open Grid Services
Architecture [Tuecke 02]. The intention is that the proposal be discussed in the context of the
DAIS (www.csman.ac.uk/grid-db) Working Group of the Globa Grid Forum
(www.gridforum.org), with a view to a Proposed Recommendation document being produced
in time for GGF7.

Acknowledgements

This work is partly funded by the OGSA-DAI project, which includes support from Oracle
UK, IBM and the UK e-Science Programme. Many interactions with members of the OGSA-
DAI team have been important in shaping the ideas behind this document. Gavin McCanceis
employed on the EU DataGrid project.

8 References

M.P. Atkinson, M. Westhead, R. Baxter, N. Alpdemir, M. Antonioletti and S. Laws,
Architectural Framework, OGSA-DAI Report EPCC-GDS-WP2-D2.1.0v0.3.5, Octabere,
2002.

W. H. Bell, D. Bosio, W. Hoschek, P. Kunszt, G. McCance and M. Silander, Project Spitfire
— Towards Grid Web Service Databases, Presented at DAIS Working Group, GGF5, 2002.

F. Cabrera, G. Copeland, B. Fox, T. Freund, J. Klein, T. Storey and S. Thatte, Web Services
Transaction (WS-Transaction), http://www.ibm.com/developerworks/library/ws-transpec/,
2002.

E. Christensen, F. Curbera, G. Meredith and S. Weerawanaa, Web Services Description
Language (WSDL) 1.1, W3C Note, http://www.w3.org/TR/wsdl, W3C, 2001.

B. Collins, A. Borley, N. Hardman, A. Knox, S. Laws, J. Magowan, M. Oevers, E. Zaluska,
Grid Data Services — Relational Database Management Systems, Presented at GGF5,
http://www.cs.man.ac.uk/grid-db, 2002.

D.C. Fallside, XML Schema Part 0: Primer, W3C Recommendation,
http://www.w3.0rg/TR/xmlschema-1/, W3C, 2001.

ISO/IEC (working draft) 9075-1 (SQL/Framework), ISO/IEC JTC 1/SC 32, 2002-01-11.

A. Krause, K. Smyllie and R. Baxter, Grid Data Service Specification for XML Databases,
OGSA-DAI Report EPCC-GDS-WP3-XGDS 1.0, 2002.

Grid Database Service Specification 41

N.W. Paton, M.P. Atkinson, V. Dialani, D. Pearson, T. Storey and P. Watson, Database
Access and Integration Services on the Grid, Technical Report UkeS-2002-3, National e-
Science Centre, 2002.

V. Raman, I. Narang, C. Crone, L. Haas, S. Malaika, T. Mukai, D. Wolfson and C. Baru, Data
Access and Management Services on Grid, Presented a GGF5,
http://www.cs.man.ac.uk/grid-db, 2002.

S. Tuecke, K. Czajkowski, |. Foster, J. Frey, S. Graham and C. Kesselman, Grid Service
Specification, Draft 3, http://www.gridforum.org/ogsi-wg, 2002.

