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Abstract

In this thesis the first measurements of the differential cross sections for charm production

have been made at ZEUS since both ZEUS and HERA were upgraded in 2000. The quantities

dσ/dx, dσ/dQ2, dσ/dpT (D∗), dσ/dη(D∗), d2σ/dydQ2 and F cc̄
2 (x,Q2) are presented. An

integrated luminosity of 162 pb−1 of data were used and the kinematic range examined was

0.02 < y < 0.7 and 5 < Q2 < 1000 GeV2. The scaled momentum quantity log(1/xp) has

also been measured in the Breit frame using only charm data for the first time at ZEUS in

a limited Q2 range, giving a further handle on the hadronic final state of the event. The

data are compared to next-to-leading-order calculations for F cc̄
2 (x,Q2) related cross sections

and to two leading order Monte Carlo simulations for log(1/xp). These measurements will

ultimately improve the precision to which the gluon content of the proton is understood and

will further our understanding of the charm production mechanism in the proton.
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“It has been said that the whole of human endeavor is an effort to impress the opposite sex.

If this is true than Measurements of D∗ production in Deep Inelastic Scattering at HERA

represents the biggest waste of time in the history of mankind.”

The Author
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Chapter 1

Introduction to the Standard Model

of Particle Physics

This chapter will briefly discuss the historical context of the Standard Model and introduce

the particles it describes and postulates to be fundamental to all matter. The theory of

Quantum Chromodynamics is presented, along with the tool of perturbation theory which

allows predictions to be made. The chapter closes with a discussion of the importance of

particle accelerators and why they are useful in fine tuning the Standard Model and exposing

its flaws.

1.1 History

The origins of Particle Physics can be traced back to the 6th century BC in Ancient Greece.

At this time, Greek philosophers Democritus and Leucippus taught the doctrine of atomism

which states that all matter can be deconstructed into atoms. At the time these were

considered to be the smallest objects in the universe. Little written account of this work

remains, and it was not until 1802 that the ideas were formally stated by physicist John

Dalton after his extensive study on the properties of gases.

In the late 1890s J.J. Thompson established that atoms themselves were not the smallest

constituents of matter, rather that they themselves had an internal structure consisting of

electrons and protons. By 1904 he (incorrectly) proposed that in the atom the electrons

1



were evenly distributed, surrounded by a soup of positively charged protons. This model

was short lived, for in 1911 Ernest Rutherford discovered that most of the atom was actually

empty space; the protons were in fact concentrated in an incredibly densely packed core

called the nucleus surrounded by a cloud of orbiting electrons. In 1932 the picture of the

atom was complicated still further by the discovery of the neutron, found alongside the

proton in the nucleus of the atom. In Particle physics experiments throughout the 1950s

and 60s a bewildering array of new particles were discovered.

The discovery of such a large number of new particles brought with it an ugly and

cumbersome picture of the universe. The scientific community endeavored to find an elegant

and simple substructure to these particles; some architecture that would neatly explain their

properties and that could be used to make further predictions. This formalism arose between

1970 and 1974 in the form of the Standard Model which soon became the accepted framework

in which to talk about elementary particles and the interactions between them.

1.2 The Standard Model

The Standard Model is a gauge theory with the gauge group SU(3)×SU(2)×U(1). It de-

scribes the quantum field theories of electromagnetism, the weak force and the strong force

through which the particles interact. It states that there are 12 fundamental particles from

which matter is constructed, and 4 particles which mediate the forces between them. The

masses and charges of these particles are given in table 1.1.

Matter is constructed from particles called fermions. Fermions have half-integer spin and

so obey the Pauli exclusion principle. The fermion family is divided into two smaller classes

of particles: quarks and leptons. There are 6 different types of quark from which more

massive particles (hadrons) can be constructed; those containing 2 quarks are called mesons

and those containing 3 quarks are called baryons. The leptons are generally speaking much

lighter than their quark counterparts and do not form bound states.

If fermions are the building blocks of matter, then bosons are the mediators of force

between them which allow fermions to interact; all particles fall into one of these two distinct

categories. The complicated grouping of these particles is illustrated more clearly in figure
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Particle Charge (e) Approx. Mass (MeV)

Leptons electron -1 0.511

electron neutrino (νe) 0 <2.2 eV (95% C.L.)

muon -1 106

muon neutrino (νµ) 0 <190 keV (90% C.L.)

tau -1 1777

tau neutrino (ντ ) 0 <18.2 (90% C.L.)

Quarks up +2/3 1.5-5

down -1/3 3-9

strange -1/3 60-170

charm +2/3 1300

bottom -1/3 4200

top +2/3 174000

Bosons photon (γ) 0 0

8 gluons (g) 0 0

W± ±1 80410

Z0 0 91187

Table 1.1: The particles in the Standard Model with their approximate masses and electric

charge [1].
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Figure 1.1: The elementary particles of the Standard Model.

1.1. The set of bosons is much smaller and includes exclusively: photons, W and Z bosons,

gluons and, presumably, the Higgs whose existence has yet to be confirmed experimentally.

Photons mediate the electromagnetic interaction, the W and Z mediate the weak nuclear

force, the (8 species of) gluons mediate the strong nuclear force and the Higgs boson is said

to give the other particles mass. By definition bosons have integer spin and therefore are

not constrained by the Pauli exclusion principle.

1.3 Quantum Chromodynamics

The idea that hadrons could be constructed from quarks was a powerful tool in the early days

of particle physics, giving structure and simplicity to the ever growing number of particles

discovered at the time. However, the idea of quarks was still not developed enough to explain

the existence of the Ω− particle. The Ω− is comprised of three strange quarks with parallel

spins, a configuration that appeared to violate the Pauli exclusion principle and hence should

not exist.

1n 1965 this problem was resolved by suggesting that quarks possess three additional
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degrees of freedom called colour charge. The three colour charges are analogous to the one

electric charge used in the electroweak field theory. Under QCD, quarks would interact by

the exchange of gluons. These new degrees of freedom are incorporated mathematically into

the Standard Model as an additional SU(3) group describing the strong interaction. This

new group sits on top of the SU(2)×U(1) groups which describe the unified electroweak

interaction.

Quantum Chromodynamics (QCD) is then the theory of the strong interaction between

quarks and gluons, as manifest by the colour charge. It is a non-abelian gauge theory with

two important properties; confinement of quarks within hadrons and asymptotic freedom of

quarks at high energies. Confinement is the idea that individual quarks cannot be observed,

instead they are bound up inside hadrons at all times. Asymptotic freedom states that the

interaction between quarks becomes weaker with decreasing distance. At distance scales of

order of the width of a proton the interaction between quarks and gluons is small, so inside

a proton quarks and gluons can be treated as non-interacting. Any theory which can be

described as asymptotically free is amenable to perturbation theory calculation which will

be discussed shortly.

The Heisenberg uncertainty principle states that the distance interaction scale is inversely

proportional to the momentum scale:

∆x[fm] ≥ 0.197[GeV fm]

∆p[GeV]
.

∆x and ∆p are distance and momentum scales respectively. Higher energy interactions

therefore probe distance scales at which the partons may be considered free from the strong

interaction. The interactions measured in this thesis are of this energy scale and so may be

treated within the framework of perturbative QCD.

The probability of an interaction taking place, or cross section can be calculated us-

ing perturbation theory only if the strength of the interaction is small enough. If this is

true then the cross section may be expressed as a sum of terms described by Feynman dia-

grams. Feynman diagrams represent mathematical terms associated with the probability of

an interaction occurring.
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1.3.1 Perturbation Theory

Perturbation theory is a mathematical device sometimes used to generate approximate so-

lutions to unsolvable problems. Using perturbation theory, a full solution A (which may

represent, for example, a scattering amplitude) may be expressed in terms of a small param-

eter ε as

A = A0 + εA1 + ε2A2 + . . .

In this expression A0 is the solution to the exactly solvable problem and A1, A2 etc are the

perturbative corrections which solve the more complex problem. The perturbative approach

only works if the problem can be expressed by the addition of a small term to an exactly

solvable problem. Moreover the expansion parameter must be small enough for the series to

be convergent. In perturbative Quantum Chromodynamics the expansion parameter is the

colour coupling constant αs whose value falls with increasing Q2. αs(Q
2) is expressible as a

summation of smaller αi
s components, and takes the leading order form

1

αs

≈ 1

α0
s(Q

2)
=

(33− 2nf)

12π
ln

Q2

ΛQCD

= β0 ln
Q2

ΛQCD

where nf is the number of active flavours at the scale Q2, ΛQCD ≈ 200 MeV is a fixed

parameter of QCD, and β0 is the beta function that is determined by the SU(3)c gauge

structure of QCD. Quark and gluon dynamics may therefore be calculated using perturbative

QCD (pQCD) whenever the interaction scale (Q2) is larger than this fundamental theoretical

cut-off value, ΛQCD. In this kinematic region αs(Q
2) is small enough for perturbation theory

to apply. The kinematic range treated in this thesis is amenable to perturbation theory.

Decades after the discovery of asymptotic freedom and the rise of perturbation theory

as a predictive tool at short distances, there is still no precise tool for the prediction of long

distance effects. It is for this reason that the discovery of asymptotic freedom was such a

tremendous breakthrough for the theory of QCD. In 2004 David Gross, Frank Wilczek and

David Politzer were awarded with the Nobel Prize in Physics for their discovery of asymptotic

freedom 31 years previously.
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Collaboration Location Collider

CERN Geneva, France/Switzerland LHC pp̄ (formally LEP e+e−)

DESY Hamburg, Germany HERA II

Fermilab Chicago, USA Tevatron pp̄

SLAC Palo Alto, USA PEP-II e+e−

Brookhaven Brookhaven, USA RHIC Aup

Table 1.2: Some of the major international collaborations in particle physics.

1.4 Particle Accelerators

Progress in high energy physics cannot be made without the aid of particle accelerators

which are used to create the fundamental particles listed in the Standard Model. There is

a strong dependence on funding from large international collaborations, some of which are

listed in table 1.2, because of the incredible cost of constructing and running these devices.

The work in this thesis is based on measurements made with the ZEUS detector at the

DESY institute which houses the HERA accelerator; the largest electron proton collider

in the world. Data collected from high energy particle collisions has led to unprecedented

advances in the understanding of the quantum world. It is only under these unusual energy

conditions that the strong interaction of the Standard Model (as mediated by the gluon) can

be measured and used to increase our understanding of the sub-atomic realm. ZEUS and its

sister experiment H1 have played a pivotal role in furthering the development of QCD.
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Chapter 2

Theoretical Background

This chapter will give a brief introduction to the basic theory of Deep Inelastic Scattering

with emphasis on the Lorentz invariant variables used to characterise these events and the

relationship between cross sections and structure functions. The chapter moves on to discuss

the evolution of the Quark Parton Model and the impact this has made on the theory of

structure functions. A discussion of DGLAP evolution, parton density functions and the

nature of heavy quark production at ZEUS is then presented, followed by an explanation of

Monte Carlo event generation and the different implementations of the hadronisation and

fragmentation stages of quark jet production. The chapter closes with a discussion of scaled

momenta distributions and their measurement in the Breit frame.

2.1 Deep Inelastic Scattering

Neutral current Deep Inelastic Scattering (DIS) is the process by which a proton fragments

after the absorption of a virtual photon (or Z-boson) emitted by a lepton. In doing so the

constituent quarks are released and information is revealed about the underlying structure

of the proton. DIS is a productive environment in which to study heavy quark production.

In the kinematic region considered for this analysis the contribution from the Z boson is

negligible and so only the case of photon exchange is considered.

Figure 2.1 shows a leading order DIS event where the incoming lepton 4-momentum is k

and the outgoing 4-momentum is k′. During the scatter this lepton emits a virtual photon
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e(k)

e’(k’)

Proton (p)
Remnant

γ(q)

quark

Figure 2.1: A DIS event at lowest order in the Quark Parton Model.

with 4-momentum q which strikes a proton of 4-momentum P, knocking out a quark which

fragments into hadrons. The proton remnant is poorly understood since it is lost down the

beampipe of the ZEUS detector.

A DIS scatter is formally represented by the equation

e(k) + p(P) → e′(k′) +X(P′ = P + q)

where X is the final state of the interaction and includes the proton remnant. The interaction

does not occur with the proton as a whole, rather between a single quark carrying a fraction

x of the total momentum of the proton. x is sometimes called the Bjorken scaling variable

and is one of a number of important Lorentz scalars used to describe DIS events. Four

variables typically used (of which only any two are independent) are:

Q2 = −q2 = (k− k′)2

x =
−q2

2P · q

y =
P · q
P · k

W 2 = (P + q)2
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e

e′

q

q′

θ∗

θ∗

Figure 2.2: An quark-electron scatter in its center of mass frame. The electron e scatters off

a quark q with angle θ∗.

Any DIS event may be characterised by using any two of these four parameters. x, y and

Q2 are connected by the relationship

Q2 = sxy,

assuming that
√
s is much larger than the mass of the proton. Here, s = (k + p)2 is the

square of the centre of mass energy of the ep collision. At HERA, s has a value of 318

GeV2. The Q2 (or virtuality) of the event gauges how deeply the proton has been probed.

Q2 represents the resolving power of the exchange photon; a high energy exchange photon

would have a shorter wavelength and would so probe a smaller distance scale. In this way

high Q2 events resolve the proton at the quark level, rather than interacting with the proton

as a whole.

The quantity y can be interpreted as the inelasticity of the event. Consider the quark-

lepton center of mass frame where, as illustrated in figure 2.2, the scattered electron (and

quark) are deflected by angle θ∗. In this frame y is a measure of this deflection angle

according to the relation y = 1
2
(1 − cos θ∗). An event with y = 1 corresponds to one in

which the electron has completely doubled back on itself with θ∗ = π. In the proton rest

frame however, y is a measure of how much energy is lost by the scattered electron after

its interaction with the proton. A process is said to be elastic if the proton remains intact
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afterwards.

Finally, W 2 may be interpreted as the squared centre of mass of the hadronic system

after the collision. W is related to x and Q2 by the relationship

W 2

Q2
=

1

x
− 1,

with W 2/Q2 ≈ 1/x at low x. A number of experimental techniques exist for measuring the

eP scattering kinematics, these rely on the angle and energy reconstruction of the scattered

electron as well as the measurements of the hadronic system. Such techniques are discussed

in more detail in the reconstruction section in chapter 6.

Events for which 1 GeV2 < Q2 < 100 GeV2 are sufficient to probe the internal structure

of the proton and are called DIS events at moderate Q2 events. At higher Q2 the Standard

Model contribution becomes small and the limits of existing theories may be tested. At the

time of writing HERA is the only device capable of producing such events.

2.1.1 Structure Functions

When DIS is described purely by the exchange of one virtual gauge boson, the unpolarised

neutral current e±p→ e±X cross-section may be written in its most general form as:

d2σ(e±p)

dxdQ2
=

2πα2

xQ2
[Y+F2(x,Q

2)− y2FL(x,Q2)∓ Y−xF3(x,Q
2)]

where Y± = 1± (1 − y)2, α is the electromagnetic coupling constant, FL is the coupling to

longitudinally polarised virtual photons and xF3 is a parity violating term which arises from

Z0 exchange. The xF3 contribution is neglected completely in this thesis because low Q2

(Q2 < M2
z ) events are completely dominated by the virtual photon exchange process. The

−y2FL term is only significant at y ≈ 1 and because the measurements made in this thesis

are for y < 0.7 the contribution is small and therefore neglected.

If the partons in the proton are thought of as non-interacting the structure functions can

be expressed in terms of quark momentum distributions, qi(x),

F2(x) = x
∑

q

e2i (qi(x) + q̄i(x)) (2.1)

where qi(x) are the quark momentum densities of the various quark flavours in the proton,

over which the summation runs. qi(x) is also known as a Parton Density Function (PDF)
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and describes the probability of finding a particle of species i with any given x. PDFs are not

calculable from first principles due to non-perturbative effects that exist in a QCD binding

state, so instead they must be obtained from fits to data. One should be aware that this

interpretation of structure functions fails for higher order QCD.

PDFs and structure functions are often confused because of their close relationship at

leading order, they are however very different concepts: PDFs are theoretical constructs

which can only be determined indirectly; structure functions on the other hand are physical

observables which can be measured in DIS. Measurement of structure functions enable us to

infer information about PDF shapes [2].

2.2 The Quark-Parton Model

The Quark-Parton Model (QPM) was inspired by early SLAC structure function measure-

ments which indicated that F2(x,Q
2) → F2(x) as Q2 →∞. This is known as scaling and its

observation implies that the photon is scattering off point like constituents [3] in the proton.

The reasoning for this is that as the virtuality of the photon increases it will be unable to

resolve any further architecture within the proton and so no changes in F2 are observed.

Moreover the scattering of the lepton is now considered to be an elastic scatter from one of

these point-like constituent quark particles. No gluon emission is accounted for in the QPM.

In parton models the lepton-hadron cross section is intuitively linked to the cross section

for lepton-parton scattering by

dσlh

dxdQ2
=
∑

i

∫ 1

0
dξqi(ξ)

dσli

dxdQ2

where dσlh is the cross section for a lepton-hadron scatter and dσli is for lepton-parton scat-

tering. The momentum carried by the parton is given by ξP where P is the total momentum

carried by the hadron. qi are parton distribution functions (PDFs) in which qi(ξ)dξ give the

probability of finding a parton of flavour i in the hadron. PDFs are independent of the

particular hard scattering process.

Measurement of qi(ξ) for the three valence quarks found that the momentum sum rule,

∫ 1

0
x
∑

i

qi(x)dx = 1
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was violated. This value was found to be ≈ 0.5 which indicates that only 50% of the total

proton momentum is carried by these quarks. From this result it must be concluded the extra

momentum is carried by additional neutral particles and that the QPM is not a complete

description of the proton. The extra momentum is carried by gluons, and their assimilation

into the QPM theoretical framework leads to the QCD improved Quark Parton Model.

2.2.1 The QCD Improved Quark Parton Model

The QCD improved Quark Parton Model may be summarised as follows:

• All hadrons consist of particles called quarks and gluons (identified as such by QCD)

• In electron proton scattering the electron scatters off of a parton constituent of the

proton

• This parton is considered to be point-like

• Scattering between the partons in the proton is incoherent

• Interactions between the scattered parton and the non-interacted partons are negligi-

ble.

This final point is justified by application of time dilation effects and the Lorentz contrac-

tion of the proton system as seen by the exchange photon in the infinite momentum frame.

Effectively the photon sees the partons frozen during the interaction which can therefore be

approximated as non-interacting during a DIS scatter.

The hard scattering process may be factorised from the long range parton-parton hadro-

nisation since once the collision has occurred hadronisation takes place much too late to

affect the initial photon interaction. An important consequence of this separation is that

any PDF extracted from DIS are universal and can be applied to all hadronic interactions

provided the same order of perturbation theory is maintained and renormalisation schemes

are consistent. A renormalisation scheme is a mathematical tool to remove the singularities

that arise in calculations of higher order cross sections. Selection of a renormalisation scheme
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Figure 2.3: Distribution of the total proton momentum P during Boson-Gluon fusion.

amounts to choosing a particular set of quantities that avoids divergences in the calculation

and gives a finite and physical solution.

In QCD F2 is dependent on both x and Q2 which breaks the scaling predicted by the

QPM. Scaling violation arises because quarks can now acquire large pT by the emission of

gluons, leading to αs lnQ2 terms in the expression for F2. The scaling violations predicted by

QCD have been experimentally observed at ZEUS in low x measurements of F2 [5]. Moreover

the summation in equation 2.1 now extends to include heavier quarks which are formed by

gluon splitting and exist in a “sea” around the proton. Contributions from the heaviest

quarks are neglected from this sum since at HERA energies their contribution is vanishingly

small.

2.2.2 DGLAP Evolution of the Parton Densities

A consequence of the QCD improved Quark Parton Model is that the measured proton quark

and gluon densities evolve with increasing Q2. This evolution is caused by the emission of

gluon radiation from quarks and by gluons splitting into qq̄ pairs. Figure 2.3 illustrates

the boson-gluon fusion process in which a proton with momentum P emits a gluon with

momentum ξP . This gluon then emits a pair of quarks, one with momentum xP which

interacts with a virtual photon and one with momentum (ξ−x)P . The final quark pair have

momentum Q + xP and (ξ − x)P . The subprocess ξP → xP + (ξ − x)P is equivalent to
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P → zAPP + (1− zAP )P where zAP = x/ξ.

The evolution of parton distributions can be evaluated using the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) equation. The evolution of quark distributions is de-

scribed by

∂qi(x,Q
2)

∂lnQ2
=
αs(Q

2)

2π

∫ 1

x

dξ

ξ





∑

j

qj(ξ, Q
2)Pqiqj

(

x

ξ

)

+ g(ξ, Q2)Pqig

(

x

ξ

)





and for evolution of gluon distribution it is given by

∂gi(x,Q
2)

∂lnQ2
=
αs(Q

2)

2π

∫ 1

x

dξ

ξ





∑

j

qj(ξ, Q
2)Pgqj

(

x

ξ

)

+ g(ξ, Q2)Pgg

(

x

ξ

)



 .

Where the Pij terms are the so-called “splitting” functions. The splitting functions Pij(x/ξ =

zAP ) may be interpreted physically as the probability of parton i being emitted by parton

j with a fraction zAP of parton j’s momentum. This is a manifestation of the idea that the

particle undergoing interaction may not have originally been a constituent of the proton and

may have been radiated in a higher order process [4]. Pij(zAP ) is calculated using a pertu-

bative expansion in αs, which given a particular factorisation and renormalisation scheme

looks like,
αs

2π
Pij(zAP ) =

αs

2π
P

(1)
ij (zAP ) +

αs

2π

2

P
(2)
ij (zAP ) + . . .

where the termination after the first two terms defines the next-to-leading Order (NLO)

DGLAP evolution. Higher P
(l)
ij terms for successive values of l represent an increase in the

number of allowed splittings in the approximation. To leading order these terms have been

calculated explicitly as:

P 1
qq(zAP ) =

4

3

(

1 + z2
AP

1− zAP

)

+

P 1
gq(zAP ) =

1

2
(z2

AP + (1− zAP )2)

P 1
qg(zAP ) =

4

3

(

1 + (1− zAP )2

zAP

)

P 1
gg(zAP ) = 6

(

zAP

1− zAP
+

1− zAP

zAP
+ zAP (1− zAP )

)

+
(

11− nf

3
δ(1− zAP )

)

where δ(1−z) is the delta function and the + subscript in P 1
qq indicates that the expression is

not defined for ZAP = 1. The Feynman diagrams corresponding to these splitting functions
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Figure 2.4: Feynman representation of the Altarelli-Parisi splitting functions.

are shown in figure 2.4. Progress is currently being made in numerically calculating the

next-to-next-to-leading order contribution P 3 and higher orders of P l [4].

An important prediction arising from the DGLAP equation is violation of scaling whereby

there will be an observed increase in parton density at low x as Q2 increases. This arises

at the cost of initially high x partons which split and contribute to the lower x region.

Scaling violations can be thought of as a consequence of the increase of resolution obtained

by increasing Q2; this increases the probability of finding a quark at small zAP because

high-momentum quarks lose momentum by radiating gluons [4]. ZEUS has measured these

scaling violations which indirectly give a handle on the proton’s gluon density. The DGLAP

equation is arguably the most important equation in perturbative QCD. Using DGLAP it

is possible to relate PDFs measured at one scale to other scales and to make predictions for

very high Q2 processes in searches for new physics.

2.3 Measurement of Parton Density Functions

The QCD factorisation theorem allows separation of long range effects from the short range

interactions. The visible cross section for a hadronic final state is then a distinct combination

of a PDF contribution, PDF, the cross section for a QCD scattering process, σ̂, and a

quark→hadron fragmentation, F(q → H)

σ = PDF ⊗ σ̂ ⊗ F(q → H).

This makes it possible to predict the Q2 dependence of partons using perturbative QCD.

However there is no purely theoretical framework with which to predict parton density
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functions. The only way to obtain them is to perform fits to data at some fixed scale Q2
0 and

rely on DGLAP to evolve these fits to higher scales. In this process postulations are made

to justify some functional form which is then fitted to structure function measurements from

a number of world experiments. Measurements of structure functions may be performed by

direct observation of hadronic final states and measurements of scaling violation to indirectly

observe gluon density.

The fits from ZEUS [6], CTEQ [7] and MRST [8] are examples of PDFs which have

been used in previous measurements of the F cc̄
2 contribution to F2. PDFs are expected to

be universal and independent of the scatting process involved. This justifies the decision by

CTEQ and MRST to combine data from every collider experiment in their fits.

2.4 Monte Carlo Simulation

Monte Carlo (MC) simulations of QCD processes fall naturally into two distinct cate-

gories: leading order (LO) and next-to-leading-order (NLO) packages. LO programs such as

RAPGAP[9] and HERWIG[10] are used to determine acceptances, resolution and efficiency

effects of the detector as well as gauging the backgrounds that arise in an event sample.

NLO simulations such as HVQDIS[11] generate cross-section predictions which are used for

comparison with measurements of data.

The leading order MC programs used in this analysis were RAPGAP 2.08/18 and HER-

WIG 6.3/01 from which a total of 494 pb−1 of simulated data were generated. The output

from these physics simulations was passed through the GEANT 3.13[12] package which pro-

vides a complete simulation of the ZEUS detector. The output from GEANT is directly

analogous to the output produced by a real physics event. This sample of MC can then be

processed in exactly the same way as the data with identical selection cuts.

18



Figure 2.5: A representation of an algorithm for physics event generation. The initial state is

shown to undergo a hard scattering process, followed by a distinct parton shower stage and

concluding in a fragmentation algorithm. Fragmentation produces a final state of colourless

hadrons.

2.4.1 Construction of a MC event

The Fragmentation Theorem permits the deconstruction of any event into a number of

distinct stages:

1. The initial state: comprised of an electron and a proton described by PDFs.

2. The scattering process: described by the interactions of quarks and gluons.

3. Fragmentation and hadronisation into the final state: the process of creating colourless

hadrons from the isolated quarks produced in stage 2.

This concept is utilised by both RAPGAP and HERWIG, both of which engineer events

according to the prescription outlined in the following list and illustrated in figure 2.5. The

differences between the two implementations are summarised in table 2.1.

• Initiation of colliding particles. In the ZEUS experiment the colliding particles always

consist of a single lepton and a proton. The MC simulation is equipped with the 4-

19



vectors of both beams and a PDF to describe the parton constituents of the proton,

one of which is selected for interaction with the lepton.

• Initial state radiation (ISR). There is a non-negligible probability that the incoming

lepton will emit a photon before interaction with the proton. This must be accounted

for in the MC simulation since this phenomenon is known to disturb the event kine-

matics to a measurable degree.

• Hard Scatter. After ISR has been accounted for the hard scatter is calculated using

LO matrix elements. This reduces the scatter to a single interaction between photon

and parton.

• Parton Showering. The production of quarks and gluons after the hard scatter. Typ-

ically secondary partons are produced according to the probabilities given by the

Altarelli-Parisi splitting functions (figure 2.4). The showering process generates a vast

cascade of new particles of decreasing energy until a lower energy scale, µF , ≈ 1 GeV

is reached.

The parton showering process differs between MC models; HERWIG uses the colour

dipole method and RAPGAP uses the parton shower model. In the colour dipole

method the secondary gluons are emitted from an extended expanding colour dipole.

This arises because two colour charges accelerating away from each other produce a

gluon radiation field. If the wavelength of the emitted radiation is longer than the

distance between the charges then the system can be treated as a dipole. In this way

the individual charges are not themselves resolved but instead are seen as an “aerial”

consisting of two charges that emit radiation as a dipole field.

In the parton shower model the gluons are produced in two ways; hard gluon radiation

is calculated using QCD matrix elements, soft gluon radiation is calculated using the

leading log method. Regardless of the model used, once the lower limit is reached the

environment consists of a number of partons all existing in a state of isolated colour.

• Fragmentation. The final stage of MC simulation is fragmentation. This is the process

by which the colourless final state hadrons are formed from the swarm of coloured
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MC RAPGAP HERWIG

Charm Production BGF BGF

Proton PDF GRV94 GRV94

Parton Shower Parton Shower Colour Dipole

Fragmentation Lund String (+ Peterson) Cluster Fragmentation (+ Peterson)

Table 2.1: Table outlining the principal differences and similarities between the RAPGAP

and HERWIG MC simulations. Both produce charm using the BGF mechanism and the

proton PDF used was GRV94. The MC models differ in their implementation of the parton

shower and fragmentation processes.

partons generated by the parton shower. As with the parton shower, the exact imple-

mentation of the fragmentation process differs according to the choice of MC. RAP-

GAP uses the Lund string model (discussed below) and HERWIG uses the clustering

algorithm.

2.4.2 Leading Order MCs

RAPGAP

The principal MC program used in this analysis is RAPGAP [9] which specialises in the

simulated production of heavy quarks. In this simulation charm is produced only by the

Boson Gluon Fusion (BGF) process which is discussed in more detail in section 2.6. The PDF

GRV94 [13] was used to describe the proton and QCD parton cascades are described using

the colour dipole model [14] performed according to the Peterson function. The Peterson

function is described in section 2.5.2. In this analysis, events were generated for which

Q2 > 0.6 GeV2.

HERWIG

The physics results produced in this analysis were cross checked using the HERWIG [10] MC

program, which uses the same proton PDF but simulates the QCD parton cascades using
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the colour dipole model. Charm fragmentation is evaluated using cluster fragmentation [15]

whereby the nearest neighbour of each quark is identified and combined to form colour singlet

clusters. Once a cluster has been established, fragmentation will proceed in one of two ways;

if the cluster is not massive enough to decay into two smaller hadrons it will become a final

state hadron. If it is massive enough it will decay into pairs of hadrons which are fragmented

until the conditions for first step are met. HERWIG does not include radiative corrections

and so will produce incorrect electron energies.

2.4.3 Next-to-Leading order MC

HVQDIS

HVQDIS [16] is a package used to predict NLO (specifically cc̄) cross-sections. The total

charm cross-section and differential cross-sections in Q2, x, y, W are generated in a given

kinematic range, along with differential cross-sections in quark properties such as pT (D∗)

and η(D∗).

HVQDIS operates within the fixed-flavour-number scheme (FFNS) whereby the initial

state proton is assumed to consist only of up, down and strange quarks. In this way there

are only ever three active quarks in the proton regardless of the Q2 of the event. Indeed the

only mechanism by which charm is produced is BGF.

In HVQDIS there is no process analogous to the parton shower stage seen in the LO

programs and so no information on quark jets is produced. Instead the four-vectors of

the BGF initial quark pair are transformed directly into a heavy meson by the Peterson

fragmentation function, discussed in section 2.5.2.

The following parameters were used as input to the HVQDIS package:

• The proton PDF: ZEUS-S

• Mass of the charm: mc = 1.35 GeV

• Epsilon parameter in the Peterson fragmentation function: εPeterson = 0.035

• Renormalisation and factorisation scales: µ =
√

Q2 + 4m2
c
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ZEUS-S [19] is the latest ZEUS NLO QCD fitted to structure function data using the FFNS.

In this fit the QCD cut off scale ΛQCD = 0.363 was applied with the charm mass mc = 1.35.

2.5 Fragmentation

Unlike quark production in the parton shower, the hadronisation of isolated quarks into

particle jets is not calculable in perturbative QCD. Phenomenological models must instead

be constructed and fit to data to describe the transition from quark to hadron. Some of the

most common parameterisations are given below

2.5.1 Lund String Fragmentation

The method favoured by RAPGAP to turn shower partons into hadrons is that proposed

by the Lund group in 1983 [17]. Pairs of coloured quarks which could combine to form

a colourless hadron are connected together by a “colour-string”. This string is allowed

to stretch and eventually snap at any point, producing quark-antiquark qiq̄i pairs at this

location. This model attempts to replicate the phenomenon of colour confinement. Such

pairs are connected to nearby qj q̄j quarks to form bound qiq̄j (and occasionally qiqjqk) states.

Once a bound state has been produced it is propelled transverse to the string according to:

P (p⊥) ∝ e−
πm2

⊥
k

where m2
⊥

= m2 + p2
⊥

and k is a parameter called the string tension. The transverse mo-

mentum supplied is compensated locally within the qiq̄j hadron which carries a momentum

fraction z of the total energy available to it. The creation process ends when the pairs of

coloured partons do not have sufficient invariant mass to break the string.

The hadron formed from qiq̄j quarks carries with it only a fraction of the total available

momentum to it. This fraction is zL which in the Lund string model is given by

(E + pz)hadron = zL(E + pz)quark

The probability density function of zL is called the fragmentation function and for light
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Figure 2.6: Fragmentation function as a function of z for a selection of quark flavours. z is

the fraction of the total energy available carried by the produced hadron. Heavier quarks

peak at larger z.

quarks is given by

D(zL) ∝ (1− zL)a

zL
e
−

bm2
h,⊥

zL

which contains parameters a and b. These are evaluated by fitting to data and are typically

taken to be a = 0.11 and b = 0.52 GeV−2. Whilst this gives a reasonable description of

light quarks, it was shown experimentally to be inadequate for the description of the heavier

partons [18]. In these instances the Peterson Fragmentation is used.

2.5.2 Peterson Fragmentation

The shape of the fragmentation function is strongly dependent on the mass flavour of the

quark. Figure 2.6 illustrates that lighter quarks peak at lower values of z whereas charm

and beauty quarks are produced much more favorably at high z. An accurate description of

fragmentation functions is necessary to transform a QCD prediction of a cross-section into a

quantity which may be detected. This is important because a non-negligible fraction of the

charm production cross-section is excluded by cuts placed on the final charmed state.

The most commonly used fragmentation function for heavy quarks (and the one used

in this analysis) is the Peterson fragmentation function [20]. In line with observation, the

Peterson fragmentation function ensures that the majority of energy contained in the heavy
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quark will be transferred onto the hadron formed from it. The functional form of the Peterson

fragmentation function is:

Dpeterson
c (zP ) ∝ 1

zP

1

(1− 1
zP
− ε

1−zP
)2

Where zP = pL

pmax
L

in which pL is the longitudinal momentum of the heavy quark meson

(in this analysis the D∗) and pmax
L is the longitudinal momentum of the heavy quark (in

this analysis the charm quark). The Peterson fragmentation function has only one free

parameter, ε, which is determined by fitting to data. The world average measured value of

ε = 0.035 which is the value used in this thesis. In practice when measuring the effects of

Peterson fragmentation, zL is ratio of D∗ momentum to the momentum of the charm jet.

This approach is valid in the high energy, small θ limit where θ is the deviation the D∗ makes

from the charm momentum (as shown in figure 2.7).

Figure 2.7: The fragmentation of a charm quark into a jet containing a D∗ which deviates

from the direction of the charm quark by small angle θ.

2.5.3 Other Fragmentation Functions

There exist many other fragmentation functions such as Collins [21] and Spiller [22] which

are not considered in this thesis. Collins belongs to a class of time-reversal odd fragmentation

functions. Spiller demands that the fragmentation function should be related to the hadronic

structure function and so is consistent with reciprocity. However Peterson remains the most

consistently used fragmentation function in heavy flavour physics and describes the data well

enough to be implemented as the principal model here.
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Figure 2.8: Illustration of the Boson Gluon Fusion production mechanism for charm. A

gluon within the proton splits into a pair of gluons, one of which is absorbed by the virtual

exchange boson.

2.6 Production of Charm at High Energies

During a deep inelastic scatter a gluon will sometimes split into a pair of quarks with large

transverse momenta, one of which is absorbed by the virtual exchange boson as illustrated

in figure 2.8. This process, which causes two jets to be observed in the final state, is called

Boson Gluon Fusion (BGF) [4]. BGF is by far the dominant source of charm production at

high energies.

This corresponds to the subprocess

γ∗(q) + g(k2) → q̄(p3) + q(p4) +X

The lepton differential cross section for charm production via BGF is written

σ(e) =
α

π

dQ2

Q2

dy

y
Θ(Q2 − y2m2

1− y
)

[

(1− y)σ2

(

ρ

y
,
Q2

M2
c

;
M2

c

Q2
0

)

+
1

2
y2σ1

(

ρ

y
,
Q2

M2
c

;
M2

c

Q2
0

)]

where m is the lepton mass, Mc is the mass of the charm quark and σ1 and σ2 are related

(in the limit of Mc → 0) to the DIS structure functions by the relations;

σ1 =
4πα

Q2
2xBF1, σ2 =

4π2α

Q2
F2

where Q2, s, y and x are as defined in section 2.1 and

ρ =
4M2

c

s
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The lepton differential cross section is dominated by σ2 in the y range considered in this

thesis. At leading order it has the explicit form:

4M2
c σ2(ρ,Q

2/M2
c ) = 2παe2

qΘ(1
ρ
− 1− Q2

4M2
c
)ρβ ′·

∣

∣

∣

∣

[

(1 + ρ− 1
2
ρ2)L(β ′)− 1− ρ

]

+ [8 + ρ− (2 + 3ρ)L(β ′)] ρQ2

4M2
c

+ [−8 + 2L(β ′)]
(

ρQ2

4M2
c

)2
∣

∣

∣

∣

consisting of a second order polynomial in ρQ2

4M2
c
, the bremsstrahlung function L(β ′) = 1

β′
ln 1+β′

1−β′

and a step function Θ for which

Θ(x) =











1 (x > 0)

0 (x < 0)

which reduces the expression to 0 at Q2 = s− (2Mc)
2 corresponding to the upper kinematic

limit of the interaction [23]. σ2 here is strongly suppressed by the mass of the created quark.

Given that previous measurements of log(1/xp) were made using an inclusive quark sample

dominated by light flavours we expect the log(1/xp) measurement in this analysis to be

statistically poor. In addition we expect the lower Q2 bound for heavy quark production to

be raised since more energy must exist in the photon to first create a cc̄ pair.

2.7 Scaled Momentum

One of the most important predictions of QCD was the phenomenon of scaling violations

in structure functions which helped establish it as the theory of strong interactions. Scaling

violations are also predicted in the fragmentation functions of quarks and gluons[24] which

represents the likelihood that a quark or gluon parton fragments to form a hadron carrying

a fraction xp of the total parton momentum.

Studies of the scaled momentum spectra, xp = 2p/
√
s, of final state hadrons have been

made at experiments at LEP[25, 26] where p is the momentum of the final state hadron

momentum and
√
s is the centre of mass energy of the e+e− system. At LEP the two outgoing

quarks also carry momentum Q/2 ≡ √
s/2. In these measurements scaling violations were

observed in the single parton density distribution, 1
σtot

dσ
dxp

.

Inclusive DIS measurements at HERA I have successfully confirmed the scaling results

seen at LEP [27]. The HERA I measurements were made in the current region of the Breit
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frame where, in the QPM model interpretation, the outgoing struck quark carries momentum

Q/2. The HERA I sample was statistically rich and was dominated by light flavoured quarks.

This thesis will use the D∗ decay channel to isolate and measure the charm contribution to

the scaled momenta spectrum.

2.7.1 Scaled Momenta in the Breit Frame

The Breit frame [28] attempts to isolate the struck quark from the proton remnant so that

the clearest separation can be made in the study of single particle distributions. This frame

is obtained by transforming the exchange boson into a completely space-like 4-vector q =

(0, 0, 0,−Q) that is aligned along the negative z axis. In this way if an electron of 4-

momentum (q0,
−→q ) scatters off of a proton of 4-momentum (P0,

−→
P ) in the lab frame, the

Breit frame of this interaction will move with relative velocity
−→
β = (−→q +2x

−→
P )/(q0 +2xP0).

The exchange boson provides a natural axis to this frame which is analogous to an e+e−

collision in the center of mass (CMS) frame. All particles for which pz > 0 fall by definition

into the “target” region. This region is poorly understood and contains the proton remnant

which evolves with pz = (1 − x)Q/2x. The “current” region is populated with particles

of pz < 0; if the kinematics are suitable and the struck quark evolves in this region it

does so with pz = Q/2. There is a strong resemblance between the hemisphere of an e+e−

interaction and the current region of a DIS scatter in the Breit frame; this normally allows

for comparisons to be drawn between LEP measurements and those made at HERA although

there is residual interference between current and target regions which will always remain

[29]. However, in this analysis the dominant source of charm production is BGF which is

not present in e+e− collisions and so no direct comparison of measurements will be drawn.

Final state quarks are produced either through Boson Gluon Fusion (BGF) or via QCD

Compton (QCDC) as illustrated in figure 2.9. BGF is the process by which a gluon splits into

two quarks with large transverse momenta, one of which is absorbed by the virtual exchange

boson. QCDC is the other possibility whereby the quark emits a hard gluon before the virtual

photon is absorbed. Charm production is completely dominated by the BGF process. These

production subprocesses can be described in terms of a number of parameters analogous to

the Lorentz invariant parameters used to describe a DIS scatter. One of these is the jet
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LO scatter (Lab) Production sub-process

x = Q2

W 2+Q2−m2
p

x/ξ = Q2

Q2+ŝ

y = 1
2
(1− cos θ∗eq) zp = 1

2
(1− cos θ∗γg)

Table 2.2: The analogous variables in a leading order scatter and the quark production

subprocess. cos θ∗γg is the angle between the gluon and the struck quark in the gluon quark

centre of mass system. θ∗eq is the angle between the initial and scattered electron in the eq

centre of mass frame.
√
ŝ is the invariant mass of the two jet system.

Figure 2.9: Feynman diagrams for BGF (left) and QCDC scattering (right).

scaling variable

zp =
P · pjet

P · q =
1

2
(1− cos θ∗jet)

in the γ∗g centre of mass system where θ∗jet is the polar angle of the jet. The other is the

event variable

x/ξ =
Q2

2p · q ≈ Q2

Q2 + ŝ

where
√
ŝ is the invariant mass of the dual jet system. Table 2.2 details the analogous terms

used to describe DIS scattering and the quark production sub process.
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The cross sections for both of these subprocesses are of the form

dσBGF ∝ 1
zp(1−zp)

and dσQCDC ∝ 1
(1−x/ξ)(1−zp)

where the singularities at zp = 0 and zp = 1 correspond to the emission of collinear partons.

The QCDC 1/(1−x/ξ) singularity arises because this production mechanism favours a small

jet-jet invariant mass as illustrated in figure 2.10 which gives the most probable topology.

These events favour a topology where both jets are found in the current region of the Breit

frame. This is not the dominant source of charm production and plays little role in the

physics studied in this thesis.

The heavier final state partons are produced via BGF and may possess large transverse

momentum. This gives rise to probable event topologies whereby neither of the final quarks

populate the current region at relatively low Q2 (figure 2.11). At moderate Q2 the generated

quarks tend to populate both regions equally whereas at higher Q2 the tendency is for both

heavy quarks to evolve in the current region. This is shown in figure 2.12 which illustrates

the probable evolution for a range of Q2. Because charm production is suppressed by the

mass of the charm quark, and because the likely event topology favours production outwith

the current region of the Breit frame it is expected that the measurement of 1/xp for charm

particles will be statistically limited.

2.8 Summary

This chapter gave a brief introduction to the basics of Deep Inelastic Scattering with emphasis

on the Lorentz invariant variables used to characterise these events and the relationship

between cross sections of quark production and structure functions. A discussion was then

made on the evolution of the Quark Parton Model and the impact this had on the theory of

structure functions. The basic principles of of DGLAP evolution, parton density functions

and the nature of heavy quark production at ZEUS were then presented. An outline was

given of Monte Carlo event generation and the different implementations of the hadronisation

and fragmentation stages of quark jet production. The chapter concluded with a discussion

of the feasibility of the measurement of scaled momenta distributions and their measurement

in the Breit frame for charm production.
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Figure 2.10: Possible event topologies for the QCD Compton production subprocess in the

Breit frame.

Figure 2.11: Typical low Q2 topology for heavy quarks produced by BGF.
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Figure 2.12: Probable BGF cc̄ production subprocess in the Breit frame.
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Chapter 3

HERA and ZEUS

In this chapter the design and operation of the ZEUS detector and associated Hadron-

Electron Ring Accelerator (HERA) electron-proton accelerator is described.

HERA operation began in 1991 with significant data taking in May 1992. Operation ran

until 2000 delivering a total of 120pb−1 of data to the ZEUS and H1 experiments located

around the HERA ring. At this time HERA was closed for one year so that upgrades could

be performed to increase the luminosity and proton beam energy. To exploit the higher

luminosities and maximise the physics gain ZEUS itself was also upgraded. This upgrade

took the form of the installation of a silicon microvertex detector and a straw tube tracker.

HERA II operation began in summer 2001 and has now delivered twice as much lumi-

nosity as HERA I of which 162 pb−1 is used in this analysis. Operation is expected to

continue until summer 2007 when the experiment will be shut down and the pre-accelerator

the Positron-Electron Tandem Ring Accelerator (PETRA) will be used as a source of syn-

chrotron radiation.

This chapter will outline the operation of the HERA machine and describe the compo-

nents of the ZEUS detector most relevant to this thesis.

3.1 The HERA Machine

The construction of the HERA machine was a significant landmark in the field of high energy

physics; it was the first and only electron-proton colliding-beam accelerator in the world.
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Figure 3.1: Aerial view of the area surrounding the DESY lab showing the path of the HERA

ring.

It was constructed in a tunnel of circumference 6.3 km 20 meters below the earth on the

grounds of the research center Deutches Electronen Synchrotron (DESY) in Hamburg and

the surrounding area, tracing the path mapped out in figure 3.1. The project began in May

1984 and was completed after 79 months in November 1990. The entire construction cost

516 million Euro and was the result of a collaboration between eleven countries.

The protons used in the eP collisions are derived from hydrogen gas (H2 molecules) which

are split into single hydrogen atoms and supplied with an additional electron to produce H−

ions. These ions are accelerated to an energy of 0.75 GeV and are injected into the proton

LINAC whose position in the HERA scheme is shown in figure 3.2. The LINAC raises the

ion energy to 50 MeV. At the end of LINAC the ions are fired through a thin aluminum

foil which strips off the outer electrons to leave only protons. The protons are then fed into

DESY III which ramps their energy up to 7.5 GeV. Upon reaching this energy the protons

are transferred to PETRA II where they are accelerated to 40 GeV and stored for injection
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Figure 3.2: HERA (left) and a close up of the associated pre-accelerators (right).

into HERA. Finally they are directed into HERA where they reach a final energy of 920

GeV. An overview of the pre-accelerator stages and their position in the HERA ring is given

in figure 3.2.

In the first stages of electron acceleration they are ramped up to 200 MeV in the LINAC

and moved into DESY II where they are further accelerated to 7.5 GeV. Following this they

are transferred to the PETRA ring and their energy is ramped up to 14 GeV before the

ultimate injection into HERA where they reach a final energy of 27.5 GeV.

Once inside the HERA ring the proton’s path is guided by superconducting dipole and

quadrupole magnets and accelerated using non-superconducting radio frequency cavities. By

contrast the electrons are guided using non-superconducting magnets and accelerated using

superconducting radio frequency cavities.

During a normal orbit of the HERA ring the electrons and protons are kept separate in

their own vacuum pipes. However they are required to meet once they arrive at each of the

detectors. At this stage guiding magnets are used to lower the proton into the electrons’

vacuum pipe such that they collide with zero crossing angle. This interaction does not occur

in one continuous stream, rather each beam contains bunches of electrons and protons which

are separated by a distance of 29m. There can be a maximum of 220 bunches stored in
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Figure 3.3: HERA luminosity delivered (left) and the luminosity gated by ZEUS (right).

HERA, with each crossing occurring once every 96ns. After passing through the interaction

point the proton beam is raised out of the path of the electron beam and the orbit around

the ring continues as before.

Such stable orbits may typically be preserved for between 8 hours for electrons and 1 day

for protons. Throughout this time many collisions occur and a great deal of data may be

collected by the ZEUS and H1 detectors. At the time of writing around 250 pb−1 of data

has been gated by ZEUS as shown by figure 3.3, of which 162 pb−1 had been used in this

analysis.

3.2 ZEUS

The ZEUS detector, one of two eP collision detectors positioned along the HERA ring, is

located 30 meters underground and weighs approximately 3600 tons. The primary com-

ponents of ZEUS include a tracking detector close to the interaction point surrounded by

a calorimeter which is itself encased in a muon chamber. The ZEUS detector is shown in

figure 3.4 with the upgraded parts highlighted; an invitation is given to study its design in

greater detail than will be given here [31]. This section of the detector chapter will outline

the principle features of the ZEUS components most relevant to this thesis.
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Figure 3.4: The ZEUS detector with the CTD, MVD and STT tracking components shown

in expanded views.

3.2.1 The Central Tracking Detector

The ZEUS detector reconstructs the final state of particles by identifying tracks and ver-

tices, and by measuring momentum and the loss of energy per unit distance (dE/dx). It is

important therefore that any tracking detector has good spatial and momentum resolution

with a wide angular acceptance and short drift time. The ZEUS Central Tracking Detector

(CTD) meets these specifications by using small individual cells which separate close tracks.

The CTD is a cylindrical drift chamber with 72 layers of sense wires organised in 9

superlayers operating in a magnetic field of 1.43 T [32, 33]. The chamber itself is filled with

a mixture of argon (to provide good gain at low voltages), CO2 (to reduce electron drift

velocity and provide better spatial resolution) and ethane (a quencher to enable the CTD

to operate at a higher voltage). Its angular coverage is very broad, spanning the polar-angle

region 150 < θ < 1640. The transverse-momentum resolution for a track extending the full

length of the CTD is σ(pT )/pT = 0.0058pT ⊕ 0.0065⊕ 0.0014/pt.

In total the CTD consists of 600 drift cells, 5000 sense wires and 20000 field wires. The

37



Figure 3.5: The x − y section view through the CTD (background) with an exploded view

of a typical drift cell (foreground). Field lines are drawn.
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wires in the CTD are organised into 576 drift cells as shown in figure 3.5. Each cell contains

8 sense wires and 34 field wires. The field, ground and shaper wires combine to provide a

uniform field leading towards the sense wires.

Charged particles which traverse the chamber ionise the gas atoms and create electrons

which drift towards these sense wires and generate a pulse. This pulse is proportional to

the lost energy of the initial ionising particle and in this way the average energy loss per

unit length (dE/dx) can be measured. Care must be taken to ensure that dE/dx has been

calibrated to account for variations in gas pressure and gain as well as the track angle. To

maintain an accurate calibration CTD data quality management is undertaken on a run by

run basis. Particle identification is not used in this analysis.

The calibrated dE/dx value when plotted against the momentum of the track forms a

band corresponding to the Bethe-Bloch prediction in figure 3.6 for a sample of negative

tracks. This figure shows excellent agreement between the Bethe-Bloch prediction and the

measured bands for the π−, K− and p̄ particles. In this way it is possible to identify particles

using the dE/dx measurement for certain momentum ranges.

An octant of the CTD can be seen in figure 3.7 in which the 9 superlayers are identified.

The wires in odd numbered super layers extend parallel to the beampipe and are called axial

superlayers. The first three axial layers are equipped with an additional z-by-timing readout

which transmits an approximate z position of the hit using the difference in pulse arrival

time at the ends of the wire. Some parameters of the CTD are given in table 3.1. Wires in

even numbered superlayers are inclined at a stereo angle of 50 and are used to reconstruct the

z position of the track more precisely than the z-by-timing method. This enables a better

track fit at the event reconstruction stage. The segments used to reconstruct a complete

track are also identified in this figure along with their corresponding ghost segments. These

ghost segments are rejected at a reconstruction level by identifying which of the two points

away from the interaction point. The even numbered tracks which correspond to layers

inclined at an angle are clearly offset.
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Figure 3.6: The measured dE/dx against momentum for negatively charged CTD tracks.

The predictions for various particles are shown in coloured lines.

Figure 3.7: A CTD octant indicating the structure of the superlayers. Segments of recon-

structed tracks are shown in bold lines.
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Quantity Resolution

r − φ hit resolution 180 µm

z resolution (stereo) 2 mm

z resolution (timing) < 4 cm

Table 3.1: CTD tracking resolutions in r−φ and z. Resolutions in z are given for the stereo

and z-by-timing methods.

3.2.2 The Uranium Calorimeter

Over 99.6% of the solid angle around the interaction region is enclosed by the ZEUS uranium

calorimeter (CAL). The CAL uses interleaved plates of depleted uranium as absorber and

plastic scintillator as active material to halt all entering particles (bar the muon and neutrino)

and measure their energy. It consists of the forward (FCAL), barrel (BCAL) and rear

(RCAL) parts each of which is divided into an electromagnetic and hadronic calorimeter as

indicated by the cross section in figure 3.8.

Each part of the CAL is divided transversely into towers and longitudinally into one

electromagnetic section and either one or two hadronic sections for the RCAL or BCAL and

FCAL pair respectively. Any energy leakage is absorbed by and measured with the Backing

Calorimeter (BAC) which is constructed from iron plates and aluminum rods and is not

directly relevant to this thesis.

Particles may be identified in the CAL by analysis of their energy signature as they

traverse the calorimeter and interact with the uranium. During this process a cascade of

secondary particles (often called a shower) is generated whose shape is dependent on the

physics origins of the cascade process. Leptons interact using typically QED interactions

like bremsstrahlung whereas the hadronic interaction is dominated by nuclear effects. As

electrons traverse the CAL they radiate photons which split into e+e− pairs and cause a

shower of particles in the detector. Hadronic particles have greater mass and their interaction

is dominated by the nuclear force and so interact with the nuclei of the absorbing material.

It follows therefore that the shower shape and size is a characteristic of electrons (imme-

diate shower), hadrons (later, broader shower) and muons (minimal interaction) and in this
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Figure 3.8: The components of the uranium calorimeter showing the barrel, forward and

rear detectors.

way each type of particle can be easily identified at ZEUS. Typical shower profiles are shown

in figure 3.9. Calibration is performed by measuring the uniform natural radioactivity of the

depleted uranium in an extensive process [34] which will not be discussed here.

The smallest subdivision of the CAL is a cell. The electro-magnetic (EM) cells measure

5x20cm2 in the FCAL and BCAL and are slightly larger in the RCAL measuring 10×20cm2.

Hadronic cells are always 20×20cm2 regardless of which CAL part they are located in. FCAL

and BCAL towers contain four EM and two hadronic cells whereas the RCAL contains

only one larger EM and one hadronic cell. When particles are detected in a CAL cell the

scintillation material produces light which is then read out from each cell and fed into a

photomultiplier tube.

The dimensions of the scintillation and uranium layers were chosen such that the re-

sponse (i.e. measured light output) of the CAL is equal for both hadrons and electrons. In

other words a hadron and electron of equal energy will generate the same light output from

the scintillators, in this way ZEUS is said to be a compensating calorimeter. Whilst the
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muonhadron electron

Figure 3.9: Typical shower profiles for hadrons, electrons and muons. Electrons shower

earlier than hadrons in the CAL, and muons do not shower at all.

response is the same for electrons and hadrons the energy resolutions are known to differ by

some degree. Under test beam conditions an energy resolution of σ(E)/E = 0.18/
√
E was

measured for electrons and σ(E)/E = 0.35/
√
E for hadrons where the energy E is measured

in GeV.

3.2.3 The Hadron Electron Separator

Accurate identification of leptons at HERA is crucial when attempting to differentiate

between neutral and charged current events. When the electron is isolated the EM and

Hadronic components of the CAL are sufficient in this identification process, however this

is a much more troublesome feat when the electron is in the presence of hadronic jets. In

such cases the hadronic background is many orders of magnitude above the signal from the

lepton, and measurements from the CAL and CTD are insufficient and an additional device

is required. The Hadron Electron Separator (HES) is a few layers of silicon diodes employed

a few radiation lengths inside the EM sections of the CAL, one layer in the barrel and rear

CAL, two layers in the forward. Hadrons and Electrons have very different shower signatures
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Figure 3.10: View of SRTD strips from the interaction point. The numbers of the horizontal

strips are marked on the side of the diagram and the four quadrants are labeled 1 to 4.

in the CAL and generally speaking leptonic showers will start much earlier and will be less

broad, as indicated in figure 3.9. The HES is installed at an optimal position to differentiate

between these showers and identify electron candidates with the necessary efficiency [31].

3.2.4 The SRTD

The Small Rear Tracking Detector (SRTD) is a system of 2 orthogonal planes of scintillator

strips attached to the face of the RCAL at z = −148 cm. Its strips are 1 cm wide by 0.5 cm

thick spanning an area of 68× 68 cm2 from which information is extracted using a network

of photo-multipliers and optical fibers. The SRTD boasts a resolution of around 3 mm,

superior to that of the CAL (3 cm) and HES which were constructed with a much coarser

segmentation.

This detector is often used to understand and correct for the dead material present in

ZEUS which causes premature showering of the scattered electron. This may be accounted for

by interaction with the beampipe, screws, cables and now in HERA II, the MVD. Corrections

to the CAL energy for this effect must be made using the SRTD pre-showering information

which is related to the energy loss of the particle. This energy loss is related to the number
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of interactions made, and hence the multiplicity of the emerging shower around the original

particle as it traverses the dead material. It follows then that dense regions in the SRTD hit

maps correspond to more dead material in the detector. The corrected energy is calculated

in the following way:

Ecorr = ECAL + αESRTD

where Ecal and ESRTD are the CAL and SRTD energies respectively and α = 0.039 is a

parameter extracted from MC studies.

The procedure for clustering the strips and reconstructing the energy, position and time

of the hits is a 3 stage process. A cluster is defined to be a group of active strips separated

by no more than 2 empty strips (a strip is empty if it has a noise below a defined background

threshold). Since dead channels affect the estimate of the reconstructed energy, their activity

is assumed to be the average of its neighbours (although this information is not stored in

any data table). The horizontal and vertical strips must now be paired in what is a trivial

procedure for quadrants with a single hit but increasingly complex for high multiplicity

events. If several particles enter simultaneously the algorithm constructs a number of ghost

hits which may only be resolved by matching total energy deposits. This ambiguity breaking

is sensitive to low (< 5 Minimum Ionising Particles) shower multiplicity due to fluctuations

in photostatistics which swamp the signal. In these cases all combinations are stored and

the points are flagged as ’ambiguous’. Once the showers have been identified, the position

is extracted by first locating the strip corresponding to the shower maximum and then

extracting the center of gravity position. The strip which contains the shower maximum is

the one which maximises

αE(N − 1) + E(N) + αE(N + 1)

where α = 0.5 and N is the number of the strip candidate. An energy weighted sum of

3 neighbouring strips is used because this procedure diminishes the effect of photostatistic

fluctuations [35]. Chapter 4 in this thesis covers work done to align the CAL, HES and

SRTD to improve track reconstruction.
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3.2.5 The Micro Vertex Detector

The Micro Vertex Detector (MVD) is a very precise silicon tracking detector close to the

interaction point. Its installation in 2001 during the upgrade shutdown was motivated by a

desire to improve tracking and secondary vertex resolution. These upgrades were necessary

to perform secondary vertex tagging of long lived particles and so select a pure charm sample.

Before the upgrade there was a separation of 16.2 cm between the beampipe and the

innermost surface of the CTD. This made it very difficult to resolve track positions near

the interaction point and a track separation of around 1 cm was required to make the

distinction. Given that a typical decay length of a charmed particle is of the order 100-

300µm this resolution is not sufficient. The separation between beampipe and detector was

reduced to 6.2 cm by the introduction of the MVD.

Figure 3.11: Cutaway of the ZEUS experiment showing the MVD, CTD and STT detectors.

The position of the MVD with respect to the CTD and STT is given in figure 3.11. This

figure shows how the ladders in the barrel are oriented so that tracks will always pass through

a minimum of 3 silicon layers. The elliptical shape of the beampipe had to be accommodated
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leading to a design which is anisotropic. In total the MVD contains 712 silicon strip sensors

although these are distributed between the forward and barrel regions, covering a polar angle

of 70 − 1700.

The intrinsic hit resolution of the MVD is between 20−30µm whilst the spatial resolution

of primary and secondary vertices is between 100 − 200µm. In 2006 much work was done

to precisely align the MVD to improve the tracking near the interaction point and improve

on the previous alignment which was performed using cosmic ray muon events. The new

alignment study used eP events to provide coverage in all regions of the MVD and not just

the central region populated by cosmic tracks. These studies reduced the alignment accuracy

from 50µm to 25µm using an approach based on the measurement of residuals; a residual

in this case being the distance between the real MVD hit measurement and the expected

measurement from the track parameters.

3.3 Summary

In this chapter the HERA accelerator and important components of the ZEUS detector have

been described. Although the HES and the SRTD are not used explicitly in the measurements

work was done to align both of these components together and so their description was

included. The MVD, CTD and CAL are all used in the measurements of hadronic charm

which will be described in this thesis. Whilst the MVD is not fully exploited in this analysis

it is however used in the tracking algorithm upon which all measurements rely. In the future

the MVD will be used to measure impact parameters and improve the precision to which

heavy quarks may be measured.
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Chapter 4

Component Alignment

This chapter details the alignment of the CAL, CTD, SRTD and the HES. The basic align-

ment procedure of any two components is stated and the data and MC required for the

alignment procedure are defined. The dead channels in (x, y) maps of scattered electron

position for CAL, HES and SRTD are compared between both samples to ensure that they

agree and are therefore suitable for this study. The alignment procedure will first be ap-

plied to the HES and all 4 quadrants of the SRTD and conclude they require corrections of

0.25 ± 0.05 cm in x and 0.10 ± 0.05 cm in y. The effect of these corrections on some DIS

control plots will be studied and found to be negligible. The alignment of the CTD, HES

and CAL will then be conducted and found to be unnecessary since the required shifts are

below measurement errors.

4.1 Introduction

To produce a reliable simulation of the ZEUS detector it is imperative to know precise spatial

information on all of its components relative to each other. If a component is found to be

misaligned, or offset from the design position, corrections must be made in order for any

event reconstruction to proceed in a meaningful way. When the data has been corrected the

purity of the sample increases, as does the reliability of all measured quantities. Alignment

studies are therefore the foundation of any successful measurement. Moreover in HERA I

the hadronic energy was scaled by 0.97 and the scattered electron energy was scaled by 0.98
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in MC to improve agreement with data. If it can be shown that any realignment affects

neither the hadronic nor electron energies then the reapplication of these same scalings can

be justified.

4.2 Method

The method outlined here broadly follows that used in the ZEUS 96-97 analysis [37], the

basic premise of which is as follows; the HES and the four quadrants of the SRTD are aligned

before the alignment of the HES to the CTD, the CAL is then aligned to the CTD and the

alignment process is complete. This chain of alignments ensures that all components are

aligned to the CTD upon which the ZEUS co-ordinate system is defined.

4.2.1 Basic Procedure

The components of a perfectly aligned detector would exist in the same spatial co-ordinates

as those input into the MC simulator. One would expect therefore the physical separation

between components to be the same in both MC and data. If this separation is found to be

different then corrections are made to account for this. Given that high energy electrons may

be easily reconstructed and follow a linear path they are a powerful tool in the alignment

process. The energy deposits left by the electron are stored in (x, y) co-ordinates denoted in

this chapter by (xe
SRTD, y

e
SRTD) and (xe

HES, y
e
HES) for the SRTD and HES positions respectively.

A well aligned detector would show good agreement between MC and data when xe
HES−

xe
SRTD and ye

HES− ye
SRTD are histogrammed. Any discrepancy may be attributed to misalign-

ment.

Before the subtraction may be carried out the physical distance between the HES and

SRTD must be accounted for along with the initial vertex position. Figure 4.1 shows the

(z, x) plane of an electron leaving a vertex at position C = (zv, xv). The electron travels in

a straight line, hits the SRTD at position B = (−zs, xs) and proceeds to the HES, striking

at A = (−zh, xh). The subtraction in x-coordinates will not center around x = 0 because of

the additional x distance traveled. To account for this effect a correction factor δ is added

to the SRTD x position. δ is derived using similar triangles on ACD and ABE in figure 4.1
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Figure 4.1: Illustration of the relative position of the CAL, HES and SRTD in the z − x

plane. An electron leaves from the vertex at C, passes through the SRTD at position B

and hits the HES at A. The separation in z between the HES and the SRTD results in the

quantity xe
HES − xe

SRTD peaking at a non-zero value. To correct for this a quantity δ must

be added to the HES electron position (A) which shifts it to a modified position (E) which

is input into the subtraction. This quantity is calculated using similar triangles on (ACB)

and (ADC).

to obtain (in x),

δ =
(xh − xv)× (|zh| − |zs|)

|zh|+ zv

such that xe
SRTD → xe

SRTD + δ and subtractions between corresponding points on the SRTD

and HES are now correctly centered about 0. The values used in the correction were ZCAL =

153.03 cm, ZHES = 154.93 cm and ZSRTD = 148 cm.

Figure 4.2 shows the xHES − xSRTD and yHES − ySRTD before the spatial difference has

been corrected for. The peak of the distributions are offset from 0 by differing but significant

degrees; in particular the X component of SRTD quadrant four is off by 1 cm. This is

dramatically corrected as shown in figure 4.3 in which all distributions are very clearly

shifted towards the center. The discrepancy between MC and data is minimal in the Y axis

and is significant in X only in quadrants one and two.

Fits are applied to the MC and data samples as shown in figure 4.3 and the position of

the peak is extracted and compared to the extracted peak position of the MC. The difference
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between the two is the correction factor to be applied. Both data and MC are extremely

well described by their associated fits.

cm
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ve

n
ts

0

50

100

150

200

250

300

SRTD - XHESQuad1: X

= 0.56µMC: 
= 0.62σ

= 0.78µDATA: 
= 0.67σ

SRTD - XHESQuad1: X

cm
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ve

n
ts

0

20

40

60

80

100

120

140

160

180

SRTD - XHESQuad2: X

= -0.25µMC: 
= 0.75σ

= -0.47µDATA: 
= 0.83σ

SRTD - XHESQuad2: X

cm
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ve

n
ts

0

20

40

60

80

100

120

140

160

180

200

220

SRTD - XHESQuad3: X

= -0.75µMC: 
= 0.56σ

= -1.08µDATA: 
= 0.60σ

SRTD - XHESQuad3: X

cm
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ve

n
ts

0

20

40

60

80

100

120

140

160

180

200

220

SRTD - XHESQuad4: X

= 0.17µMC: 
= 0.71σ

= 0.44µDATA: 
= 0.71σ

SRTD - XHESQuad4: X

cm
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ve

n
ts

0

50

100

150

200

250

SRTD - YHESQuad1: Y

= 0.16µMC: 
= 0.69σ

= 0.28µDATA: 
= 0.74σ

SRTD - YHESQuad1: Y

cm
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ve

n
ts

0

20

40

60

80

100

120

140

160

180

200

220

SRTD - YHESQuad2: Y

= 0.85µMC: 
= 0.60σ

= 0.93µDATA: 
= 0.65σ

SRTD - YHESQuad2: Y

cm
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ve

n
ts

0

20

40

60

80

100

120

140

SRTD - YHESQuad3: Y

= -0.20µMC: 
= 0.73σ

= -0.12µDATA: 
= 0.80σ

SRTD - YHESQuad3: Y

cm
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ve

n
ts

0

50

100

150

200

250

SRTD - YHESQuad4: Y

= -0.84µMC: 
= 0.58σ

= -0.76µDATA: 
= 0.63σ

SRTD - YHESQuad4: Y

Figure 4.2: Difference between x (and y) co-ordinates of the scattered electron between the

HES and the SRTD. The plots are not centered about zero since no correction has been

made for the spatial difference between the two components. MC is shown in green and data

is shown in points.

4.2.2 Brief investigation of structures in ∆x distributions

Inspection of the Quad 2: yHES − ySRTD distribution in figure 4.3 yields identification of a

peak structure at about 0.8 cm. Similar structures also appear at regular intervals when the

difference between y co-ordinates of the CAL and SRTD electron position is histogrammed

as shown in figure 4.4. To investigate their origin, (x, y) maps of the electron hits on the

SRTD and CAL components were filled only for events which contribute to these structures.
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Figure 4.3: Difference between x (and y) co-ordinates of the scattered electron between the

HES and the SRTD. Corrections for the separation between components and the vertex of

the electron have been made. The fit on the data points is shown in blue and the fit on the

green MC is shown in red. The width and mean extracted from the fits are also shown.

As shown in figures 4.5 and 4.6, the peaks are a result of hits near the beampipe. In this

region the electron is detected correctly by the SRTD but not by the CAL which instead

assigns the same y position repeatedly. This is an artifact of the CAL position algorithm

which attempts to generate a center of energy position using neighbouring cells. For hits

on the cells neighbouring the beampipe, the algorithm incorrectly models the distribution

since no energy information exists on the side facing the beampipe. This has the effect of

biasing the measurement but is understood and does not affect the procedure by which the

alignment corrections are evaluated.
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Figure 4.4: Difference in the y coordinate of the electron position as measured by the CAL

and SRTD in quadrant 2 of the SRTD. The Data is shown in crosses and MC is shown in

solid green. Structures appear at 1 cm intervals in both MC and data.
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Figure 4.5: (x, y) map of the electrons which pass through quadrant 2 of the SRTD as

measured by the CAL (left) and the same (x, y) map filled only for events contributing to

the structures seen in figure 4.4. The x and y axes are measured in cm.
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4.2.3 Data Selection

A 0.702 pb−1 subset of the June ′04 - August ′04 e−P running period was used for this analysis

alongside a 5.28pb−1 inclusive DIS Monte Carlo sample. This data range exhibits excellent

trigger agreement with the MC in addition to dead channel agreement on the SRTD (figure

4.7 ), HES (figure 4.8) and CAL (figure 4.8) on maps of electron signals. The following

standard DIS selection cuts were required:

• 5 < Q2
elec < 1000 GeV2

• 0.02 < yJB

• ye < 0.95

• |zvtx| < 30 cm

• Electron Energy > 10 GeV.

where Q2
elec, ye and yJB are DIS event kinematics as defined in Chapter 2. The e subscript

denotes that the parameter has been reconstructed using the electron method whilst JB

denotes a ’Jacquet-Blondel’ reconstruction. Details of both methods are given in the same

chapter. These selection cuts are designed to reduce background and to ensure that the

scattered electron is easily identified and reconstructed.

4.3 Results

The fits shown in figure 4.3 are used to determine the correction factor that must be applied to

data to ensure a consistent description of the detector in both event samples. The difference

between this extracted peak is the correction factor to be applied to the data. The event

reconstruction process draws on information stored in “gafs” which can be thought of as

databases containing a list of calibration constants, including the spatial position of detector

components. In MC everything is perfectly aligned already by design, therefore during

reconstruction if the data is not in the position as assumed by the gafs incorrect conclusions

may be drawn. Given that we know the SRTD measures the position incorrectly in data we
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Figure 4.6: (x, y) map of the electrons which pass through quadrant 2 of the SRTD as

measured by the SRTD (left) and the same (x, y) map filled only for events contributing to

the structures seen in figure 4.4. The x and y axes are measured in cm.
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Figure 4.7: (x, y) map of all electron hits on the SRTD in the data (left) and MC (right)

sample. The x and y axes are measured in cm.
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Figure 4.8: (x, y) map of all electron hits on the HES in the data (left) and MC (right)

samples. The x and y axes are measured in cm.
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Figure 4.9: (x, y) map of all electron hits on the CAL in the data (left) and MC (right)

sample. The x and y axes are measured in cm.
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shift the measured position so that its correlation with the HES and CAL impact points is

equivalent to that in MC. The shifts that have been evaluated and listed in the following

sections are therefore applied to data rather than to the MC.

4.3.1 SRTD-HES Alignment

The gaussian distribution fit to the corrected xe
HES − xe

SRTD and ye
HES − ye

SRTD distributions

in figure 4.3 peak at xMCPeak and xdataPeak (and the corresponding y value). The quantity

xdataPeak − xMCPeak is given in table 4.1. The systematic error of ±0.05 cm comes from the

biggest shift in the distributions.

Component Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

SRTD X 0.25± 0.05 cm −0.29± 0.05 cm −0.46± 0.05 cm 0.25± 0.05 cm

SRTD Y 0.10± 0.05 cm 0.18± 0.05 cm −0.04± 0.05 cm 0.05± 0.05 cm

Table 4.1: Required SRTD shifts in x and y for each quadrant.

The xe
HES−xe

SRTD and ye
HES−ye

SRTD distributions in figure 4.3 are re-evaluated and the new

distributions are shown in figure 4.10. The agreement between data and MC in this figure

is now much more satisfactory since any difference is now negligible within the systematic

measurement error of ±0.05 cm.

To gauge the effect of the alignment the corrections to a number of DIS kinematic vari-

ables; y, Q2, x and θelectron using the electron, double angle and JB reconstruction methods

was measured. Control plots for these variables are shown before the alignment process in

figure 4.11, the difference between data and MC after the alignment is given in figure 4.12.

The alignment procedure has had minimal effect on the agreement and by inspection

of figure 4.12 it is seen that any shift in measurement is much smaller than any original

discrepancy. In general corrections are not obvious to the naked eye.

The fractional shift of the MC control plot variables is shown in figure 4.13. The his-

togrammed parameter is

datapre−alignment − datapost−alignment + MCpre−alignment

MCpre−alignment
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Figure 4.10: Difference in x (and y) co-ordinates of the scattered electron between the HES

and the SRTD after alignment. Corrections for the separation between components and the

vertex of the electron have been made. The fit on the data points is shown in blue and the

fit on the green MC is shown in red. The width and mean extracted from the fits are also

shown.

which gives an indication of the fractional correction made to the MC kinematic variables

after the SRTD-HES alignment. All fractional shifts lie within the measurement errors and

are therefore negligible. There exist a handful of exceptional points which suggest a non-

negligible correction (the 7th bin of yDA indicates a 1% shift and corrections as large of 4% in

measurements of xelectron are observed in select bins regions) but in general any improvement

in data reconstruction is not measurable in these control plots.
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Figure 4.11: Control plots for kinematic variables prior to the SRTD HES alignment. Q2 is

measured in GeV2 and E is measured in GeV. Data is indicated by points and MC by the

filled green area. Alterations after the alignment are generally not visible by eye.
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Figure 4.12: The difference between data and MC before (green) and after (dotted line) the

SRTD-HES alignment correction in control plots of kinematic variables. Q2 is measured in

GeV2 and E is measured in GeV.
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Figure 4.13: The difference in data between the pre and post alignment control plots divided

by the total MC value +1. Q2 is measured in GeV2 and E is measured in GeV.
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Figure 4.14: The difference between the electron position as measured firstly by the CAL

and extrapolated CTD position and secondly by the HES and extrapolated CTD position.

The differences in X position and Y position are given separately. The difference in the MC

sample is shown in green with the fit shown in red and the difference in the data sample is

shown in points with the fit indicated in blue. The gaussian fit parameters are also given.

4.3.2 CAL-CTD and HES-CTD Alignment

The final step of the alignment procedure was to align the CAL and HES components to the

CTD. For this alignment a further cut on the electron momentum is required to improve track

matching and reduce background effects. A momentum cut of Pelectron > 8 GeV was used in

the previous study and so was applied here. In this procedure the CTD track identified as

the electron was extrapolated to the face of the CAL and HES before subtractions between

the two are made. The differences are shown in figure 4.14 for both MC and data samples.

A gaussian fit is also performed and the extracted parameters are found to be very similar.
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Component Shift (cm)

CAL:Track X −0.16± 0.25

Cal:Track Y −0.04± 0.25

HES:Track X −0.22± 0.25

HES:Track Y +0.08± 0.25

Table 4.2: X and Y shifts of CAL and HES required for alignment with CTD.

A resolution of ±0.25 cm is appropriate for these measurements and is greater than or equal

to the shift required to align these detectors as shown in table 4.2. The conclusion is that

these components of ZEUS are already aligned to a level that may not be improved upon by

this method.

4.4 Summary

In this chapter the procedure for aligning the CAL, CTD, SRTD and the HES was detailed.

The dead channels in (x, y) maps of scattered electron position for CAL, HES and SRTD

were in agreement between MC and data, ensuring their suitability for alignment studies.

The HES and SRTD were first aligned, requiring minor corrections of the order 0.25± 0.05

cm to be applied to the SRTD in the x direction and 0.10± 0.05 cm in the y. Application

of these shifts has a negligible affect on a number of DIS kinematic variable control plots.

The alignment of CTD, HES and CAL was then completed but could not be improved upon

using the above methods. This was because the required shifts were less than the resolution

of the histograms (typically 0.1 ± 0.25 cm). In addition, since only minor corrections with

respect to HERA I are required we are justified in using the HERA I systematic energy

corrections in later chapters.
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Chapter 5

A GTT J/Ψ Trigger

This chapter is a feasibility study of the Global Tracking Trigger’s (GTT) ability to trigger

on events containing the J/Ψ meson. It begins with an overview of the ZEUS trigger system

and a discussion of how tracking is implemented by the GTT. This is followed by a discussion

of how the GTT may be used to trigger on J/Ψ events and then a demonstration that the

J/Ψ mass peak can indeed be resolved at the Second Level Trigger (SLT). An investigation

is then carried out using Monte Carlo to determine how strongly cuts on track variables and

invariant mass affect reconstruction efficiency and signal-to-noise ratios. This information

is used to optimise cuts in the online version of the trigger such that the rate may be kept

reasonable without compromising too harshly on efficiency. The performance of the trigger

is found to be equivalent in rate to existing triggers but frequently identifies J/Ψ candidates

missed by them. The work on this project contributed to the GTT NIM paper The Design

and Performance of the ZEUS Global Tracking Trigger [38].

5.1 Introduction

Prior to the HERA upgrade tracking at the Second Level Trigger (SLT) was performed with

only CTD axial and z-by-timing information with a z vertex resolution of 9 cm. Advances in

computing power enabled execution of faster, better tracking drawing on the CTD, STT and

MVD at this stage of the three tier trigger process. Previously the reconstruction was per-

formed on obsolete transputer technology. The increase in computer power makes it feasible
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for the first time to perform detailed tracking at the SLT. When this capability is combined

with the improved hit resolution of the MVD the event reconstruction capabilities of the

SLT might be sufficient to use an invariant mass spectrum to flag heavy vector mesons. This

chapter is a feasibility study of constructing a J/Ψ trigger based entirely on the improved

SLT tracking package the GTT, concluding that it is possible to construct such a trigger

and that the trigger is capable of identifying unique J/Ψ events that are not flagged with

existing triggers.

5.2 The ZEUS Trigger System

The ZEUS trigger system[39] is a three stage process designed to reduce the bunch crossing

event rate from 107 Hz to 500 Hz, 500 Hz to 80Hz and 80Hz to 8 Hz after passing through

the First, Second and Third level triggers respectively. As an event progresses through each

trigger the available computational time increases along with the precision to which event

kinematics are evaluated. It follows then that the earlier levels typically have to sacrifice

precision for speed of computation.

5.2.1 The First Level Trigger

The First Level Trigger (FLT) is activated at each bunch crossing, i.e. every 96ns, and will

arrive at a decision after 44 bunch crossings (4.4µs). This corresponds to a typical rate

of 107 Hz. Events are selected in such a way that a rate of 500Hz is passed to the SLT.

Such a high input rate requires a selection process based on dead-time-free hardware and

forces the FLT to perform at a rudimentary level, hence global component decisions are

impossible at this stage. Calorimeter cells for instance may not be individually resolved so

only broad energy estimates may be made, whilst tracks are required only to originate from

the nominal interaction region (Zvtx ± 50 cm) using simple CTD FLT tracking. The FLT is

used primarily for rejecting uninteresting data such as beam gas background events. Each

detector component has its own logic which is combined in the Global First Level trigger.

Events which pass the first level trigger are buffered for processing by the second level trigger

(SLT).
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5.2.2 The Second Level Trigger

A series of parallel transputers process the event in greater detail than the FLT, providing

access to a larger fraction of the full event data so that evaluation may be made between

detector components. Access is given to individual CAL cells and one may now determine

if a track originates from the event vertex by reconstructing CTD hits. Post-upgrade ZEUS

boasts a state-of-the-art PC farm which enables faster and more efficient tracking. A direct

consequence of this was the development and implementation of the Global Tracking Trigger

(GTT) algorithm which permits high level event reconstruction at the SLT for the first time,

the details of which are discussed later. The data from events passing the SLT are sent to the

event builder (EVB) which builds and stores complete events until the Third Level Trigger

(TLT) is ready to accept and process them. Overall this process is designed to reduce the

data rate to 80 Hz arriving at a decision within 10 ms. Events passing the SLT are passed

onto the third level trigger.

5.2.3 The Third Level Trigger

Events passed from the SLT to the TLT are reconstructed with a simplified version of the

final ZEUS analysis package on an Intel processor based computer farm. At this level it is

possible for instance to fully reconstruct ZEUS CTD tracks and resolve individual calorimeter

cells. The TLT decision making process reduces the event rate to around 8 Hz.

5.2.4 Reconstruction

All events passing the TLT are processed again a few days after the data has been taken.

Calibration constants available only after data quality management analysis are implemented

at this stage and CPU intensive reconstruction code are implemented here. Different physics

filters are applied to the data to select common event types and corresponding DST bits are

allocated. DST 9 for instance is used to detect a scattered electron with an energy greater

than 4 GeV.
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5.3 The Global Tracking Trigger Algorithm

With the MVD’s superior hit resolution it is possible to improve SLT tracking and to more

accurately reconstruct important event properties such as the primary vertex position. How-

ever due to the limited number of MVD hits per track it does not offer sufficient tracking

information in isolation from other tracking components. To resolve this issue the GTT

incorporates MVD, CTD and STT tracking information into the SLT tracking architecture.

A tracking algorithm in operation at the SLT must be able to operate in a harsh environ-

ment with limited algorithm time, breaking all track ambiguities quickly and efficiently [40].

Such limitations prevent a detailed event reconstruction since many approximations and as-

sumptions must be made which sacrifice time and resolution for speed; necessity dictates

therefore that the GTT use an extremely fast algorithm.

Only 10 ms are available for the event to be both transfered to and processed by the

GSLT. 3 ms are required to read data from the CTD and STT using transputer electronics

and 1 ms for MVD readout and data transfer for all three components to the GTT interface.

This interface is run on a 1 GHz PC farm and events are reconstructed in a further 3 ms.

The results of this are sent to the SLT which determines whether or not to pass the event

to the TLT.

Broadly speaking the approach adopted identifies segments of linear tracks found in the

CTD, combines them into a large curved track (figure 5.1) and matches this track to MVD

hits. The track is then assigned a weight, wtrack, which is in part dependent on the number

of MVD hits upon which it lies. This implementation is motivated by the excellent resolving

power of the MVD. The vertex for each track, Ztrack, is binned with weight wn
track. The value

n = 2 was used in this implementation of the GTT since it gives more weight to high quality

tracks which improves the reconstruction in busy events.

It is assumed that each track originates from the same initial vertex, Zinitial, a position

evaluated using

Zinitial =

∑

track Ztrackw
n
track

∑

track w
n
track

.

Only tracks with Ztrack within ±9 cm of Zinitial are considered and re-evaluated with Ztrack =

Zinitial. Overall the GTT Barrel Algorithm operates in 4 distinct logical stages:
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Figure 5.1: GTT axial track finding. The shaded green band indicates the attempted linear

segments in each Super Layer.

• Axial track finding:

– CTD axial segments are found and r − φ tracks fitted.

• Vertex identification and z tracking:

– Matching of z-by-timing hits to axial tracks found in step 1. These are assumed

to be locally linear in the fit.

– Tracks are improved using stereo segments.

– An initial primary vertex is found and then used to constrain the z−tracks in a

refit.

• MVD matching and vertex refinement:

– Axial MVD hits are matched and used to refit axial tracks.

– z MVD hits are matched and used to refit z tracks.

– Recalculation of the primary vertex.
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Figure 5.2: Representation of CTD left-right hit ambiguity. Red denotes the actual track

position, blue denotes the ghost track position; a possible (albeit false) hit based on unsigned

drift time information.

Each linear segment used in step 1 corresponds to a straight line fit to hits on a CTD cell.

Because the drift time information recorded by the cell is unsigned there is no immediate

way to identify the direction from which the signal arose. Indeed there are two potential

contributions from each hit, the actual signal and a ghost signal as indicated in figure 5.2.

To break this ambiguity the cell geometry was designed so that the sense wires lie at an

angle of 450 to the r-plane. In this way a series of ghost hits can be immediately rejected

as those whose track points furthest away from the beam pipe. By this method the number

of considered candidates is halved which avoids an unacceptably high computational time.

This however leads to greater efficiency for higher pT tracks and a charge asymmetry for

lower pT tracks. A modification of this approach is used in the stereo super-layers since the

wires are inclined here.
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5.4 Reconstruction of the J/Ψ in MC at the SLT

The GTT J/Ψ trigger identifies events containing J/Ψs by calculating the invariant mass of

track pairs using only GTT variables. Using offline tracking there is a very clear resonance

at MJ/Ψ, although there was some initial doubt as to whether the inferior GTT tracking

will be able to resolve a J/Ψ signal at all. This brief section investigates the cleaning cuts

that will help resolve a J/Ψ mass peak in data using the GTT. MC distributions are used

to justify reasonable cuts which will later be applied to a data sample to help resolve the

signal. These cuts will not be applied to the trigger.

5.4.1 The J/Ψ

The J/Ψ is a vector meson comprised of a cc̄ pair with a rest mass of 3096.916±0.011 MeV.

Of the J/Ψ’s many decays modes two can be most easily recognized in ZEUS:

J/ψ → µ+µ−

J/ψ → e+e−.

The branching ratio for each of these process is equal at 5.94 ± 0.06%. To reduce the

computational time the GTT J/Ψ trigger will operate under the assumption that the J/Ψ

has decayed into one of these two body channels and will therefore only consider pairs of

tracks. The lepton mass does not significantly contribute to the invariant mass calculation

since MJ/ψ ≈ 3.1 GeV >> mµ ≈ 0.1 GeV >> me ≈ 0.0005 GeV and is therefore set to

zero.

5.4.2 Monte Carlo

A small J/Ψ → µ+µ− photo-production sample of around 100, 000 events was generated

using the DIPSI [43] MC package for use in determining suitable SLT track cuts. Figure 5.3

is a histogram of invariant mass track pairs using reconstructed tracks (green) and the MC

true decay tracks (blue). As expected the true tracks peak at the J/Ψ mass precisely and

with a width of 91 keV. The smearing of the true measurement by the GTT demonstrates

how inefficiencies and approximations hide the natural distribution.
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Figure 5.3: Smearing of true J/Ψ invariant mass in reconstruction by the GTT. MC true is

shown in blue, GTT reconstruction in green.

The peak at zero is a byproduct of the GTT reconstruction which sometimes splits one

track into two similar tracks of the same charge. This effect may be removed by evaluating

only oppositely charged pairs of tracks as shown in figure 5.4. There is also an observed

left-right asymmetry in the mass distribution about MJ/Ψ arising from multiple scattering

within the MVD. This effect is markedly reduced when cuts of pT > 1 GeV and |η| < 1.75

are applied, rejecting the low pT tracks prone to this behaviour. The early version of the

ZEUS MC used in this section does not have accurate dead material maps describing the

MVD, and so this asymmetry is seen to a much lesser degree in data.

Selection of cleaning cuts using MC distributions

Distributions of track pT , η and event multiplicity in the MC sample can be seen in figure

5.5, inspection of which suggests that cuts of pT > 1 GeV and |η| < 1.75 will minimise J/Ψ
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Figure 5.4: MC J/Ψ mass spectrum evaluated with GTT tracking variables. The shaded

green region denotes the algorithm where all track pairs are considered, the points represent

the same spectrum when like-charged tracks are excluded.

loss and reject candidates that are certainly not J/Ψ. Tracks are also required to originate

from within 5 cm (the vertex resolution of the GTT) of each other. The effect of these cuts

on data are shown in figure 5.6 and discussed in section 5.5 which also provides justification

of these cuts in terms of efficiency conservation and signal to noise reduction. This study

follows immediately after the following section, which is an investigation of how efficiently

true tracks are reconstructed in a number of kinematic regions.

5.4.3 Efficiency of true J/Ψ GTT reconstruction

In this section the trigger efficiency is defined by

Efficiency =

∫ma
mb

SGTT
∫ma
mb

Strue
(5.1)
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Figure 5.5: η, pT and multiplicity distributions for γP MC J/Ψ daughter decay leptons as

measured with GTT tracking parameters in the MC sample. pT is given in GeV. The red

lines indicate the positions of the cuts placed to reduce combinatorial background in an

inclusive data sample and minimise signal loss.

where Strue denotes the invariant mass plot containing MC true information and SGTT is the

invariant mass plot of the same true information as seen after passing through the detector

simulator and evaluated by the GTT. ma and mb denote the upper and lower limits of the

mass window.

For each event |ηTrue| for both true leptons is evaluated, the higher |ηTrue| is called |ηMax
True|.

Events are then divided into 5 bins of |ηMax
True| with ∆η = 0.5. The efficiencies for each of these

bins are given in table 5.1. The events are similarly binned according to the lower pT,True

value, denoted pMin
T,True, in bins of ∆pT = 0.5. The efficiency for these bins is also given in

this table.

Table 5.1 shows that the efficiency falls with decreasing pT,True, and is highest when both

true µs are generated within the central CTD range of |η| < 1.7. Tracks with the greatest

pT are more successfully resolved by the GTT with an efficiency in the order of 60%, falling

rapidly for pT < 1.5 to 36%. This feature arises because of the difficulty the GTT has in

identifying ghost hits for low pT tracks. A generated particle that traverses the central region
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pMin
TTrue range (GeV) Efficiency |ηMax

True| range Efficiency

0.0 → 0.5 0 % 0.0 → 0.5 67.5%

0.5 → 1.0 8.3 % 0.5 → 1.0 66.7%

1.0 → 1.5 36 % 1.0 → 1.5 51.5%

1.5 → 2.0 60 % 1.5 → 2.0 16.0%

2.0+ 60 % 2.0+ 0%

Table 5.1: GTT efficiencies in different decay particle kinematic regions. PT refers to the

lowest PT true track, |η| refers to the highest |η| true track in the event. A mass window of

3.1± 2 GeV was used.

of the CTD (|η| < 0.5) is reconstructed 67% of the time. The reconstruction efficiency falls

to 16% when |η| > 1.5 as the boundaries of the CTD are probed. Overall we expect central,

high pT > 1.5 GeV true particles to be reconstructed most efficiently.

5.5 Resolving J/Ψ in data at the SLT

A 17.66pb−1 sample of inclusive ZEUS eP data was used to determine whether the J/Ψ

mass could be resolved at the SLT. No specific trigger configuration was required in this

data set, all that was demanded was that GTT track information was present. This data

was analysed using a prototype GTT J/Ψ trigger algorithm which cycles through pairs of

tracks and evaluates the invariant mass if the tracks share a vertex and pass the cleaning cuts

outlined above, returning the mass in the event closest to MJ/Ψ. The cleaning cuts consisted

of the opposite charge requirement, pT > 1 GeV for at least one track and |η| < 1.75 for

both tracks. Setting the mass of both contributing tracks to zero has little effect on the

distributions in the J/Ψ region due to the comparatively high J/Ψ mass. For this reason we

detect a large number of J/Ψs from both lepton decay channels simultaneously. The GTT

J/Ψ trigger is therefore decay channel independent.
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5.5.1 Reduction of background in data

Figure 5.6 shows the effect of applying cuts on multiplicity, charge and transverse momentum

both in turn and together. When no cuts are applied the scale of the background problem

is apparent, the signal is completely swamped by noise and no J/Ψ mass signature can

be extracted. Progressing from left to right through figure 5.6 it can be seen first that a

large amount of background is reduced by simply cutting on Ntracks < 4. This reduction

also significantly reduces the time required to process each event, and biases the selection

towards elastic J/Ψs. The introduction of the pT > 1 GeV cut for one track greatly reduces

the background, however it is still impossible to resolve any clear J/Ψ signal. The ρ spectrum

at around 0.6 GeV can now be resolved. Similarly by rejecting tracks with matching charge

the background is reduced but not to the extent that a J/Ψ peak is visible. Combining

pT > 1 GeV and Ntracks < 4 appears to be sensible as now a J/Ψ peak is clear, an effect

more obvious when tracks of the same charge are additionally rejected as shown in the 6th

plot.

The final plot comprising the pT > 1 GeV, Ntracks < 4 and oppositely charged tracks was

fitted locally around the J/Ψ mass in figure 5.7. For the purposes of this fit the background

was assumed to be (locally) linear and the peak itself assumed to be Gaussian. Also shown

is the expected peak distribution using a luminosity weighed MC sample, and the fit of

the Gaussian only region. The two compare well, although the MC sample displays a slight

asymmetry, with the higher mass half of the peak favoured somewhat. The fitting parameters

in figure 5.7 were computed using a χ2 fitting algorithm value where χ2/NDF = 1.097. Here

χ2 is defined as

χ2 =
∑

i

(Oi − Ei)
2

σ2
i

.

where O = observed value, E = expected value, σi is the corresponding error and the sum-

mation is performed over the bins. A good fit would yield a value around the order of

χ2

NDF
=

χ2

nbins− N parameters
= 1.

The width of the distribution is in good agreement with the MC prediction, a promising

result since this was the first version of ZEUS MC for HERA II data. The log scale however

reveals a slight discrepancy between the fit and MC at higher MJ/Ψ, a known feature of this
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particular MC version. The J/Ψ amplitude of 609± 40 very reasonably confirms that this

peak is not a statistical effect. There is a slight shift in measured J/Ψ mass which after

fitting was 3.129 ± 0.012 GeV, a small deviation from the accepted mass 3.09 GeV due to

the inadequacies of the linear background assumption. Regardless this clearly demonstrates

that it is possible to extract a J/Ψ signal using only GTT tracking variables which lends

support to the feasibility of a GTT J/Ψ trigger.
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Figure 5.6: GTT mass distributions for 17.66pb−1 of data (points) and MC (green) computed

for the indicated GTT tracking cuts.

5.5.2 Optimisation of Efficiency and Signal to Noise

The results of section 5.5.1 show that it is possible to resolve the J/Ψ at the SLT and so

a J/Ψ SLT trigger is indeed feasible. This section contains a study of the efficiency with
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Figure 5.7: Local and global J/Ψ mass spectrums for a tracking enriched data sample, fitted

locally to a Gaussian + linear function (blue). The fit is performed on the data (points)

before the Gaussian component (solid red) is extracted and drawn over the MC prediction

(crosses).

which MC true J/Ψs are resolved and the signal to background ratio of the trigger. This

study will be important if the trigger rate is too high and must be reduced with cuts that

maximise efficiency and signal to noise ratio.

The data sample used is the same as in section 5.5 and the MC sample is that used in

section 5.4.2. The efficiency of J/Ψ reconstruction and the signal to noise ratio are given

as functions of the track cuts determined in section 5.5.1. The data and reconstructed

MC sample used in this section do not require any trigger configuration, and an invariant

mass is calculated whenever there exists GTT information in the event. This will not bias

the efficiency measurement since no true J/Ψ events are discarded, and efficiency here is

a measurement of their reconstruction. In section 5.6.1 a sample of pass-through data will

be used to determine the trigger rate and efficiency of finding J/Ψ → µµ events that have
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been well reconstructed offline. The studies in 5.6.1 will be necessary to determine how the

trigger will behave when implemented online, and will rely on the results of this section.

Efficiency study

The efficiencies computed in table 5.2 are defined by equation 5.1. As well as evaluating the

efficiency for all events, table 5.2 also indicates which types of events are easiest to detect. To

quantify this effect a number of true µ decay scenarios were chosen and the amount detected

by the GTT measured. The four columns describe, in order; a MC set for which no true

cuts are applied, one true µ has pT > 1 GeV, both µs are fully enclosed in the CTD, and

both µs are fully enclosed, one with pT > 1 GeV. The rows indicate the data cuts placed

on these increasingly restrained true samples. These data cuts proceed row-wise as; no cuts,

pT > 1 GeV for at least one track pair, less than 4 GTT tracks per event, a combination of

the pT > 1 GeV and multiplicity cuts, |η| < 1.75 for both tracks (a fully enclosed pair), and

a combination of all pT , |η| and multiplicity cuts. For our purposes, a GTT measurement is

defined as a pair of tracks with an invariant mass between ma and mb, where ma = MJ/Ψ−w
and mb = MJ/Ψ + w. w is half the measurement window and takes the values 0.3, 0.5 and 1

GeV successively. Widening the counting window increases the efficiency but will affect the

signal to noise ratio considerably. The presence of a matching charge cut changes efficiency

by no more than 1% and so for clarity is not included in this table.

Consultation of table 5.2 reveals that 46.0% of all MC true events pass the combination

of pT , multiplicity and |η| detector cuts with a large mass window. In other words the ZEUS

detector is capable of detecting 46.0% of all simulated J/Ψ → µµ decays with detector cuts of

pT > 1, |η| < 1.75 and less than 4 tracks detected. Under favourable µ true conditions (high

pT , within CTD acceptance range) the trigger scenario with all cuts will record 66.9% of the

existing J/Ψs. Under these optimal conditions only 12.5% of these J/Ψs are excluded by our

cuts at the true level. The remainder are lost through detector inefficiencies. Under normal

conditions only 8.5% of J/Ψ which register in some way at detector level are excluded. Short-

ening the bin width from ±1 to ±0.3 the excluded-by-data-cuts-but-potentially-detectable

J/Ψs fall to 9.5% and 6.5% for both ideal and standard true conditions respectively. Overall

it appears that efficiency is most sensitive to restrictions on invariant mass.
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No true cuts 1 true µ has Pt > 1 2 µ tracks have |η| < 1.75 Both true cuts

M range (GeV) Detector Cut Efficiency Efficiency Efficiency Efficiency

3.1±0.3 no cuts 44.9% 52.3% 59.0% 65.4%

Pt > 1 43.9% 51.2% 57.8% 64.0%

Track < 4 40.2% 46.8% 52.9% 58.5%

Pt and Track 39.3% 45.8% 51.7% 57.2%

2 PS < 1.75 43.8% 51.1% 57.5% 63.7%

All cuts 38.4% 44.8% 50.4% 55.9%

3.1±0.5 no cuts 50.0% 58.2% 65.6% 72.7%

Pt > 1 48.8% 56.9% 64.2% 71.1%

Track < 4 44.6% 52.0% 58.7% 65.0%

Pt and Track 43.6% 50.8% 57.3% 63.5%

2 PS < 1.75 48.6% 56.6% 63.7% 70.6%

All cuts 42.5% 49.5% 55.6% 61.7%

3.1±1 no cuts 54.5% 63.5% 71.1% 79.4%

Pt > 1 53.3% 62.1% 70.1% 77.7%

Track < 4 48.6% 56.7% 63.9% 70.8%

Pt and Track 47.5% 55.4% 62.4% 69.2%

2 PS < 1.75 52.8% 61.5% 69.2 % 76.7%

All cuts 46.0% 53.7% 60.3 % 66.9%

Table 5.2: GTT J/Ψ detection efficiency for the true level (columns) and detector level

(rows) cuts prescribed above.

Signal to noise study

A method to quantify the size of the peak relative to the background is evaluation of the

signal to noise ratio. Signal to noise is defined as

S : N =

∫ma

mb
SmcGTT

∫ma

mb
SdataGTT −

∫ma

mb
SmcGTT

.

and is effectively the ratio of J/Ψ track pairs to background track pairs. The true kinematic

scenarios and detector cuts investigated are the same as in the efficiency study in section

5.5.2. As noted in table 5.2 increasing the bin width improved efficiency but at the cost of a

considerable increase in S:N (table 5.3), a result of a number of “false positives” infiltrating

the detection range. As before, a GTT measurement is defined as a pair of tracks with

an invariant mass between limits ma and mb. A combination of all cuts and a small mass

window yields a satisfactory S:N of 20.49%, falling to as low as 0.5% when no cuts are applied

and a large mass window is considered. Changing the true scenario has little effect on the

S:N. As with efficiency, the signal to noise ratio is most sensitive to invariant mass cuts.

When all detector level cuts are applied a peak is clearly visible despite the large back-

ground. Indeed J/Ψ signal parameters such as height and width may be easily evaluated
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as demonstrated by the fit. The removal of these cuts restores the entire background noise

and swamps the signal, illustrating how difficult it is to extract a signal when presented with

uncut data.

If one wishes to find a compromise between efficiency and the signal to noise ratio, it is

desirable to maximise the quantity A, where A = efficiency × S:N. This is largest for the

mass range 2.8 < MJ/Ψ < 3.4 with pT > 1 GeV, multiplicity < 5, |η| < 1.7 and an opposite

charge constraint. Therefore if the trigger rate is too large these cuts may be suitably applied

to reduce the rate but preserve the usefulness of the trigger and allow a clear reconstruction

at SLT. However because the GTT will not be used to resolve the J/Ψ it is not necessary

to maximise the signal to noise ratio at this level. It is therefore acceptable to widen the

mass window to 2.6 < MJ/Ψ < 3.6 which yields the second highest A but will increase

statistics. This study also concludes that efficiency and S:N are most sensitive to invariant

mass restrictions, typically by a factor 4 more so than the other investigated cuts. Therefore

if one wished to apply a rate restriction by restraining only one parameter, it is recommended

invariant mass is used. This is the preferred option since it will reduce rate significantly and

will not bias any final measurement by excluding a kinematic region. The following section

will determine whether it is necessary to reduce the rate using one of these recommended

proposals.

5.6 Final Implementation of the GTT J/Ψ Trigger

The final implementation of the J/Ψ Trigger is as follows: The algorithm considers all events

with at least 2 and fewer than 100 GTT tracks; The invariant mass for all pairs of tracks is

calculated, provided that the tracks have opposite charge and intersect the z-axis within 5

cm of each other; The highest invariant mass per event is returned by the code and stored

online. Returning the highest invariant mass enables the same trigger system to be used as

an Υ and J/Ψ trigger. The computational time for this process is negligible when compared

to the overall GTT track finding algorithm in figure 5.8, therefore the J/Ψ trigger will not

use unacceptably high computational resources.
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Table 5.3: GTT J/Ψ S:N for the true level (columns) and detector level (rows) cuts prescribed

above.
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Figure 5.8: Latency of the J/Ψ algorithm (yellow) and whole GTT algorithm (points).

5.6.1 Passthrough Data Samples

In this section the efficiency and rate of the final implementation of the trigger system is

evaluated using a passthrough data sample (described below). A new definition of efficiency

different to that defined in equation 5.1 is used in this section,

Efficency =
No. Triggered Events in Clean Sample

Total No. of Events in Clean Sample

where “clean sample” in this case is a data sample of J/Ψ events selected with constraints

demanding that 2 well resolved muons were detected with opposite charge, at least one of

which had pT > 1 GeV. The invariant mass of the track pair, as determined with the standard

ZEUS offline tracking package VCTRAK, must be such that 3.0 < Mµµ < 3.2 GeV. This

ensures a clean sample of J/Ψ → µµ events is selected. Figure 5.9 shows an invariant mass

spectrum of this sample as seen by both the GTT and offline tracking packages. It was

necessary to compromise the GTT resolution in favour of faster track finding given the time

constraints present at the SLT level.

An unbiased selection of passthrough events is required to determine a trigger rate. In this

thesis, rate is given in arbitrary units and is simply the total number of passthrough events

flagged by a trigger. There are 2 types of passthrough events: FLT and SLT passthroughs.
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Figure 5.9: GTT (black) and VCTRACK (red) mass spectrum of offline J/Ψ sample with

fit shown in blue.

A FLT passthrough is a selection of events as seen by the FLT, or more precisely a selection

of events on which no cuts at all are placed. A SLT passthrough is a selection of events

whose only requirement is that they passed the FLT. Passthrough events are given special

passage through the trigger system in that they are not required to be accepted by any other

trigger. This is a useful property when conducting studies into the trigger rates since they

provide insight into what the trigger will encounter online. A total of 84082 passthrough

events were selected for this analysis. The invariant mass spectrum for these events is given

in figure 5.10.

Prior to the implementation of our J/Ψ trigger, J/Ψs were detected at the SLT by

triggers drawing on a series of energy cleaning cuts and requiring detection of a lepton. A

more detailed outline of the operation of the triggers (specifically GTT05, HFL19, MU02

and SPP04) may be found in appendix A. It is against these existing triggers that the
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Figure 5.10: GTT mass spectrum of SLT Passthrough events. Online implemented code

(black) and the offline prototype (red) are shown and match perfectly.

performance in terms of rate and efficiency on which the GTT µ trigger is compared.

5.6.2 GTT J/Ψ online trigger rates and efficiencies

The GTT J/Ψ algorithm if left unconstrained will trigger events at a rate 10 times higher

than the existing SLT trigger slots. It is clear therefore that some additional constraint must

be placed upon the trigger which will reduce the rate and yet preserve efficiency, as measured

by the clean J/Ψ data sample defined above.

The results of section 5.5.2 indicate that efficiency is most sensitive to an invariant mass

cut. Therefore in this section two methods of rate constraint are proposed; both of which

define a region in which the returned mass from the GTT J/Ψ algorithm is accepted. A lower

limit is first defined below which events are rejected. The effect of raising this limit from

zero is seen in figure 5.11. It can be seen that when the lower limit is zeroed the measured
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rate is far from acceptable at 6 times higher than the high-rate GTT05. Increasing the

lower limit rapidly reduces the rate, however at Mlower = 4 where RateGTT J/Ψ = RateGTT05

an efficiency of around 5% is measured. Study of figure 5.11 indicates that the GTT J/Ψ

algorithm operates with the highest efficiency (85%) until the lower limit approaches MJ/Ψ

when understandably it falls rapidly. Prior to this drop however the rate is still unacceptably

high at roughly twice that of GTT05. This method of restraint is therefore considered not

suitable for a J/Ψ trigger, more suitable instead for the high mass Υ trigger.

In the second method a mass window is defined centered about MJ/Ψ = 3.1 GeV such

that accepted events satisfy

3.1−MDev < MGTT J/Ψ < 3.1 +MDev.

In this instance MGTT J/Ψ is the mass returned by the GTT J/Ψ trigger algorithm. The

effect on rate and efficiency of expanding the parameter MDev is shown in figure 5.12. At

even the lowest tested deviation of 0.1 GeV the efficiency is superior to MU02 and HFL19 at

40%, 30% and 20% respectively. At this mass there is still room for manoeuvre in that only

a third of the budget for rate is harnessed. A mass window of 3.1 ± 0.8 GeV provides the

lowest rate that preserves the existing efficiency levels, however the rate overshoots that of

the existing triggers by 50%. The most reasonable balance is struck with a range of 3.1±0.5

GeV at which point the rate is equal to that of a typical trigger system and an efficiency of

around 65% is recorded, a drop of only 10% from the maximum available. This corresponds

to the findings of section 5.5.2.

The real benefits do not come from matching rates and efficiencies, but rather from

exclusive selection of J/Ψ events. That is to say that the J/Ψs detected by the GTT

are often different from those detected by the existing triggers. A combination of triggers

would therefore noticeably improve statistics when figure 5.13 is considered. To quantify

this increase we first define the form of the GTT J/Ψ trigger to be used. The decision was

taken to implement the mass range which struck the most reasonable balance between rate

and efficiency, passing only events for which the evaluated trigger mass fell in the range of

3.1 ± 0.5. The Venn diagram in 5.13 indicates that 18.7% of the J/Ψ sample consists of

events which activate both the GTT and HFL19 triggers, 46.3% are triggered exclusively by
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Figure 5.11: Efficiencies and rates of standard SLT triggers (indicated by coloured lines)

compared to the GTT J/Ψ trigger (red) as a function of lower mass limit. Rates were tested

on a sample of SLT passthroughs and efficiencies on an offline selection of J/Ψ events.
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Figure 5.13: Venn diagrams showing the efficiencies of different trigger combinations for

tagging clean J/Ψ events.

the GTT trigger and only 10.8% are triggered only by HFL19. This means that for every

100 J/Ψs present HFL19 only detects 10.8 + 18.7. Introduction of the new GTT trigger

detects an additional 46.3 J/Ψ events. Similarly the GTT detects an additional 52.6 and

17.7 J/Ψs for every 12.5 + 9.8 and 47.5 + 22.3 detected by MU02 and GTT05 respectively.

The statistical advantage gained by using the GTT extends therefore from an increase of

17.7% to 52.6% additional J/Ψ events.

The number of events in the passthrough sample (figure 5.14) flagged by the GTT J/Ψ

trigger comprise a selection missed by the standard triggers. Indeed between 15% and 52%

of J/Ψs are found by the GTT exclusively, and between 0.2% and 25% are found exclusively

by the other triggers. The overlap region ranges from 12.5% to 49.1%, and occasionally no
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SLT Passthrough Events.

SLT trigger detects the event.

This clearly demonstrates that statistical advantages may be gained by using this trigger

system and at rates and efficiencies compatible with those already in operation at ZEUS.

Indeed as many as 52.6% of the events triggered with this algorithm are unique and so when

used in tandem with other triggers statistics could be increased by just over 50% in favorable

conditions. This benefit was reduced to an increase of 15.9 when compared to an ’OR’ of

GTT05 and MU02, although a significant gain is still achieved. Overall at a cost of a 5%

increase in rate there is a 50% increase in efficiency when the GTT J/Ψ trigger is used.
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5.6.3 Upsilon Proposal

The same system may in principle be used as an Υ trigger. It is clear that no adjustments

are needed to the GTT J/Ψ algorithm, only to the prescribed mass window in which the

trigger will fire. For the Υ trigger it is recommended that the lower mass limit method is

implemented as indicated in figure 5.15, above 7 GeV so as not to cut into the signal at

MΥ = 9.46 GeV. At this level the rate is comparable with the GTT05 trigger, which is

the trigger considered here with the lowest rate. A rate two thirds that of GTT05 may be

obtained by raising this limit to 8 GeV although any further restriction will result in a loss

of signal and efficiency as seen in the J/Ψ study. A limit has yet to be placed online, giving

physics groups the freedom to determine their own cut off value for implementation.

Passthrough Sample

R
at

e

Lower Mass Limit

2 4 6 8 10 12 14 16 18 20
0

2000

4000

6000

8000

10000

12000

14000

GTT
GTT05 .OR. MU02
HFL19
SPP4
MU02
GTT05
JPSI WORD

2 4 6 8 10 12 14 16 18 20
0

2000

4000

6000

8000

10000

12000

14000

Figure 5.15: Region recommended for Υ flagging highlighted in yellow. The GTT Υ trigger

rate (red) is measured in arbitrary units relative to existing triggers shown in the remaining

coloured lines. A SLT passthrough sample was used to determine the rate.
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5.7 Summary

In this chapter a feasibility study concerning the use of the Global Tracking Trigger (GTT)

to select J/Ψ events was conducted. After an overview of the ZEUS tracking system and a

discussion of the operation of the GTT the principles of the proposed invariant mass trigger

were selected. After an efficiency, signal to noise and trigger rate study it was recommended

that events should be selected if the computed invariant mass falls within 2.6 < MJ/Ψ < 3.6.

This J/Ψ trigger developed in this chapter can be used to flag unique J/Ψ events that would

not have been found using existing triggers. Statistics may be improved by as much as 50%

if this trigger is used in conjunction with them. This invariant mass trigger quantity has

been installed online and is ready for use by the physics groups.
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Chapter 6

Event Reconstruction

This chapter describes how a selection of important event kinematics are reconstructed at

ZEUS and quantifies the extent to which MC faithfully replicates how these quantities appear

in data. It opens with a brief study of the MC description of the trigger chain to determine

whether a trigger-based systematic error is required. This is followed by definitions of the

Double Angle, Electron and Jacquet-Blondel methods of reconstructing x, y and Q2 and

measurements of their resolution, purity and efficiency. The hadronic and electron energy

scales necessary to improve MC description of the data are then defined and justified, followed

by an explicit statement of the event selection cuts. The chapter concludes with a comparison

of control plots between RAPGAP and HERWIG to determine which shall be the principal

MC for extracting cross-sections.

6.1 Trigger study

The DIS event sample used in this analysis was selected using triggers at the first and third

level of the ZEUS trigger system. The event was required to fire any one of FLT triggers 30,

34, 36, 44 or 46 and either of the TLT triggers SPP02 or HFL02. If the event passed both

of these trigger levels it was included in the data sample. The definitions of these triggers

are given in appendix A.2.1, although broadly speaking the FLT triggers require an energy

deposit somewhere in the detector (with the exception of FLT 46 which also has a tracking

requirement), and the TLT triggers require either the presence of a D meson or for the event
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to have passed a number of standard DIS selection cuts.

The FLT trigger configuration used in this analysis is therefore simply an OR of each of

the FLT triggers listed above. To measure the degree to which the MC models the trigger

response seen in data one trigger was removed from the FLT chain and the amount of events

lost was recorded. This measurement is made in the (Q2 − y) bins from which F cc̄
2 will be

extracted in this thesis. The results are shown in figures 6.1 to 6.5 using a scale in which a

value of 0.95 corresponds to a loss of 5% of the total events that fired the standard trigger

configuration. In every bin and for every trigger there is excellent agreement between MC

and DATA, with typical disagreement of the order of a few %. The largest disagreement is

never greater than 5% although such figures are rare and occur only in isolated bins. The

same measurements are repeated for the TLT triggers and the results are given in figures

6.6 and 6.7 showing excellent agreement between MC and DATA in all bins.

In conclusion the removal of one trigger is carefully balanced by the presence of other

triggers and the response to its removal is well described by Monte Carlo; in almost every

bin the relative rate stays between 95% and 100% for both MC and data. Because the MC

and data are in good agreement it is therefore not necessary to include a systematic error

based on trigger effects in this analysis and the matter is not considered further.

6.2 Reconstruction of Event Kinematics

The kinematics of a DIS event may be specified with any two of the Lorentz invariant

variables specified in section 2.1. To reconstruct these variables the ZEUS detector measures

the scattered electron energy, E ′

e, its polar angle, θe and the transverse and longitudinal

momentum of the hadronic final state. This information may be arranged in a number of

configurations to reconstruct the kinematic variables. The method of reconstruction chosen

depends on resolution and migration issues in the measured kinematic region. This section

will review the definitions of the electron, double angle and Jacquet-Blondel methods of

reconstruction used in this analysis.
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Figure 6.1: The fraction of total FLT events passed when FLT 30 is removed from the FLT

trigger chain in Q2− y bins. The MC rates are represented by open triangles and the DATA

rates are represented by solid triangles.
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Figure 6.2: The fraction of total FLT events passed when FLT 34 is removed from the FLT

trigger chain in Q2− y bins. The MC rates are represented by open triangles and the DATA

rates are represented by solid triangles.
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Figure 6.3: The fraction of total FLT events passed when FLT 36 is removed from the FLT

trigger chain in Q2− y bins. The MC rates are represented by open triangles and the DATA

rates are represented by solid triangles.
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Figure 6.4: The fraction of total FLT events passed when FLT 44 is removed from the FLT

trigger chain in Q2− y bins. The MC rates are represented by open triangles and the DATA

rates are represented by solid triangles.

96



Y

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Re
la

tiv
e 

Ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Removed: FLT46 5 < Q2 < 6.5

MC
DATA

Removed: FLT46 5 < Q2 < 6.5

Y

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Re
la

tiv
e 

Ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Removed: FLT46 6.5 < Q2 < 9

MC
DATA

Removed: FLT46 6.5 < Q2 < 9

Y

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Re
la

tiv
e 

Ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Removed: FLT46 9 < Q2 < 14

MC
DATA

Removed: FLT46 9 < Q2 < 14

Y

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Re
la

tiv
e 

Ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Removed: FLT46 14 < Q2 < 22

MC
DATA

Removed: FLT46 14 < Q2 < 22

Y

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Re
la

tiv
e 

Ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Removed: FLT46 22 < Q2 < 44

MC
DATA

Removed: FLT46 22 < Q2 < 44

Y

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Re
la

tiv
e 

Ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Removed: FLT46 44 < Q2 < 90

MC
DATA

Removed: FLT46 44 < Q2 < 90

Y

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Re
la

tiv
e 

Ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Removed: FLT46 90 < Q2 < 200

MC
DATA

Removed: FLT46 90 < Q2 < 200

Y

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Re
la

tiv
e 

Ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Removed: FLT46 200 < Q2 < 1000

MC
DATA

Removed: FLT46 200 < Q2 < 1000

Figure 6.5: The fraction of total FLT events passed when FLT 46 is removed from the FLT

trigger chain in Q2− y bins. The MC rates are represented by open triangles and the DATA

rates are represented by solid triangles.

6.2.1 The Electron Method

The Electron method reconstructs the event variables using only information about the

scattered electron. It is therefore important when using this method to ensure that the

electron is well identified and reconstructed. The electron method is sensitive to initial and

final state radiation since it assumes that the incoming energy is that of the beam. The

required quantities are the scattered electron energy (Ee′) and the angle of scatter (θe)

xe = EeEe′

(

1− cos θe

2EpEe − EpEe′(1− cos θe)

)

ye = 1− Ee′

(

1− cos θe

2Ee

)

Q2
e = 2EeEe′(1 + cos θe)

θe is defined as the angle between the scattered electron and the z-axis as illustrated in

figure 6.8 and Ep, Ee are the positron and electron beam energies respectively. Fake electron

deposits are caused by hadronic activity in photoproduction events and contribute to a high

yel value. These can be rejected with a cut on yel which helps select a purely DIS sample.
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Figure 6.6: The fraction of total TLT events passed when HFL 02 is removed from the TLT

trigger chain in Q2− y bins. The MC rates are represented by open triangles and the DATA

rates are represented by solid triangles.
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Figure 6.7: The fraction of total TLT events passed when SPP 02 is removed from the TLT

trigger chain in Q2− y bins. The MC rates are represented by open triangles and the DATA

rates are represented by solid triangles.
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Figure 6.8: Diagram illustrating the scattering angle θe of an electron interacting with quark

q. The hadronic scattering angle γ is also shown.

6.2.2 The Jacquet-Blondel Method

The Jacquet-Blondel (JB) method [46] is similar in principle to the electron method although

it relies only on measurements of the hadronic system. Where in the electron method a

measurement was made of the lepton scattering angle and energy, the JB method measures

the scattered quarks’ angle and energy. Since this may not be measured directly it is naively

assumed that the quark originally followed the same path as the jet of particles it inspired.

In this thesis JB is only used to reconstruct y by

yJB =
δh

2Ee

where δh is the hadronic E − Pz contribution

δh =
∑

h

(E − pz)

whose sum runs over the energy deposits of all final state hadrons in the CAL.

This method is sensitive to the hadronic energy scale and so requires that the entire

hadronic system is contained. It is often used in photoproduction selections where infor-

mation on the lepton is typically lost since energy losses down the forward beampipe do

not contribute much to y. yJB is an excellent measure of hadronic activity and since D∗

events will have a hadronic signal of at least MD∗ = 2 GeV, a cut of yJB ≈ 0.04 will reject
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a significant amount of background activity. In this thesis a cut of yJB > 0.02 is applied to

reject events that would have insufficient hadronic activity to be amenable to the Double

Angle method.

6.2.3 The Double Angle Method

The double angle (DA) method provides a good reconstruction over a wide kinematic range.

The DA method measures the electron polar angle and the hadronic angle γ which in LO

DIS approximates to the scattering angle of the struck quark (as illustrated in figure 6.8)

and where

cos γ =
(
∑

h Px,h)
2 + (

∑

h Py,h)
2 − (

∑

h(E − pz))
2

(
∑

h Px,h)2 + (
∑

h Py,h)2 + (
∑

h(E − pz))2
=
P 2
⊥,h − δ2

h

P 2
⊥,h + δ2

h

for which
∑

h runs over the hadronic energy deposits in the CAL. To ensure that sufficient

hadronic activity exists in the event for γ to be well reconstructed a cut of yJB > 0.02 is

imposed as a detector cut. x, y and Q2 are expressed in terms of γ in the following relations:

xDA =
Ee

Ep

sin γ + sin θe + sin(θe + γ)

sin γ + sin θe − sin(θe + γ)

yDA = sin θe
1− cos γ

sin γ + sin θe − sin(θe + γ)

Q2
DA = 4E2

e sin γ
1 + cos γ

sin γ + sin θe − sin(θe + γ)

The double angle method has the advantage of being relatively insensitive to the electron

energy scales and is only slightly affected by radiative corrections.

6.3 Resolution of Electron, Jacquet-Blondel and Dou-

ble Angle reconstructions

To select the most appropriate method of reconstructing Q2 and y their resolutions were

measured in a number of (Q2, y) bins. The resolution in (Q2, y) bin i, σi, is a measure of the

spread of difference between the true and reconstructed values. It is defined as

σi = σ
(

True − Rec

True

)
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and is identified as the width of a gaussian fit to the (True − Rec)/True distribution in each

bin i. In this thesis the resolution was measured using the same 484 pb−1 of RAPGAP MC

as used in chapter 8 to measure F cc̄
2 . The resolution is evaluated for measurements of Q2,

x and y for all three reconstruction techniques listed in the previous section, although only

Q2 and y resolutions are shown here since the others are not directly relevant to this thesis.

The resolutions are evaluated in (y,Q2) bins identical to those used in the extraction

of F cc̄
2 . The position of these bins in the (Q2, x) kinematic plane is given in figure 6.9, the

resolutions given in this thesis are shown as a grid of gaussian distributions arranged as shown

by the lower half of this figure. This figure indicates how the position of the resolution plots

in the format used in this thesis correspond to the kinematic regions measured. Generally

speaking Q2 increases along the y axis and y increases along the x axis, although the bin

sizes themselves are variable.

Figure 6.10 is the resolution of Q2 as measured by the double angle method. The reso-

lution improves with increasing Q2, falling from 10% in the lowest y, lowest Q2 bin to 3% in

the lowest y, highest Q2 bin. Resolution decreases with increasing y and becomes as poor as

20% in the lowest Q2 highest y region. The double angle method outperforms the electron

method in the lower y region but is poorer at higher y, generally producing resolutions of

around 9% in most bins.

Measuring y using the electron method shows poor (63%) resolution in the lowest Q2 and

y bin (figure 6.13). This increases with rising Q2 to a maximum of 40%, and also improves

with rising y to resolutions of the order of 10%. The double angle method (figure 6.12)

follows similar trends but is superior in most low y bins, particularly in the low Q2 low y

region where it has a resolution of 31%. At high Q2 we see a resolution as low as 8% and

at low Q2 as low as 25%. The electron method gives a better resolution in the highest y

region and so to improve overall resolution a composite system of the two methods could

be introduced. This would however introduce complications in the overlap region of the two

methods and so is not considered in this analysis. The Jacquet Blondel method is useful for

reconstructing the y parameter as indicated by the distributions in figure 6.14. Unlike JB

reconstructions of x and Q2 the y distributions are gaussian in every bin. In particular the

JB reconstruction of y is the best out of all three methods for reconstructing in the lowest y
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Figure 6.9: The (Q2, x) kinematic plane identifying the bins in which σ(D∗) is extracted

(above) and the corresponding position of these bins in the format in which the resolution

plots are given in this thesis (below).
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= 0.01µ = 0.03σ = 0.00µ = 0.05σ = -0.02µ = 0.09σ = -0.05µ = 0.18σ

= 0.01µ = 0.04σ = -0.00µ = 0.06σ = -0.03µ = 0.10σ = -0.09µ = 0.21σ

= 0.01µ = 0.05σ = -0.00µ = 0.07σ = -0.03µ = 0.12σ = -0.11µ = 0.23σ

= -0.01µ = 0.06σ = -0.03µ = 0.10σ = -0.13µ = 0.20σ

= -0.04µ = 0.10σ = -0.06µ = 0.10σ = -0.11µ = 0.12σ = -0.25µ = 0.20σ

Figure 6.10: Q2 resolution using the double angle method in bins of Q2 and y. Q2 increases

vertically and y increases horizontally. The x-axis (not shown) runs from −2 to +2.
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= 0.02µ = 0.10σ = 0.02µ = 0.09σ = 0.02µ = 0.09σ = 0.01µ = 0.09σ

Figure 6.11: Q2 resolution using the electron method in bins of Q2 and y. Q2 increases

vertically and y increases horizontally. The x-axis (not shown) runs from −2 to +2.
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Figure 6.12: y resolution using the double angle method in bins of Q2 and y. Q2 increases

vertically and y increases horizontally. The x-axis (not shown) runs from −2 to +2.
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Figure 6.13: y resolution using the electron method in bins of Q2 and y. Q2 increases

vertically and y increases horizontally. The x-axis (not shown) runs from −2 to +2.
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Figure 6.14: y resolution using the Jacquet-Blondel method in bins of Q2 and y. Q2 increases

vertically and y increases horizontally. The x-axis (not shown) runs from −2 to +2.

107



bins. For low Q2 low y where the electron method struggles, the JB method has a resolution

of 23%, sufficient to enable a default cut at yJB > 0.02. In conclusion the double angle

method typically gives a superior resolution to the electron and JB method. Therefore in

the data selection the double angle method is used with 5 < Q2 < 1000 GeV2 and y < 0.7

cuts. The JB method has good resolution at low y and so is utilised in the y > 0.02 cut to

ensure that there is a minimum hadronic activity in the event. An additional yel < 0.95 DIS

cleaning cut is also placed using the electron method.

6.4 Efficiency, purity and acceptances of reconstruc-

tion methods

The purity of a sample in any given bin is defined as the fraction of events generated and

reconstructed in a particular bin over those reconstructed in that bin. For any bin i purity

Pi is therefore given by

Pi =
NGen

i ∩NRec
i

NRec
i

where NRec
i is the number of events reconstructed in the bin and NGen

i is the number gen-

erated in that bin. Similarly efficiency is defined as

Ei =
NGen

i ∩NRec
i

NGen
i

where NRec
i and NGen

i are defined as before and ∩ represents the overlap of events generated

and reconstructed in the ith bin. Measurements of purity and efficiency are useful indicators

of whether the chosen bin sizes are suitable and gauge the level of migration of true level

events between bins. Events which are reconstructed with low efficiencies will rely more

heavily on the MC simulation to accurately describe the event; this situation is undesirable

if one wishes to produce a reliable measurement independent of the choice of MC package

used. Detector inefficiencies in cross section measurements are corrected using the 1/Ai

factor where Ai is the acceptance and is related to purity and efficiency by

1

Ai
=
Pi

Ei
(6.1)

The acceptances used in the measurement of F cc̄
2 are discussed in more detail in chapter 8.
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Figure 6.15: Purity (open circles) and Efficiency (closed circles) values in bins of y and Q2

as measured using the double angle method.
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Figure 6.16: Purity (open circles) and Efficiency (closed circles) values in bins of y and Q2

as measured using the electron method.
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Figure 6.15 shows the purities in open circles and efficiencies in closed circles for the

Monte Carlo sample used in section 6.3. In the lowest Q2 bin the purity falls from 40% to

30% with increasing y and efficiency follows the same trend but falls from 40% to 20%. The

low purities and efficiencies are expected because of the poor resolution in this kinematic

region. Both purity and efficiency improve with Q2 reaching 90% in the 200 < Q2 < 1000

GeV2 region. Generally speaking both quantities improve with increasing y at lower Q2

although for Q2 > 44 GeV2 the distributions are relatively flat with varying y. High y

events are broadly susceptible to migrations between bins leading to lower purities in these

regions. Both quantities follow the same broad pattern and so the migrations into and out

of the bins are the same in all bins and therefore the corrections are close to one.

Figure 6.16 shows purity and efficiencies in the same format as measured by the electron

method. As with the double angle method these quantities increase with rising Q2, although

the improvement is not as marked; in the highest Q2 bin the efficiency is between 65% and

85%, and the purity between 80% and 90%. Unlike the double angle method, the purity

rises with increasing y, typically increasing by about 40%. Efficiency is less sensitive to y

and varies by no more than 20% at most, and in some Q2 bins by as little as 5%. As with

the double angle method both quantities exhibit the same trends and so the migrations in

and out of bins balance.

Overall the double angle method displays higher purity and efficiencies at larger Q2 and

the electron method is better at lower Q2. As expected a general rise in purity corresponds

to an improvement in resolution and so purity and efficiency are functions of y. It would

be possible to improve the measurement by using a combination of the electron and double

angle methods, although this would lead to complications in the threshold region and so is

not considered in this thesis.

This thesis will in part attempt to improve upon the HERA I F cc̄
2 measurement by

improving the accuracy in the statistically limited high Q2 bins. Therefore it is important

to minimise the acceptance corrections in this region and to have a high efficiency of event

reconstruction. The measurements in chapter 8 will therefore be made primarily with the

double angle method, although the electron method is also used as a systematic cross check.

The decision to primarily use the double angle method is also based on the results of the
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resolution study earlier in this chapter.

The results of this study indicate that there will be significant drift between bins in lower

Q2 events and that the agreement between true and reconstructed tracks is superior at high

Q2. We therefore expect the D∗ scaled momentum distributions as measured in chapter

9 to be worse at lower Q2 and y. Transformation into the Breit frame requires accurate

reconstruction of the electron 4-momentum and of x in construction of the boost vector. If

these quantities cannot be measured with high purity and efficiency then the accuracy of the

final measurement will be compromised.

6.5 E − Pz corrections

The difference between the total event energy and longitudinal momentum is calculated by

summing over the energy (Ei) and longitudinal momentum (Pzi) of the calorimeter cells

using

δ = E − Pz =
∑

i

(Ei − Pzi).

A cut on this quantity is used as an alternative to one based on energy conservation, a

principle which cannot be used at ZEUS due to energy losses down the beampipe. δ is

exactly conserved when the scattered lepton is detected in the main detector and peaks at

2Ee, arising because the incoming proton has E = Pz before and after the scattering it will

provide no contribution to δ. In contrast the electron will contribute double since in the

ZEUS co-ordinate frame it is traveling in a negative z direction and so δ = 2Ee ≈ 55GeV

before the scattering process.

δ is very sensitive to losses in the rear region and generally insensitive to forward losses

typically only seen in photoproduction and beam-gas events. These events have low values of

δ and peak well below δ = 30 GeV. In contrast DIS events do not exhibit electron energy loss

down the beampipe and so δ will be conserved after the collision. Therefore demanding a cut

of 30 < δ < 60 will ensure that a clean sample of DIS events has been selected. However the

MC description of δ does not correspond well to that seen in data. Indeed the discrepancy

between δ distributions in data and MC is significant and peaks in data at approximately

5 GeV lower than in MC (figure 6.18). This section will describe the corrections to the
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hadronic and leptonic energy scales necessary to improve the description and which will be

used in all measurements in this thesis.

6.5.1 Correction of hadronic and electron energies

The discrepancy between data and MC is significant and must be corrected for to reduce

the systematic errors associated with the measurement. Because δ may be broken down into

contributions from the electron (δe) and hadronic (δhad) system (so that δ = δhad + δe) it

is possible to improve agreement by adjusting separately the hadronic and electron energy

scales. In a 2006 ZEUS NC DIS publication [45] the corrections applied were scales of

SH = 0.97 to the hadronic system and SE = 0.98 to the electron energy in MC only. In this

paper the electron energy was also smeared by 3%. These corrections are used to improve

description of the CAL energy loss due to inactive material [47].

Such corrections are used in conjunction with the standard adjustments to the energies

already made at ZEUS. In this procedure the electron energy is adjusted using HES and

SRTD information to account for any energy loss and to correct for hits that occur at the

edge of cells. The hadronic energy is also normally corrected using an algorithm named

corandcut [48], which removes any electron contribution and evaluates a corrected energy

assuming the system is now entirely hadronic. Corandcut also corrects for back-splash,

where the hadrons bounce off of the FCAL and contribute twice, and for any energy loss

down cracks between cells and dead material [48].

To confirm that the SE = 0.98 is a reasonable correction this quantity was adjusted and

its effect on a number of standard DIS control plots was measured. The agreement between

MC and data was parameterised using a χ2 quantity

χ2 =
∑

i

(MCi −DATAi)
2

σ2
i

.

where i runs over the bins in which the MC and DATA measurements of the various DIS

quantities are made. Figure 6.17 shows how this quantity varies for: y, as measured using

the electron, double angle and JB method; Q2 as measured using the electron and double

angle method; the corrected electron energy; x as measured using the electron and double

angle method; and δ. χ2 is shown as a function of SE which is varied from 0.9 to 1.05, the
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Figure 6.17: χ2 as a function of energy scale for DIS kinematic control plots. The blue

region represents the range over which the energy scale is altered to determine the systematic

uncertainty associated with the Electron energy.
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Figure 6.18: δ distributions before (left) and after (right) scaling and smearing of hadronic

and electromagnetic components. Data is shown in points and MC is shown in green blocks.

Before correction δ peaks at lower energies in data.

blue band indicates the range over which the electron energy scale is adjusted in calculation

of the associated systematic error. As expected the electron method is most sensitive to SE,

the double angle and JB reconstructions of Q2, y and x are generally unaffected by varying

SE. ye agrees with MC best when a scale of SE ≈ 0.99 is applied, x is clearly minimised with

a scale of SE ≈ 0.98 and Q2 seems to be insensitive for SE < 0.99 after which the agreement

worsens rapidly. The corrected electron energy itself follows the same trend as ye and is

best described with SE ≈ 0.99. The best description of δ, the quantity these corrections are

intended to improve, is achieved with SE = 0.98 which gives a clear and graphically obvious

minimisation.

The effect of this correction on δ is shown in figure 6.18 showing the MC distribution

in green blocks and the data distribution in points. Prior to the corrections the MC peaks

3 GeV higher than the data, afterwards the agreement is much more satisfactory. These

corrections are applied in all future measurements in this thesis.
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6.6 Event Selection Cuts

This section summarises the cuts used to select the DIS events in this analysis. These cuts

were based on the resolution results in this chapter and motivated by a desire to mirror the

cuts used in the HERA I measurement of F cc̄
2 [49]. The event selection cuts are as follows:

• Triggers

– FLT30 ∪ FLT34 ∪ FLT36 ∪ FLT44 ∪ FLT46

– HFL02 ∪ SPP02

• Detector Cuts

– 5 < Q2
DA < 1000 GeV2

– yJB > 0.02

– yDA < 0.7

– ye < 0.95

– 40 < δ < 60 GeV

– |Zvtx| < 30 cm

– Ecorrected > 10 GeV

The FLT and TLTs are defined explicitly in section 6.1. In general the FLTs require deposits

of energy consistent with a DIS event and to reject beam-gas background. At the TLT (where

it is possible to fully reconstruct the event) at least one charmed hadron candidate must be

found. An event was required to pass at least one first and one third level trigger.

The kinematic region was defined by cuts of 5 < Q2
DA < 1000 GeV2, yJB > 0.02 and

yDA < 0.7, where the double angle method was used as the primary reconstruction tool.

This kinematic region is similar to the HERA I measurement except that HERA I extended

from 3.5 < Q2 < 1000 GeV2. This is because the movement of the CAL to accommodate

the installation of the MVD altered the smallest angle at which the scattered electron could

be measured, in turn raising the lowest possible Q2 measurement.
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The 40 < δ < 60 GeV cut is used to reject photoproduction events or DIS events with

high energy Initial-State-Radiation (ISR). To reduce the background arising from beam-gas

interactions events were required to have a reconstructed vertex within 30 cm of the nominal

interaction point in z. Finally, to ensure that the electron was well reconstructed it was

demanded that it’s energy was > 10 GeV.

6.7 DIS Control Plots

To have confidence in the ability of the MC packages to unfold cross sections it is imperative

that the event variables used in the measurement are similar in both MC and data. At

ZEUS there are two principle MC packages; RAPGAP[9] and HERWIG[10]. In this section

the accuracy with which these two MC packages can reproduce distributions seen in data is

compared to determine which should be the principle measurement tool. As a systematic

check the cross-sections will also be unfolded using the inferior package.

The upper half of figure 6.19 shows a selection of DIS kinematic variables as measured

in data (points) and modeled by HERWIG (yellow). The lower half of this figure shows the

same parameters but this time as modeled by RAPGAP. On each plot the parameter χ2 is

shown which gauges the agreement between MC and data. In these plots χ2 is defined as

χ2 =
∑

bins

(AMC
i − AData

i )2

(σAData
i

)2
. (6.2)

where AMC
i and AData

i represent the entry in the ith bin of observable A’s distribution in

MC and data respectively, and finally σAData
i

is the error associated with AData
i . Each Ai

point has been background subtracted using the wrong charge method. A lower χ2 value

corresponds to better agreement between MC and data.

HERWIG does a poor job of reconstructing y in using all three reconstruction methods.

Whilst the reconstruction is better at large y, at lower values the MC dramatically under-

estimates the measured value. Such discrepancy will cause a large systematic error at these

values of y when switching between packages. HERWIG also struggles to model the Q2

distribution of the data using both the electron and double angle reconstruction methods.

As with y the description is reasonable at larger values but much poorer at the lowest bins
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Figure 6.19: DIS kinematics control plots. Distributions of y, Q2 and x are shown measured

using different methods. Electron energy and E − pZ distributions are also shown. The

upper plot shows the agreement between data (points) and HERWIG (yellow) for these

parameters, the lower plot shows data and RAPGAP (yellow). A measurement of χ2 is also

shown which quantifies the agreement between MC and data. Background subtraction has

been performed in each bin.
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where the data bins are more populated. The HERWIG description of corrected energy, xe,

xDA and E − pZ are reasonable and are comparable with the RAPGAP reconstruction.

In contrast RAPGAP does a much better job of reconstructing y although there is still a

slight discrepancy in the earliest bins. Q2 is well described using both reconstruction methods

and the reconstruction of the corrected energy, xe, xDA and E−pZ are all reasonable. Because

RAPGAP offers a superior representation of the data it is chosen as the primary tool for

calculating acceptances. However the representation is not perfect and work is ongoing at

HERA II to improve the MC. This work is outwith the scope of this thesis and at present

MC remains a large source of systematic error.

6.8 Summary

In this chapter we learned that the trigger system is well simulated in MC and that it is

not necessary to include a trigger-based systematic in the measurement. The resolution of

the double angle method of event reconstruction was found to be superior to that of the

JB and electron methods and so will be the principle reconstruction tool in this thesis. To

improve the MC description of E − pZ it was found necessary to scale the hadronic system

by 0.97 and to scale and smear the electron energy by 0.98 and 3% respectively. The event

selection cuts were then explicitly stated and the chapter concluded a comparison of two

MC packages, finding that RAPGAP most faithfully reproduces what is seen in data.
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Chapter 7

D∗ Reconstruction

In this chapter the tracking capabilities of HERA II are compared with those of HERA I,

and D∗ reconstruction from tracks is described. Whilst HERA II tracking is superior at high

pT the resolution is inferior at lower momenta owing to the increased multiple scattering in

the MVD. D∗ reconstruction is then described and a discussion is made of how its reliance

on tracks makes it more difficult at HERA II. The chapter then moves on to describe how

D∗s are counted using ∆M distributions and we learn how the error associated with it is

calculated. As with the previous chapter on event reconstruction, this chapter concludes

with a comparison of control plots between RAPGAP and HERWIG to identify where we

expect to find large systematic errors associated with D∗ measurements.

7.1 Reconstruction of D∗

The D∗ mesons are identified using the decay channel D∗ → D0π+
s with the subsequent

decay D0 → K−π+, where π+
s refers to a low momentum (“slow”) pion. Charge conjugation

is implied. Reconstructed detector tracks are used to reconstructed D∗ candidates using the

following process.

D0 candidates are formed by combining oppositely charged tracks with pT > 0.4 GeV

and |η| < 1.75 which are alternately assigned the mass of the K and π and the invariant

mass of the track pair, MKπ, is calculated. This D0 meson candidate is combined with a

final third track with a charge opposite to that of the track assigned the kaon mass. This
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third track is assigned the mass of the pion and the combination of all three tracks forms a

D∗ candidate. The combinatorial background is determined by assembling wrong-charge D∗

candidates for which the kaon and pion tracks have the same charge and the slow pion track

has the opposite charge. The spectrum of combinations for which 1.80 < M(D0) < 1.92

GeV and 0.143 < ∆M < 0.148 GeV is used where M(D0) is the reconstructed mass of the

D0 and ∆M = MKππs
−MKπ.

Once the D∗ candidates have been reconstructed the cuts which determine the kinematic

region for D∗ production may be applied; 1.5 < pT (D∗) < 15 GeV and |η(D∗)| < 1.5. Once

these cuts have been made the D∗ ∆M distribution is histogrammed and fit to a modified

gaussian of the form:

MG = p1exp
(

−1

2
x1+ 1

1+0.5x

)

+ p4(∆M −mπ)p5

where x = |(∆M − p2)/p3|, the pi are free parameter and mπ is the pion mass. This

distribution is shown in figure 7.1 with the corresponding fit to a modified gaussian given

shown in blue. The fit is only used to extract N(D∗) as a systematic cross check in the

evaluation of cross sections and F cc̄
2 .

The following list summarises the track cuts that are used in the reconstruction of D∗

candidates:

• 1.5 < pT (D∗) < 15 GeV

• −1.5 < η(D∗) < 1.5

• pT (K, π) > 0.4 GeV

• pT (πs) > 0.12 GeV

• −1.75 < η(K, π, πs) < 1.75

• 1.80 < M(D0) < 1.92 GeV

• 0.143 < ∆M < 1.48 GeV

The kinematic region of the final measurement is given by the D∗ cuts in the first two points

and the rest of the cuts reject very low resolution tracks and those that fall outside of the

CTD central region.
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Figure 7.1: The HERA II ∆M distribution for D∗ candidates (points) is shown with the

corresponding wrong charge distribution (yellow). The solid line is a modified gaussian fit

to the distribution.

Figure 7.2: The HERA I ∆M distribution for D∗ candidates (points) is shown with the

corresponding wrong charge distribution (yellow) [52]. The solid line is a modified gaussian

fit to the distribution.
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7.2 Extraction of ∆M(D∗) distribution

D∗ reconstruction relies entirely on combining all possible track configurations from tracks

that conform to the requirements listed in the previous section. This procedure creates a large

number of meaningless background combinations that arise from random track configurations

that must be accounted for and removed. Combinatorial background is significant and

accounts for around half of the total candidates in the signal region.

Background is estimated by storing D∗ candidates constructed from wrong charge track

combinations (defined in section 7.1) corresponding to unphysical particles and which have

a mathematically identical shape to the background in the ∆M(D∗) distributions. To count

the number of reconstructed D∗’s the wrong-charge background must be subtracted from the

right-charge candidates in the region 0.143 < ∆M < 0.148. The ∆M plots are divided into

a number of regions; The signal region spans 0.143 < ∆M < 0.148 GeV and the background

normalisation region covers 0.150 < ∆M < 0.170 GeV.

Figure 7.3 [54] identifies the signal and background regions of ∆M and assigns relevant

labels. The number of D∗’s in the signal region for the right charge combination candidates is

A and the number in the background normalisation region is B. The corresponding labels for

the wrong charge candidates are C and D for the signal and background regions respectively.

The wrong charge distribution is background normalised to the right charge region and

the two signal regions are subtracted [55]. The number of D∗ candidates is therefore

N(D∗) = N(A)− N(B)

N(D)
·N(C)

where N(A), N(B), N(C) and N(D) are the numbers in each of these regions.

The error associated with this number has a contribution from the background normali-

sation which is given by propagation of errors1 as

δN(D∗) =

√

√

√

√

√N(A) +



(N(C) ·N(B)) ·




N(C) +N(B) +N(C) · N(B)
N(D)

N(D)2









1The formula for propagation of errors

(∆f)2 =

n
∑

i=1

(

∂f

∂xi

∆xi

)2

is used to calculate the uncertainty ∆f of f where xi are independent variables with uncertainty ∆xi.
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Figure 7.3: Illustration of the signal and background regions of the right (above) and wrong

(below) charge combinations of D∗ candidates. The signal region is coloured green and the

background normalisation region is coloured purple [54].

As shown in figure 7.1 the number of D∗ mesons reconstructed using this method was

5898± 148.

To gauge the systematic uncertainty associated with the signal extraction procedure

the cuts defining the signal and background region are varied. Moreover the signal is also

extracted using a fitting procedure whereby the signal is described by a modified gaussian

(eq 7.1 ) and the background is assumed to be exponential (eq 7.2 )

Gmod(x; d, p1, p2, p3) =
d · pt√
2π · p3

exp
(

−1

2
T 1+ 1

1+0.5T

)

(7.1)

where

T = |x− p2

p3
|

123



BG = p4(x−mπ)p5 (7.2)

where x = ∆M , d is the bin width, mπ is the pion mass and p1, p2, p3, p4 and p5 are free

parameters [54]. Using this parameterisation the number of D∗’s is given by

N(D∗) = p1 ·G0

where G0 is the normalisation factor. This factor is evaluated numerically

∫ +∞

−∞

Gmod(x; d, p1, p2, p3)dx = 1.218.

The principal method of D∗ extraction is the background subtraction method which gives

the best stability over the whole kinematic region and does not rely on an accurate model of

the background distribution. As an overall check a second measurement is made using fits

and the change is found to be 3% in the lowest y bins and rising to 9% at high y, in every

case the shift is within statistical errors.

7.3 Impact of MVD on tracking resolution

In this thesis D∗s are reconstructed using tracks fitted to MVD and CTD hits. Whilst the

MVD has a superior intrinsic hit resolution it also placed a significant additional amount of

dead material between the CTD and the beam interaction point. This material, in addition to

the beampipe and CTD outer casing already present, causes charged particles to experience

increased multiple scattering as they traverse the detector. Multiple scattering has the

effect of smearing the resolution of reconstructed tracks and therefore increases the error on

any tracking measurement. Because D∗ reconstruction relies entirely on tracking there is

expected to be a large systematic error associated with it at HERA II compared with HERA

I. This arises largely from the reconstruction of the slow pion πs, whose low momentum is

highly predisposed to the multiple scattering effect and so has a low tracking resolution for

reasons described in the following section.
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7.3.1 Derivation of resolution parameterisation

The tracking resolution of ZEUS when expressed as a function of transverse track momentum

(PT ) takes the following form:

σ(PT )/PT = a0PT ⊕ a1 ⊕ a2/PT (7.3)

where ⊕ indicates that the terms are added in quadrature. This form arises from consider-

ation of both scattering effects and inaccuracies in measuring the position of hits along the

fitted track [51]. The a0PT term is justified by consideration of errors in hit measurement,

the a1 term is ascribed to multiple scattering of the particle as it traverses the CTD, and

the a2/PT term arises from multiple scattering effects prior to reaching the CTD. The coef-

ficients are determined from fits to data, and will be reduced by careful detector calibration

and precise alignment of the MVD. Given that these effects are uncorrelated they may be

safely added in quadrature to give the form presented above. A more detailed justification

of this formalism is given in appendix B.1.

7.3.2 Measurement of tracking resolution

The latest ZEUS measurement of tracking resolution [50] used Monte Carlo to determine the

new CTD + MVD tracking resolution and compared it to the 1996 HERA I values. In this

method a Monte Carlo generator was used to prepare a selection of true level events which

were passed through a simulation of the ZEUS detector. A series of cuts were then made

on a selection of random tracks ensuring that they emerged from a primary vertex, passed

through three super layers of the CTD, had |η| < 1.75, struck at least 50 CTD hits and finally

could actually be matched to a true level track. The generated tracks were then matched

to their true counterparts in a number of PT bins. In each of these bins the resolution was

evaluated by extracting the width of a gaussian fit as a function of pT . CTD+MVD tracking

resolutions were obtained as a function of PT for CTD and CTD+MVD. A fit was performed

on this resolution curve assuming the form of equation 7.3 to extract the following values

for a0, a1 and a2.

CTD Tracking : σ(PT )/PT = 0.0063PT ⊕ 0.0083⊕ 0.0032/PT
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REG Tracking : σ(PT )/PT = 0.0038PT ⊕ 0.0134⊕ 0.0033/PT

where ⊕ indicates that the terms are added in quadrature. The corresponding HERA I

result is

HERA I : σ(PT )/PT = 0.0063PT ⊕ 0.0070⊕ 0.0016/PT .

The CTD only resolution is the same as in HERA I except with additional multiple scat-

tering as expected. The REG tracking package includes MVD information and so possesses

superior hit resolution. This manifests itself in an extracted value of a0 which is half that of

the CTD tracking in HERA I and HERA II, improving the resolution at high PT by a factor

of two. However the presence of the MVD also increases the multiple scattering effect which

doubles the a1 and a2 coefficients. In short whilst higher momentum tracks are measured

with greater accuracy at HERA II, lower momentum tracks are measured more poorly. The

effect may be reduced by careful calibration of the MVD and alignment studies, although

a great deal of work is required and is still ongoing to improve the tracking to match the

HERA I level. This has great implications for the reconstruction of D∗ since it requires

accurate measurement of a low momentum slow pion. In this analysis the REG tracking

mode was used since it is reasonably well understood.

The HERA I ∆M distribution is shown in figure 7.2 below figure 7.1 which shows the

HERA II distribution. The resolution in HERA I is approximately twice as good as HERA

II which exhibits a ∆M width twice as wide. The background is also higher in HERA II

which will increase the statistical error associated with the measurement. These changes

arise as a result of the poorer tracking resolution for low pT πs at HERA II leading to a

less efficient reconstruction. Therefore there will be a large systematic error associated with

reconstruction of D∗ until the tools for reconstructing the D∗ can be refined. When the

MVD is properly aligned and ZTT tracking is fully refined it will be possible to improve

upon the measurements.

7.4 D∗ kinematics control plots

In section 6.7 RAPGAP and HERWIG control plots for a selection of DIS variables were

compared and RAPGAP was identified as the model that best agrees with data. In this
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chapter a similar comparison is made between these MC packages, although this time control

plots for D∗ kinematics are compared. The upper half of figure 7.4 shows a selection of D∗

parameters as measured in data (points) and modeled by HERWIG (yellow). The lower half

of this figure shows the same parameters but this time as modeled by RAPGAP. On each

plot the parameter χ2 is shown which gauges the agreement between MC and data and is

defined in equation 6.2.

Whilst the pT of K, π, πs and D∗ distributions have the same broad shape in both MC

and data and are well described at high pT , there is a stark departure at low values where MC

peaks at lower pT . This discrepancy is a large source of systematic error and arises in part

because ZEUS measurements at HERA II do not yet fully account for multiple scattering

effects. This potential detector effect cannot however be disentangled from the possibility

that the discrepancy is physics based, which can be quantified by manipulating the shape of

the distribution by reweighting the events with a function based on MC information. With

this weighting applied, the measurements were repeated and any shift in the final answer

recorded and added in quadrature to the other systematic shifts. This procedure is described

in more detail in section 8.4.2 and was a dominant source of systematic error.

η distributions for the K, π, πs and D∗ are in better agreement between MC and data

although both RAPGAP and HERWIG predict a less forward distribution than is measured

in data. A similar systematic to that calculated for the pT (D∗) is calculated for η(D∗)

The φ(D∗) distribution is flatter in MC although the description has the same shape and

is reasonably well described. Overall, whilst HERWIG is marginally better than RAPGAP

at modelling D∗ kinematics RAPGAP’s far superior description of the event kinematics

justifies its use as the primary MC. Moreover RAPGAP is known to better model the back-

ground distribution of the D∗ event sample which is important when performing background

subtraction.

The impact of the MVD on HERA II tracking is well documented [50, 56] and is discussed

briefly in section 7.3 and in greater detail in appendix B.1. Until the MVD is optimally

aligned and ZEUS finalises a tracking package capable of better modelling multiple scattering

it is not possible to improve D∗ reconstruction. D∗ reconstruction will also be improved by

developing the underlying physics modelling in the MC packages, although it not possible
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Figure 7.4: D∗ kinematics control plots. Distributions of pT and η are shown for D∗ and

it’s decay tracks. The upper plot shows the agreement between data (points) and HERWIG

(yellow) for these parameters, the lower plot shows data and RAPGAP (yellow). A measure-

ment of χ2 is also shown which quantifies the agreement between MC and data. Background

subtraction has been performed in each bin.
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to disentangle this effect from the detector and tracking factors.

7.5 Summary

In this chapter the tracking capabilities of HERA II were compared with that of HERA I

and D∗ reconstruction from tracks was described. Whilst HERA II tracking was found to be

superior at high pT the resolution was inferior at lower momenta. This feature was found to

arise from increased multiple scattering in the MVD which was installed during the HERA I

upgrade to HERA II. D∗ reconstruction was then described and we learned how it’s reliance

on tracks makes it difficult at HERA II. The chapter then moved on to describe how D∗s

are counted using ∆M distributions and a demonstration of how to calculate the associated

error was given. As with the previous chapter on event reconstruction, this chapter concluded

with a comparison of control plots between RAPGAP and HERWIG which showed a large

discrepancy between MC and data for the pT (πs) distributions, particularly at low pT . This

discrepancy is expected to be a large source of systematic error.
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Chapter 8

Measurement of Fcc̄
2

This chapter begins with a summary of the selection cuts which define the DIS data sample

from which differential cross-sections and F cc̄
2 measurements will be unfolded. The methods

by which the cross-sections and F cc̄
2 are measured are then described and the principle

systematic and theoretical errors are outlined. The chapter concludes with a presentation of

the final cross-section and F cc̄
2 measurements with the systematic, statistical and theoretical

errors included. A discussion of these results is then made, with reference to the agreement

between this measurement, the HERA I measurement and the NLO predictions.

8.1 Introduction

The abundance of charm quark production in deep inelastic scattering at HERA II has made

measurements of DIS charm production a fertile field of research. Indeed at very high Q2

charm quarks contribute roughly 30% of the total cross-section[59, 60]. The predictions of

Quantum Chromodynamics (in which the dominant source of charm production is BGF)

are consistent with the previous measurements of D∗ cross-sections[59, 60, 61, 62, 49] in the

range of 1 < Q2 < 1000 GeV2. The strong agreement between the two indicates strongly

that BGF is indeed the dominant source of charm production and hence measurements of

charm give a handle on the poorly understood gluon density in the proton.
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8.2 Summary of Selection Cuts

The NC DIS events were selected using cuts that mirror those used in the HERA I mea-

surement [49] so that if necessary the two measurements may be easily combined. These

cuts were motivated by a desire to isolate and remove background events and hence select

a purely DIS physics sample from which clean measurements can be made. This section

combines and summaries the event selection process which is discussed in more detail in

sections 5.5.1 and 6.6.

To reduce the background arising from beam gas interactions, events were required to

have a reconstructed vertex less than 30 cm away from the nominal interaction point in z.

As discussed in the previous chapter

δ = E − pz =
∑

i

Ei(1− cos θi),

was used to reject photoproduction events or DIS events with high energy Initial-State-

Radiation (ISR) by demanding that 40 < δ < 60 GeV.

The kinematic region was defined by cuts of 5 < Q2
DA < 1000 GeV2, yJB > 0.02 and

yDA < 0.7, where the double angle method was used as the primary reconstruction tool for

reasons given in section 6.3. This kinematic region is similar to that used in HERA I with

the exception that HERA I extended to 3.5 < Q2 < 1000 GeV2. This change was necessary

because during the HERA upgrade the CAL was moved to accommodate the installation

of the MVD, altering the smallest angle at which the scattered electron could be measured.

Detector cuts of yJB > 0.02 and ye < 0.95 were placed, along with the requirement that the

electron energy E > 10 GeV. The scattered electron was identified using the SINISTRA [63]

package.

A number of FLT and TLT triggers were also required as listed explicitly in section 6.1.

In general the FLT triggers require deposits of energy consistent with a DIS event and reject

beam-gas background. At the third level, where it is possible to fully reconstruct the event,

at least one charmed hadron candidate must be reconstructed for the event to be selected.

In summary the event selection cuts are as follows:
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• Triggers:

– FLT30 ∪ FLT34 ∪ FLT36 ∪ FLT44 ∪ FLT46.

– HFL02 ∪ SPP02.

• Detector Cuts:

– 5 < Q2
DA < 1000 GeV2.

– yJB > 0.02.

– yDA < 0.7.

– ye < 0.95.

– 40 < δ < 60 GeV.

– |Zvtx| < 30 cm.

– Ecorrected > 10 GeV.

and the following D∗ selection cuts were used:

• 1.5 < pT (D∗) < 15 GeV.

• −1.5 < η(D∗) < 1.5.

• pT (K, π) > 0.4 GeV.

• pT (πs) > 0.12 GeV.

• −1.75 < η(K, π, πs) < 1.75.

• 1.80 < M(D0) < 1.92 GeV.

• 0.143 < ∆M < 1.48 GeV.

In total 162 pb−1 of HERA II data was used in the final measurement. The rate of

background subtracted D∗ production at HERA II was 36.4±0.9 pb, much smaller than the

HERA I rate of 67.7± 1.6 pb which extended to a lower Q2 region.
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The HERA I measurement was made using 81.9 pb−1 and detected a total of 5545 D∗.

Whilst HERA II detected more D∗s (5898) in 162 pb−1 the background was much larger and

fewer D∗s were reconstructed.

As a cross check the D∗ production rates for both samples were compared in the range of

Q2 > 40 GeV2. In this range HERA I produced D∗ at a rate of 10 pb and HERA II produced

D∗ at a rate of 7 pb. These rates are in much better agreement and the discrepancy is caused

by detector inefficiencies caused by the presence of the MVD.

To calculate the acceptance corrections 484 pb−1 of charm and beauty enriched RAP-

GAP MC was generated with Q2
True > 1.5 GeV2. The generated sample of events was passed

through a full simulation of the detector using the GEANT [12] simulation package and se-

lected using identical cuts to those applied to data. As a systematic check the measurements

were repeated using events generated by HERWIG and passed through the same detector

simulator.

8.3 Measurement Procedure

This section explains the procedure used to make differential cross-section and F cc̄
2 measure-

ments at HERA II. The process by which the cross-sections are unfolded is first given and

then associated with the extraction procedure for F cc̄
2 . The systematic errors associated with

these measurements are discussed in the following section.

8.3.1 Unfolding Cross-sections

The differential cross-section in an observable Y for the process ep→ eD∗X can be calculated

from

dσ(D∗)

dY
=

N(D∗)

A · L ·B ·∆Y

where N(D∗) is the number of reconstructed D∗s in a bin of width ∆ Y. A is the acceptance

correction for each bin as defined in section 6.4 and L is the integrated luminosity. The value

of branching ratio B = BR(D∗+ → D0π+)×BR(D0 → K−π+) used was (2.57± 0.06)% [1].

This formula is used to extract dσ/dQ2, dσ/dpT (D∗), dσ/dη(D∗) and dσ/dx whose final
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measurement is given in section 8.5. The double differential d2σ/dQ2dy is also measured

and used to explicitly calculate F cc̄
2 as detailed in the following subsection.

8.3.2 Extracting F cc̄
2

The relationship of the open-charm contribution to the proton structure function and the

double-differential cc̄ cross-section in x and Q2 is given by

d2σcc̄(x,Q2)

dxdQ2
=

2πα2

xQ4

(

[1 + (1− y)2]F cc̄
2 (x,Q2)

)

.

The terms in this equation are as defined in section 2 where FL is neglected. The cc̄ cross

section is obtained by measuring the D∗ production cross section and employing the hadro-

nisation fraction f(c→ D∗) to extract the total charm cross-section as explained in section

8.3.1.

The ∆M plots necessary to measure this cross-section as explained in section 7.2 are

shown in figure 8.1; the upper plot shows the data distributions and the lower plot the

corresponding MC distributions. Due to space constraints the values on the x-axis have

not been shown on these plots, although the range is precisely that used in figure 7.1. The

purpose of these plots is to illustrate the size of the relative background and signal sizes and

so a detailed axis is not shown. The position of these plots in the (Q2, x) kinematic plane is as

indicated in figure 6.9. These distributions indicate that it is increasingly difficult to extract

a ∆M signal with increasing Q2 because higher Q2 events are often accompanied by high

track multiplicity, increasing the background in the distribution and making reconstruction

more difficult. Measurements at large Q2 are expected therefore to be associated with a

large statistical error. There is a slight degradation in resolution with increasing y although

not nearly as pronounced as the degradation as a function of Q2. Background levels also

rise with increasing y. The corresponding MC distributions have a much lower background

because a non-inclusive sample was used which leads in general to a clearly resolved signal

in each MC bin.

The cross section measurement relies on an assessment of D∗ production which can only

be made in a restricted kinematic phase space. Equation 8.1 is the prescription used to

extrapolate to the full kinematic region to extract an inclusive F cc̄
2 measurement. F cc̄

2 at any
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Figure 8.1: D∗ ∆M plots in (Q2, y) bins arranged as illustrated in figure 6.9. The upper

plot shows the distributions for data, the lower plot for MC. On each plot the x-axis runs

from 0.136 to 0.164 GeV as in figure 7.1. Wrong charge background is shown in solid green

and fit to the modified gaussian is shown in black.
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(x,Q2) point is evaluated within each of the measured (y,Q2) cross-section bins using

F cc̄
2,measured(xi, Q

2
i ) =

F cc̄
2,theo(xi, Q

2
i )

σcc̄
i,theo(ep→ D∗X)

σcc̄
i,meas(ep→ D∗X) (8.1)

where F cc̄
2,theo is the prediction evaluated from the NLO coefficient functions [65], σcc̄

i,theo is the

HVQDIS NLO prediction and σcc̄
i,meas is the cross-section measured in this analysis. F cc̄

2,theo

and σcc̄
i,theo use the same input PDFs, factorisation and normalisation scales and assume

charm generation using NLO FFNS BGF predictions. The extrapolation factor by which

the measured region must be extended to the full kinematic range is given in table 8.8 and

ranges from around 1.5 to 3.7.

F cc̄
2 was measured at a (x,Q2) point close the center-of-gravity of the (y,Q2) bin. This

measurement was made using the F cc̄
2,theo prediction which was generated on a grid of discrete

(xi, Q
2
j) points in (x,Q2) space. To quote a measurement of F cc̄

2 at a sensible (x,Q2) point

it was sometimes necessary to interpolate F cc̄
2,theo locally by assuming the rate of change is

locally constant. F cc̄
2,theo(x,Q

2) is therefore evaluated from F cc̄
2,theo(xi, Q

2
j) using

F cc̄
2,theo(x,Q

2) = F cc̄
2,theo(xi, Q

2
j) +mx(x− xi) +mQ2(Q2 −Q2

j)

where

mx =
F cc̄

2,theo(xi+1, Q
2
j)− F cc̄

2,theo(xi−1, Q
2
j)

xi+1 − xi−1

and

mQ2 =
F cc̄

2,theo(xi, Q
2
j+1)− F cc̄

2,theo(xi, Q
2
j−1)

Q2
j+1 −Q2

j−1

.

This correction was found to be typically < 1% and at most 2.5% at low Q2 high x. F cc̄
2,theo

was evaluated using the same PDF, charm mass and renormalisation and factorisation scales

as implemented in the HVQDIS prediction.

8.4 Systematic Errors

“Systematic errors” is the general term for all the uncertainties in the measurement that

arise from the uncertainty in the assumptions made. In particular they are used to gauge

the degree to which the MC simulation replicates what is seen in data and to correct for any
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inadequacies in this simulation. Assessment of systematic errors plays an important role in

cross-section measurements which entirely use MC information to calculate the acceptance

corrections. This section details the theoretical and experimental systematics relevant to the

measurements in this thesis.

8.4.1 Theoretical Systematics

The NLO QCD predictions for D∗ productions were calculated using the HVQDIS [11]

program. This calculation carries with it a number of systematic uncertainties including

• The mass of the charm quark.

– This value was changed consistently in the PDF fit and in HVQDIS. It was varied

from the central value of 1.35 GeV by ∓0.15 GeV which altered the cross-section

by +9.7
−9.1% with the most significant variation at low pT (D∗).

• The factorisation and renormalisation scale µ.

– This value was nominally set to
√

Q2 + 4m2
c and was modified to 2

√

Q2 + 4m2
c

and max(2mc,
√

Q2/4 +m2
c) [11] and caused a shift in the predicted cross-section

by +4
−1%.

These sources of systematic error were added in quadrature and are shown in a band in

figures 8.14, 8.15, 8.16 and 8.17 for the differential cross-sections in Q2, pT (D∗), x and η(D∗)

respectively.

The extrapolation to the full kinematic region using equation 8.1 has associated with

it a theoretical systematic uncertainty. This uncertainty is unchanged from the HERA I

measurement [52] which was determined by consideration of the following factors:

• The AROMA fragmentation [53] was used instead of the Peterson fragmentation. The

changes associated with this were typically less than 10%.

• The mass of the charm quark was changed by ±0.15 GeV in both the HVQDIS cal-

culation and in the calculation of F cc̄
2 which caused differences in the extrapolation of

5% at low x which rapidly shrank with increasing x.
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• The upper and lower predictions from the ZEUS NLO PDF fit which arose from ex-

perimental uncertainties of the fitted data. Deviations were less than 1%.

These uncertainties are unchanged from the HERA I measurements since no theoretical ad-

vancements have been made. Therefore the calculation of these systematics are not repeated

here and are instead quoted directly from the HERA I paper. In HERA I the contributions

from these errors were added in quadrature and this sum is given in table 8.8.

Renormalisation and factorisation scale

The renormalisation and factorisation scale, µ, are input parameters to the HVQDIS NLO

prediction. These values are not numerically well defined and therefore introduce a sys-

tematic effect into the calculation. µ is changed from
√

Q2 + 4m2
c to 2

√

Q2 + 4m2
c and

max(2mc,
√

Q2/4 +m2
c), this range rises significantly above and below the nominal scale

used. This variation was used in earlier ZEUS studies [66] and contributes only a small

systematic error.

The epsilon parameter

The fragmentation uncertainty was also considered in [52] where the ε parameter in the Pe-

terson fragmentation function was changed by ±0.015. The Peterson fragmentation fraction

is used to describe the fragmentation of the c quark to the D∗ meson in HVQDIS and ε is

its only free parameter. Here we recognise that this is smaller than the contribution from

the other errors and so do not include it in the quadratic sum.

Choice of PDF

The HERA I measurement of F cc̄
2 [52] used the 2003 ZEUS-S NLO QCD global fit to structure

function data [67] as the parameterisation of the proton PDFs. ZEUS-S is suitable for F cc̄
2

extraction because it has been constructed in the MS scheme and generates charm via the

BGF process just like HVQDIS. In the ZEUS-S fit the mass of the charm quark was nominally

set at 1.35 GeV although fits were also made at 1.35∓0.15 GeV for use in systematic errors.

The ZEUS-S proton PDF is used to extrapolate a prediction for F cc̄
2 used in equation 8.1.
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No other PDFs are implemented here since in HVQDIS the extrapolation was performed

with ZEUS-S.

An assessment of the degree to which the HVQDIS extrapolation is affected by the choice

of PDF was made in HERA I by using also using the CTEQQ5F3 [68] and GRV98-HO [69]

PDFs in HVQDIS only. Changing the PDF will gauge the systematic contribution of the

choice of parameterisation, in particular the parameterisation of the gluon density in the

proton PDFs. The changes were of the order +1.4% and −16% but were not added in

quadrature to the final answer since no F cc̄
2 extrapolation exists for these PDFs. F cc̄

2 is

measured assuming that ZEUS-S NLO is the best choice for the extrapolation from σcc̄ to

F cc̄
2 .

At HERA II ZEUS-S remains the latest PDF in the MS scheme that uses BGF and has

been extrapolated to a prediction of F cc̄
2 . It is therefore still the most suitable PDF for this

measurement. Because the choice of PDF is the same as in HERA I the systematic error

associated with its selection is identical to that quoted for HERA I; +1.4% and −16% for

CTEQQ5F3 and GRV98-HO respectively. The systematic error associated with this quantity

cannot be reduced further in this analysis.

8.4.2 Experimental Systematics

The experimental systematics used in this thesis follow those used in the HERA I measure-

ment of charm fragmentation [70]. These systematics may be broken down into a number of

categories as follows:

• Model dependence of detector acceptance corrections:

– Varying the η(D∗) or pT (D∗) distributions of the reference MC sample.

– Using also HERWIG.

• The uncertainty of the tracking simulation:

– Varying the track loss probability by 20% of its values.

– Varying all data momenta by ±0.3% to account for the magnetic field uncertainty.
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• The uncertainty of the beauty subtraction:

– Varying the b-quark cross-section by a factor of 2 in the reference MC sample.

• The signal extraction process:

– The ∆ M range was changed for the D0 signal.

– The background normalisation was varied.

• DIS systematics:

– Vary the electron energy scale by ± 2% and the hadronic energy by ±3%.

• Cross checks using the electron method and fits to extract the D∗ signal.

Collectively these systematics attempt to gauge the extent to which the MC model ac-

curately describes the data. Each of these changes are made in turn and their effect on the

Q2, η and pT cross-sections are recorded in tables 8.2, 8.4 and 8.3. The degree to which F cc̄
2

is affected is recorded numerically across tables C.1, C.2 and C.3 and graphically in figures

8.6 to 8.13 which also show the total systematic and statistical errors. These results are

discussed in detail in section 8.4.6.

8.4.3 Varying the pT (D∗) and η(D∗) distributions

To quantify the systematic associated with the poor MC description of the pT (D∗) and

η(D∗) distributions, the MC event sample was reweighted to improve the agreement and all

calculations were repeated to evaluate the size of any measurement shift. The shift associated

with the pT (D∗) reweighting was added in quadrature to the other systematic errors whilst

the η(D∗) reweighting was considered a cross check, with the exception of the dσ/dη(D∗)

measurement where the primary check is the η(D∗) reweighting. The weights used were

functions of either prec
T (D∗) or ηrec(D∗). Agreement between data and MC in the control

plots was quantified using the χ2 parameter as defined in equation 6.2.

The lower plots in figure 8.2 show both the pT (D∗) and η(D∗) control plots before

reweighting and the reweighting functions used to improve their agreement. These func-

tions were obtained by taking the ratio of data to MC of each control plot and fitting to it
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Figure 8.2: The pT (D∗) and η(D∗) control plots (below) before the reweighting of either

pT (D∗) or η(D∗) and the ratio of data to MC in each bin and associated fit (above). In the

control plots data is shown in points and RAPGAP is shown in yellow. The χ2 parameter

is defined in equation 6.2 and is used to quantify the level of agreement between MC and

data. In the ratio plots (above) the fit through the points is shown by a red line. This fit is

used to reweight the control plots below to improve the agreement between data and MC.

a function of the form a + b × pT (D∗)c for pT (D∗) and a + b × η(D∗) for η(D∗). The ratio

plots and fits are shown in the upper half of figure 8.2. Once the fit is performed and a, b

and c are extracted the Wη and WpT
reweighting functions take the explicit form

Wη = 1.00 + 0.17× η(D∗) (8.2)

WpT
= −2100 + 2100pT (D∗)0.00012 (8.3)

where Wη and WpT
are the weights applied to the event to improve the η(D∗) and pT (D∗)

distributions respectively.

The effect of weighting by Wη on the control plots is illustrated in figure 8.3. The χ2/ndf
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Figure 8.3: The pT (D∗) and η(D∗) control plots (below) after the η reweighting using equa-

tion 8.2 and the ratio of data to MC in each bin and associated fit (above). Data is shown

in points and RAPGAP is shown in yellow. The χ2 parameter is defined in equation 6.2 and

is used to quantify the level of agreement between MC and data. In the ratio plots (above)

the fit through the points is shown by a red line.

on the η(D∗) distribution has fallen from 4.60 to 0.65 and the fit ratio of data to MC is

constant at 1 for each bin. Improvement is also recorded in the pT (D∗) distribution whose

χ2/ndf value falls from 4.31 to 4.03.

Similarly the effect of weighting by WpT
on the control plots is illustrated in figure 8.4.

In this case the χ2/ndf associated with the pT (D∗) distribution has fallen from 4.31 to 0.87.

A fit to the ratio of MC and data is constant at 1. Some improvement is also recorded in

the pT (D∗) distribution whose χ2/ndf value falls from 4.60 to 3.78.

The uncertainty associated with this systematic is assigned entirely to the detector,

although in reality it is impossible to disentangle this from contributions from the physics

simulation. The decision to assign this uncertainty to the detector is conservative, and
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Figure 8.4: The pT (D∗) and η(D∗) control plots (above) after the pT reweighting using

equation 8.3 and the ratio of data to MC in each bin and associated fit (above). Data is

shown in points and RAPGAP is shown in yellow. The χ2 parameter is defined in equation

6.2 and is used to quantify the level of agreement between MC and data. In the ratio plots

(below) the fit through the points is shown by a red line.

given that charm production is reasonably well understood in the measured region it is

not unreasonable. Along with the track loss probability this systematic error provides a

significant contribution to the overall systematic error.

8.4.4 Track Loss Probability

The probability of not matching the reconstructed slow pion track to the true level track is

another large source of systematic error. It was first considered in the HERA I analysis [72]

and is repeated in this measurement. Because πs is typically the hardest track to find, its

contribution to this systematic is much greater than that of the K or π and so it is the only

track considered. To evaluate this error a large MC sample of D∗ → D0π+
s → (K−π+)πs
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Figure 8.5: The HERA I (upper)[71] and HERA II (lower) MC efficiencies of track finding

as a function of pT (πs) or η(πs).
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decays was used to match generator and reconstruction level D∗± decay tracks. The pT

distribution of the generated πs is made when all generated D∗± tracks are matched to

reconstructed tracks. Another pT (πs) distribution is made when the generated K and π

tracks are matched regardless of πs. The ratio of the first to the second is the track finding

efficiency, ETF, for the πs and was calculated in bins of pT (πs) and η(πs) and is shown in figure

8.5. For the upper half of this figure is the HERA I efficiency which was was approximately

90% for 0.12 < pT < 0.15 GeV rising to 98% for pT > 0.4 GeV. HERA II efficiencies have

the same shape but are typically 20% lower in all bins.

The probability to lose a track in the dead material before the CTD or because of ineffi-

cient track reconstruction is called the track loss probability (TLP) and is defined as 1−ETF.

This quantity is increased by 20% [73] in the MC sample as a conservative estimate of the

uncertainty and corresponds to a decrease in reconstruction efficiency. To implement this

variation an event level weighting of ε′/ε is applied to all candidates where 1− ε′ = 1.2(1− ε)
and ε′ is the reconstruction efficiency we wish to simulate. For SL 1 tracks this is of the order

of 3% and rises with increasing SL. Because this analysis uses tracks which pass through SL

3 and above the 20% adjustment conservatively gauges the uncertainty.

When calculating the overall systematic error only the TLP for pT (πs) is adjusted and the

η(πs) TLP is used as a cross check. The only exception is when measuring dσ/dη at which

point the η(πs) TLP is the used primarily. The error associated with this procedure is one

of the largest systematics and causes a variation of around 10% for either TLP adjustment.

8.4.5 Switching to HERWIG

A systematic check of the model dependence of the detector acceptance corrections is to

switch the principle MC from RAPGAP to HERWIG 6.301 [10] in what is one of the largest

systematic errors in this analysis. For a number of reasons HERWIG is expected to give an

inferior measurement of F cc̄
2 because, amongst other things, it does not adequately simulate

the mass spectrum backgrounds. To calculate the error associated with this systematic

all calculations are repeated using HERWIG to measure the acceptance. The shift in the

measured values is recorded and added in quadrature to the other systematics.

Control plots for HERWIG are given in figure 6.19 which suggest that the electron method
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is better modeled than the double angle method. The systematic contribution from HER-

WIG could be reduced by switching to the electron method as the principle reconstruction

technique, however because the low y low Q2 resolution of this method is very poor such a

switch will significantly increase the error overall.

8.4.6 Systematic Error Analysis

To calculate the overall systematic error, each of the measurements are repeated with each

systematic variation. If the measured value is shifted from the nominal position the shift

is recorded and added in quadrature to all shifts in the same direction. The quadratic sum

gives the overall systematic error. The size of the individual shifts is recorded in tables 8.2

8.3 8.4 and 8.5 using the key in table 8.1 to identify each systematic.

dσ/dη systematic error breakdown

The effect of each systematic variation on dσ/dη is given in table 8.2. The largest systematic

error arises from the track loss probability and variation of the η(D∗) MC distribution.

Varying the track loss probability of η(πs) always increases the measurement by more than

10%, and the lowest increase from the corresponding pT (πs) track loss systematic is a 10%

increase. In principle both of these variations measure the same effect and so only one is

included in the final quadratic sum. These large errors arise from the poorly understood

multiple scattering effect caused by the installation of the MVD at HERA II.

The second largest systematics arise from the manipulation of the η(D∗) distributions to

improve agreement between data and MC. This reweighting increases the central value by

13% in the rear direction and decreases it by 8% in the forward direction. In the central

region where there are more tracks the shift is around 2% and the trend is for the cross-section

to decrease in the rear and increase in the forward direction.

Inspection of the control plots in figure 7.4 reveals a large discrepancy between MC

and data, particularly at low pT and at the forward and rear η(D∗). This large difference

manifests itself in the form of this large contribution to the systematic error and can be

reduced by improving the HERA II description of ZEUS in the MC detector simulation or

147



Key Description

0 The standard measurement with no systematic adjustment.

1 Varying the track loss probability of pT (πs)

2 Varying the track loss probability of η(πs)

3 Varying the η(D∗) distribution in MC

4 Varying the pT (D∗) distribution in MC

5 Using HERWIG instead of RAPGAP

6 Increasing the beauty cross-section by a factor 2 in MC

7 Decreasing the beauty cross-section by a factor 2 in MC

8 Increasing the track momenta in data by 0.3%

9 Decreasing the track momenta in data by 0.3%

10 Narrow the ∆M width for the D0 signal

11 Widen the ∆M width for the D0 signal

12 Increase the area used in background normalisation

13 Decrease the area used in background normalisation

14 Decrease the hadronic energy scale by 3%

15 Increase the hadronic energy scale by 3%

16 Decrease the electron energy scale by 2%

17 Increase the electron energy scale by 2%

Table 8.1: The key used to identify the number used to represent each systematic in the

measurements.
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η range dσ/dη 1 2 3 4 5 6

(nb)

(-1.5, -0.8) 1.186 10.71% 11.66% 12.80% -0.07% 3.51% 0.43%

(-0.8, -0.35) 1.446 9.79% 10.42% 4.97% -2.84% -2.85% 0.08%

(-0.35, 0) 1.635 10.26% 15.59% 1.46% -3.77% -5.72% 0.06%

(0, 0.4) 1.543 9.97% 15.73% -1.16% -3.49% -4.49% 0.44%

(0.4, 0.8) 1.555 10.32% 11.03% -3.91% -3.30% -2.38% 0.93%

(0.8, 1.5) 1.704 9.60% 10.77% -8.10% -2.64% -1.27% 0.77%

η range dσ/dη 7 8 9 10 11 12

(-1.5, -0.8) 1.186 -0.57% -0.49% 0.00% -3.81% 0.59% -0.57%

(-0.8, -0.35) 1.446 0.03% 0.47% -0.25% -1.75% 2.87% 0.04%

(-0.35, 0) 1.635 -0.41% 0.57% -0.67% -2.69% 2.06% 0.02%

(0, 0.4) 1.543 -0.47% -0.08% -0.13% -3.78% 3.26% -0.23%

(0.4, 0.8) 1.555 -0.37% -0.48% -0.92% 1.51% 0.30% 0.23%

(0.8, 1.5) 1.704 -0.87% -0.12% -0.13% -2.53% -1.09% -0.62%

η range dσ/dη 13 14 15 16 17

(-1.5, -0.8) 1.186 -0.57% 5.08% -1.95% 0.35% -0.56%

(-0.8, -0.35) 1.446 0.04% 4.57% -1.14% 0.37% -0.33%

(-0.35, 0) 1.635 0.02% 2.78% 0.01% 0.23% -0.24%

(0, 0.4) 1.543 -0.23% 2.06% 1.83% 0.07% -0.10%

(0.4, 0.8) 1.555 0.23% 1.78% 1.54% -0.01% -0.05%

(0.8, 1.5) 1.704 -0.62% 1.38% 2.60% -0.02% 0.28%

Table 8.2: dσ/dη measurement with individual systematic error contributions. A yellow box

indicates a shift from the central value of between 5% and 10% once the systematic has

been applied, a magenta box indicates a shift larger than 10%. The systematics checked are

labeled from 1 to 17 according to the key in table 8.1. Systematics 1 and 4 are not included

in the final measurement since they are cross checks of systematics 2 and 3.
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by improving the underlying physics description.

The third largest systematic is caused by switching the principle MC package from RAP-

GAP to HERWIG. The HERWIG and RAPGAP control plots in figure 7.4 display significant

differences that cause a typical shift of −5% in dσ/dη. All other systematic effects are much

smaller than those listed above and so do not contribute significantly to the overall measure-

ment.

dσ/dQ2 systematic error breakdown

The systematic errors associated with dσ/dQ2 are shown in table 8.3. The dominant sources

of systematic error are similar to those which dominated dσ/dη. The largest contribution

comes from adjusting the track loss probability of D∗ in bins of η(D∗) and pT (D∗) which

cause a shift of around +12%. Reweighting the pT (D∗) distribution has little effect at low

Q2 but causes a −5% drop which rises to −13% with increasing Q2. dσ/dQ2 is also sensitive

to a switch to HERWIG which causes a variation of typically ±8%. It would appear that

dσ/dQ2 is sensitive at very high Q2 to adjusting the size of the ∆M width for the D0 signal

(+70%) but this is likely to arise because the statistical error in this bin is large.

dσ/dpT (D∗) systematic error breakdown

Table 8.4 lists the dσ/dpT cross-section and associated systematic errors. As with the previ-

ous two measurements the systematic errors are dominated by track loss probability resulting

in a shift of approximately +10% in each bin. Varying the η and pt distributions does not

affect this cross-section to the same degree as for dσ/dQ2 and dσ/dη, although the effect

is still large and of the order ±10% in the highest and lowest pT (D∗) bins when pT (D∗)

is reweighted. There is no significant variation after reweighting η(D∗). Using HERWIG

instead of RAPGAP causes the second and third bins to rise by approximately 6% and a

negligible amount in all other bins. All other systematics have a negligible effect.

dσ/dx systematic error breakdown

As with all other differential cross-sections dσ/dx is most strongly affected by adjusting the

track loss probability for D∗ candidates, increasing the cross-section by around 12% in each
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Q2 range dσ/dQ2 1 2 3 4 5 6

(GeV2) (nb/GeV2)

(5, 10) 0.317 11.46% 12.29% 0.75% 0.99% -1.88% 0.00%

(10, 20) 0.134 10.89% 12.40% -0.33% -0.89% -5.49% 0.33%

(20, 40) 0.044 9.19% 12.40% -0.10% -2.70% 6.78% 0.72%

(40, 80) 0.011 7.98% 12.16% -0.14% -5.01% 8.84% 1.58%

(80, 200) 2.05 ×10−3 7.40% 12.74% -0.93% -7.73% 8.77% 0.40%

(200, 1000) 3.96×10−5 14.28% 13.80% 0.27% -13.86% 3.19% 1.78%

Q2 range dσ/dQ2 7 8 9 10 11 12

(5, 10) 0.317 -0.43% 0.10% -0.22% -4.44% 0.41% -0.53%

(10, 20) 0.134 -0.56% 0.00% -0.66% -2.52% 0.40% -0.14%

(20, 40) 0.044 -0.03% 0.24% -0.51% -0.95% 2.64% 0.40%

(40, 80) 0.011 -0.50% -0.51% -0.07% 1.44% -3.82% -0.55%

(80, 200) 2.05×10−3 -0.73% 0.18% 0.68% -2.24% 5.74% -0.98%

(200, 1000) 3.96×10−5 -2.05% -5.16% -1.70% 16.99% 67.05% 2.48%

Q2 range dσ/dQ2 13 14 15 16 17

(5, 10) 0.317 -0.53% 3.48% -1.49% 0.30% -0.49%

(10, 20) 0.1341 -0.14% 1.97% 1.31% -0.02% 0.03%

(20, 40) 0.044 0.40% 2.75% 1.54% 0.15% 0.05%

(40, 80) 0.011 -0.55% 2.90% 1.00% 0.24% -0.20%

(80, 200) 2.05×10−3 -0.98% 2.91% 1.05% 0.22% -0.11%

(200, 1000) 3.96×10−5 2.48% 10.18% -1.09% 0.24% -0.71%

Table 8.3: dσ/dQ2 measurement with individual systematic error contributions. A yellow

box indicates a shift from the central value of between 5% and 10% once the systematic has

been applied, a magenta box indicates a shift larger than 10%. The systematics checked are

labeled from 1 to 17 according to the key in table 8.1. Systematics 2 and 3 are not included

in the final measurement since they are cross checks of systematics 1 and 4.
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PT (D∗) range dσ/dpT 1 2 3 4 5 6

(GeV) (nb/GeV)

(1.5, 2.4) 1.557 16.50% 12.40% 0.19% 11.97% -0.39% 0.36%

(2.4, 3.1) 1.394 10.34% 12.50% 0.38% 1.25% 5.69% 0.24%

(3.1, 4.0) 0.879 6.87% 12.46% 0.12% -2.97% 7.30% 0.11%

(4.0, 6.0) 0.358 5.22% 12.08% -0.21% -6.33% 0.82% 1.02%

(6.0, 15) 0.032 9.30% 12.77% -0.16% -9.65% 1.02% 0.43%

PT (D∗) range dσ/dpT 7 8 9 10 11 12

(1.5, 2.4) 1.557 -0.43% -1.88% 0.87% -2.44% -1.19% -0.72%

(2.4, 3.1) 1.394 -0.49% 0.53% -0.04% -4.95% 0.24% -0.19%

(3.1, 4.0) 0.879 -0.12% -0.46% -1.10% 1.82% 1.73% -0.09%

(4.0, 6.0) 0.358 -0.50% 1.07% -0.64% -1.19% 2.97% 0.18%

(6.0, 15) 0.032 -0.17% 1.07% -1.26% -3.62% 3.18% 0.24%

PT (D∗) range dσ/dpT 13 14 15 16 17

(1.5, 2.4) 1.557 -0.72% 2.71% -0.71% 0.03% -0.11%

(2.4, 3.1) 1.394 -0.19% 3.08% -0.30% 0.23% -0.07%

(3.1, 4.0) 0.879 -0.09% 3.09% 1.31% 0.08% -0.09%

(4.0, 6.0) 0.358 0.18% 2.88% 1.56% 0.35% -0.28%

(6.0, 15) 0.032 0.24% 3.27% 2.16% 0.27% -0.49%

Table 8.4: dσ/dpT measurement with individual systematic error contributions. A yellow

box indicates a shift from the central value of between 5% and 10% once the systematic has

been applied, a magenta box indicates a shift larger than 10%. The systematics checked are

labeled from 1 to 17 according to the key in table 8.1. Systematics 2 and 3 are not included

in the final measurement since they are cross checks of systematics 1 and 4.
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x range dσ/dx 1 2 3 4 5 6

(nb)

(0.00008, 0.0004) 3719 11.32% 12.21% 3.79% -0.32% -11.74% 0.18%

(0.0004, 0.0016) 1661 10.45% 12.47% 1.71% -1.06% 1.51% 0.21%

(0.0016, 0.005) 316 9.15% 12.41% -1.43% -3.56% 9.88% 0.83%

(0.005, 0.01) 47.5 8.34% 12.49% -3.17% -6.14% 8.38% 0.18%

(0.01, 0.1) 0.955 9.72% 12.08% -4.57% -10.23% 12.44% 0.20%

x range dσ/dx 7 8 9 10 11 12

(0.00008, 0.0004) 3719 -0.55% 0.47% -0.69% -3.28% 0.32% -1.35%

(0.0004, 0.0016) 1661 -0.23% -0.24% -0.23% -2.99% 0.78% 0.15%

(0.0016, 0.005) 316 -0.25% 0.32% -0.33% -0.49% 2.07% -0.28%

(0.005, 0.01) 47.5 -1.08% -0.53% 0.48% 0.56% 2.80% 1.45%

(0.01, 0.1) 0.955 -1.03% -2.27% -1.28% 0.33% 5.19% -1.48%

x range dσ/dx 13 14 15 16 17

(0.00008, 0.0004) 3719 -1.35% 5.09% -2.06% 0.32% -0.63%

(0.0004, 0.0016) 1661 0.15% 2.95% 0.18% 0.16% -0.18%

(0.0016, 0.005) 316 -0.28% 1.74% 1.95% 0.09% 0.12%

(0.005, 0.01) 47.5 1.45% 2.82% 1.70% 0.09% -0.27%

(0.01, 0.1) 0.955 -1.48% 1.60% 4.94% 0.03% 0.61%

Table 8.5: dσ/dx measurement with individual systematic error contributions. A yellow box

indicates a shift from the central value of between 5% and 10% once the systematic has

been applied, a magenta box indicates a shift larger than 10%. The systematics checked are

labeled from 1 to 17 according to the key in table 8.1. Systematics 2 and 3 are not included

in the final measurement since they are cross checks of systematics 1 and 4.

153



bin. Reweighting the pT (D∗) distribution causes a drop of −6% and −10% in the second last

and last bins respectively. When HERWIG is used as the primary MC package the nominal

value is shifted by around ±10%.

Table 8.6 lists the final measurement for dσ/dQ2, dσ/dη, dσ/dpT and dσ/dx with their

associated statistical and systematic errors. Generally speaking the systematic errors are

larger than the statistical errors for each measurement.

F cc̄
2 systematic error

Figures 8.6 to 8.13 represent the pull on the standard measurement of F cc̄
2 for each of the

systematics checked, identified on the x-axis numerically. The dotted line indicates the

nominal F cc̄
2 measurement and the crosses the systematic shifted measurement. The solid

red line is the result of adding each systematic shift in quadrature after separating the

effects into positive and negative shifts. The yellow band represents the statistical error.

The errors associated with varying the track loss probability and control plot distribution

of η(D∗) are not included in the quadratic sum since they are considered to be cross checks

of the corresponding pT (D∗) variations. Typically the statistical error is smaller than the

detector error except for the highest Q2 points which are severely statistically limited. The

systematics are labeled from 1 to 17 and are identified with systematics using table 8.1. This

information is also recorded in tables C.1, C.2 and C.3 in appendix C.

As with the differential cross-sections for η, pT and Q2 the systematic error arising from

track loss probability and the η(D∗), pT (D∗) distributions is substantial. The track loss

probability alone for both η and pT causes an increase of approximately 10% in all bins.

The inadequacies of the HERA II MC are also responsible for the error associated with

manipulating the shape of η(D∗) and pT (D∗) in MC. This figure can rise to as high as 25%

in the highest Q2 bins where the data is statistically limited, although this error can range

from ±1% to ±13% with the η reweighting and from ±1% to −24% with pT .

Switching to HERWIG also generates a large error typically between ±10% and can rise

as high as 35% and as low as 1%. F cc̄
2 is also sensitive to altering the width of the D0 signal

since the granularity of the binning does not allow for a consistently smooth background

distribution. The errors associated with this are often negligible but typically rise to around
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5% and in one instance 80% but only in a statistically limited bin.
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Figure 8.6: Pull on the central F cc̄
2 value by each systematic for Q2 = 5.5 GeV. The dotted

line indicates the nominal F cc̄
2 (x,Q2) measurement and the yellow band the statistical error.

The numbers on the x-axis correspond to systematic errors as identified in table 8.1. The

crosses show the altered F cc̄
2 (x,Q2) value. The red lines are the quadratic sum of the positive

and negative shifts and correspond to the overall systematic error (Systematics 2 and 3 are

not included in this quadratic sum since they are used as cross checks of systematics 1 and

4).
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Figure 8.7: Pull on the central F cc̄
2 value by each systematic for Q2 = 6.7 GeV2. Details as

for 8.6.
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Figure 8.8: Pull on the central F cc̄
2 value by each systematic for Q2 = 11.5 GeV2. Details as

for 8.6.
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Figure 8.9: Pull on the central F cc̄
2 value by each systematic for Q2 = 18.8 GeV2. Details as

for 8.6.
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Figure 8.10: Pull on the central F cc̄
2 value by each systematic for Q2 = 30.9 GeV2. Details

as for 8.6.
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Figure 8.11: Pull on the central F cc̄
2 value by each systematic for Q2 = 61.1 GeV2. Details

as for 8.6.
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Figure 8.12: Pull on the central F cc̄
2 value by each systematic for Q2 = 132 GeV2. Details

as for 8.6.
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2 value by each systematic for Q2 = 510 GeV2. Details

as for 8.6.
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8.5 Final Results

In this section the final measurement for the differential cross sections in Q2, pT (D∗), η(D∗)

and x, the double differential cross section d2σ/dQ2dy and the final F cc̄
2 (x,Q2) measurement

are given. The measured values are presented with statistical and systematic errors given

separately and where appropriate the theoretical errors are shown as well.

8.5.1 Differential Cross-section results

Table 8.6 lists the final measurement for dσ/dQ2, dσ/dη, dσ/dpT and dσ/dx with their asso-

ciated statistical and systematic errors shown separately. Generally speaking the systematic

errors are larger than the statistical errors for each measurement. These represent the first

measurements of charm in DIS using HERA II data. Figure 8.14 shows the HERA I and

HERA II measurements of dσ/dQ2 with statistical and systematic errors shown. The Q2

distribution covers 4 orders of magnitude over which there is consistency shown between

HERA I, HERA II and the NLO QCD prediction. The acceptance correction is also shown

in this plot which ranges from 0.25 to 0.4 and in general rises with increasing Q2.

Figure 8.15 shows the differential cross-section in pT (D∗) which falls by 2 orders of magni-

tude. For the lowest bin the acceptance is approximately 0.2 but rises to 0.45 with increasing

pT (D∗). In this figure the cross section is compared with the NLO prediction and agrees

with reasonable consistency.

The differential cross section dσ/dx and its acceptance is shown in figure 8.16. The

acceptance ranges from 0.2 in the lowest x bin and reaches a maximum of around 0.4 in

the second highest bin. The HVQDIS prediction with the ZEUS-S PDF underestimates the

measured x in the small x region and overestimates it in the highest two bins. The central

values are measured within experimental and theoretical errors.

Finally figure 8.17 shows the dσ/dη measurement and its acceptance. The acceptance

ranges from 0.2 to 0.4 and is highest in the central region. In general the central value of

the measured cross-section is lower than the NLO prediction in all but the highest η bin

but within experimental errors. In the highest bin the NLO prediction underestimates the

measured value but as with the other bins the difference is less than the associated error.
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Q2 range (GeV2) dσ/dQ2 (nb/GeV2) ∆stat ∆syst

(5, 10) 0.317 ±0.0148 +0.0380
−0.0163

(10, 20) 0.134 ±0.0059 +0.0149
−0.0083

(20, 40) 0.044 ±0.0023 +0.0054
−0.0013

(40, 80) 0.011 ±0.00082 +0.0014
−0.0007

(80, 200) 2.05×10−3 ±0.22×10−3 +0.27×10−3

−0.17×10−3

(200, 1000) 3.96×10−5 ±2.61×10−5 +2.86×10−5

−0.60×10−5

η(D∗) range dσ/dη (nb) ∆stat ∆syst

(-1.5, -0.8) 1.186 ±0.08 +0.15
−0.05

(-0.8, -0.35) 1.446 ±0.08 +0.16
−0.07

(-0.35, 0) 1.635 ±0.10 +0.18
−0.12

(0, 0.4) 1.543 ±0.09 +0.17
−0.11

(0.4, 0.8) 1.555 ±0.11 +0.17
−0.07

(0.8, 1.5) 1.704 ±0.10 +0.17
−0.07

PT (D∗) range (GeV) dσ/dPT (nb/GeV) ∆stat ∆syst

(1.5, 2.4) 1.557 ±0.13 +0.32
−0.06

(2.4, 3.1) 1.394 ±0.07 +0.17
−0.07

(3.1, 4.0) 0.879 ±0.039 +0.096
−0.028

(4.0, 6.0) 0.358 ±0.014 +0.025
−0.023

(6.0, 15) 0.032 ±0.002 +0.0034
−0.0033

x range dσ/dx (nb) ∆stat ∆syst

(0.00008, 0.0004) 3719 ±237 +500
−505

(0.0004, 0.00016) 1661 ±61 +178
−52

(0.0016, 0.005) 316 ±13 +39.6
−10.4

(0.005, 0.01) 47.5 ±4.9 +5.20
−2.55

(0.01, 0.1) 0.955 ±0.255 +0.131
−0.081

Table 8.6: The measured values of dσ/dQ2, dσ/dη, dσ/dPT and dσ/dx in their respective

bins. Statistical, systematic and theoretical errors are shown separately.
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Figure 8.14: The differential D∗ cross-section as a function of Q2 is shown along with the

NLO QCD prediction. The HERA II measurement (solid points) is compared to the HERA I

measurement (open squares) and found to be in good agreement. Statistical errors are shown

(inner error bars) and added in quadrature to the systematic error to give the total error.

The solid line is the prediction from the ZEUS NLO QCD fit and the shaded yellow region

indicates the theoretical uncertainty in this prediction. The acceptance is shown below.
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Figure 8.15: The differential D∗ cross-section as a function of pT (D∗) is shown along with

the NLO QCD prediction. Statistical errors are shown (inner error bars) and added in

quadrature to the systematic error to give the total error. The solid line is the prediction from

the ZEUS NLO QCD fit and the shaded yellow region indicates the theoretical uncertainty

in this prediction. The acceptance is shown below.

165



x

-410 -310 -210 -110

/d
x 

(n
b

)
σd

1

10

210

310

ZEUS

x

-410 -310 -210 -110

/d
x 

(n
b

)
σd

1

10

210

310

ZEUS 03-05

HVQDIS

x

-410 -310 -210 -110

/d
x 

(n
b

)
σd

1

10

210

310

ZEUS

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Acceptance
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ZEUS NLO QCD fit and the shaded yellow region indicates the theoretical uncertainty in
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Figure 8.17: The differential D∗ cross-section as a function of η(D∗) is shown along with

the NLO QCD prediction. Statistical errors are shown (inner error bars) and added in

quadrature to the systematic error to give the total error. The solid line is the prediction from

the ZEUS NLO QCD fit and the shaded yellow region indicates the theoretical uncertainty

in this prediction. The acceptance is shown below.
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8.5.2 F cc̄
2 Measurement

The acceptance corrections associated with the differential cross-section are given in figure

8.18. The acceptance never rises above 50%, although broadly speaking increases with

Q2. This modest acceptance can be understood by the limited range in η(D∗) and pT (D∗) in

which the measurements are made, leading to extrapolation factors > 2. In the 5 < Q2 < 6.5

region the acceptances are particularly low and are typically of the order 0.2 which implies

a heavy dependence on accurate MC simulation to produce a reliable measurement. Whilst

the acceptance in this bin is flat with respect to y this trend is not typical of most Q2

bins; generally speaking the acceptance falls as a function of y from around 0.4 to 0.2 with

increasing y. This behavior arises from drift between bins and resolution issues as discussed

in section 6.3.

Figure 8.19 shows the differential cc̄ cross-section in bins of Q2 with y increasing along

the x axis as open circles. In every bin the dotted line indicates the NLO HVQDIS pre-

diction and where possible the corresponding HERA I measurement is shown in triangles.

Statistical and systematic errors are shown. In the lowest Q2 bin there could be no direct

comparison between HERA I and II since the original measurement extended to below 5

GeV. There is however good agreement in the central two y bins between NLO and HERA

II measurements, and agreement within errors for the outside two bins. In most Q2 bins there

is an overestimation in the lowest y bin by HVQDIS, although measurements in this bin are

usually in excellent agreement with HERA I. Any discrepancy in low y measurements may

arise from a correspondingly low acceptance in this bin. The lowest y bin excluded there is

excellent agreement between HERA I and HERA II for all but the highest two Q2 bins. For

90 < Q2 < 200 GeV2 there is still an agreement within errors although a divergence between

points begins to emerge. This divergence is slightly more pronounced for 200 < Q2 < 1000

GeV2 although this may be attributed to an extremely high background in the ∆M distri-

bution. As has been discussed earlier the background in HERA II is much worse than in

HERA I for tracking and detector simulation reasons. Overall the HERA II measurements

are in agreement with both HERA I values and NLO predictions, although the lowest y and

highest Q2 bins show a slight discrepancy but still agreement within errors.
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Figure 8.18: Acceptance corrections for F cc̄
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is the same in each plot.
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Figure 8.19: The d2σ/dydQ2 result used in the extrapolation of F cc̄
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2 is interpolated. The y-range covered
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red error bars. The NLO HVQDIS prediction is indicated by a dotted line. Theoretical and

systematic errors are shown.
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prediction given by the ZEUS NLO PDF fit. Statistical and systematic errors are included.
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Q2 bin (GeV2) y bin σ (nb) ∆stat ∆sys

5, 6.5 0.70, 0.33 0.178 ± 0.028 +0.037
−0.037

0.33, 0.18 0.162 ± 0.029 +0.032
−0.022

0.18, 0.08 0.213 ± 0.028 +0.066
−0.016

0.08, 0.02 0.150 ± 0.029 +0.051
−0.024

6.5, 9 0.70, 0.25 0.272 ± 0.037 +0.065
−0.053

0.25, 0.08 0.306 ± 0.029 +0.052
−0.024

0.08, 0.02 0.155 ± 0.018 +0.045
−0.017

9, 14 0.70, 0.35 0.189 ± 0.034 +0.047
−0.045

0.35, 0.20 0.212 ± 0.027 +0.038
−0.004

0.20, 0.08 0.332 ± 0.025 +0.057
−0.011

0.08, 0.02 0.219 ± 0.019 +0.033
−0.020

14, 22 0.70, 0.35 0.193 ± 0.031 +0.045
−0.070

0.35, 0.20 0.210 ± 0.025 +0.038
−0.019

0.20, 0.08 0.236 ± 0.020 +0.040
−0.014

0.08, 0.02 0.166 ± 0.018 +0.026
−0.018

22, 44 0.70, 0.35 0.293 ± 0.031 +0.058
−0.019

0.35, 0.22 0.179 ± 0.020 +0.054
−0.011

0.22, 0.08 0.322 ± 0.024 +0.051
−0.028

0.08, 0.02 0.131 ± 0.017 +0.043
−0.015

44, 90 0.70, 0.28 0.181 ± 0.024 +0.038
−0.021

0.28, 0.14 0.127 ± 0.016 +0.019
−0.012

0.14, 0.02 0.126 ± 0.015 +0.035
−0.018

90, 200 0.70, 0.28 0.101 ± 0.020 +0.022
−0.024

0.28, 0.14 0.049 ± 0.012 +0.008
−0.007

0.14, 0.02 0.037 ± 0.010 +0.011
−0.006

200, 1000 0.70, 0.23 0.0243 ± 0.018 +0.021
−0.007

0.23, 0.02 0.0121 ± 0.020 +0.004
−0.003

Table 8.7: Measured cross-sections and errors in each of the Q2 and y bins for 5 < Q2 < 1000

GeV2, 0.02 < y < 0.7, 1.5 < pT (D∗) < 15 GeV and |η(D∗)| < 1.5.
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Q2 (GeV2) x F cc̄
2 ∆stat ∆sys ∆theo

∗ ∆stat/∆
mean
sys extrap. factor

5.5 0.00008 0.268 ± 0.043 +0.060
−0.060

+0 .011
−0 .022 0.81 3.79

0.00018 0.170 ± 0.030 +0.034
−0.023

+0 .005
−0 .011 1.08 2.63

0.00035 0.142 ± 0.019 +0.044
−0.011

+0 .003
−0 .005 0.62 2.57

0.00100 0.082 ± 0.016 +0.028
−0.013

+0 .015
−0 .000 0.65 3.75

7 0.00018 0.232 ± 0.031 +0.055
−0.045

+0 .014
−0 .028 0.70 3.18

0.00060 0.125 ± 0.012 +0.022
−0.010

+0 .004
−0 .006 0.72 2.34

0.00150 0.074 ± 0.009 +0.022
−0.008

+0 .021
−0 .000 0.47 3.31

11 0.00018 0.338 ± 0.061 +0.0837
−0.0808

+0 .025
−0 .004 0.85 3.29

0.00035 0.247 ± 0.031 +0.0445
−0.0045

+0 .009
−0 .015 1.33 2.21

0.00100 0.178 ± 0.013 +0.0303
−0.0057

+0 .003
−0 .004 0.70 2.11

0.00300 0.096 ± 0.008 +0.0144
−0.0089

+0 .024
−0 .002 0.59 2.95

18 0.00035 0.456 ± 0.075 +0.1054
−0.1652

+0 .019
−0 .028 0.64 2.96

0.00060 0.325 ± 0.039 +0.0592
−0.0291

+0 .009
−0 .012 0.88 1.94

0.00150 0.174 ± 0.015 +0.0299
−0.0104

+0 .005
−0 .003 0.69 1.90

0.00300 0.128 ± 0.014 +0.0201
−0.0141

+0 .036
−0 .001 0.66 2.69

30 0.00060 0.426 ± 0.070 +0.127
−0.041

+0 .026
−0 .029 0.95 2.47

0.00100 0.340 ± 0.038 +0.102
−0.022

+0 .011
−0 .010 0.62 1.70

0.00150 0.268 ± 0.020 +0.043
−0.023

+0 .007
−0 .005 0.57 1.69

0.00600 0.105 ± 0.013 +0.034
−0.012

+0 .024
−0 .001 0.44 2.44

60 0.00150 0.402 ± 0.053 +0.084
−0.046

+0 .012
−0 .016 0.88 1.84

0.00300 0.250 ± 0.031 +0.038
−0.023

+0 .009
−0 .008 1.00 1.54

0.01200 0.109 ± 0.013 +0.030
−0.015

+0 .015
−0 .002 0.49 2.24

130 0.00300 0.378 ± 0.076 +0.082
−0.087

+0 .009
−0 .018 0.96 1.60

0.00600 0.185 ± 0.046 +0.031
−0.027

+0 .012
−0 .010 1.47 1.51

0.03000 0.056 ± 0.015 +0.017
−0.010

+0 .008
−0 .002 0.92 2.51

500 0.01200 0.047 ± 0.046 +0.040
−0.013

+0 .021
−0 .024 1.35 1.57

0.03000 0.098 ± 0.073 +0.035
−0.023

+0 .012
−0 .005 2.78 2.24

Table 8.8: The extracted value of F cc̄
2 at each (Q2, x) point and the associated errors errors.

∆theo
∗ indicates that the theoretical predictions are taken from an earlier analysis [52].
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Figure 8.20 shows F cc̄
2 in bins of Q2 with increasing x on the x-axis. The grey band

represents the prediction given by the ZEUS NLO PDF fit, with errors propagated from

experimental uncertainties associated with the fitted data. These predictions were used in

the extraction of F cc̄
2 and give similar values to the central measurement. The HERA II

measurements are shown in blue triangles and the nearest HERA I measurements are shown

as open circles. Figure 8.21 gives this same information as a function of Q2 with fixed x.

Measurements are multiplied by a factor of 4i where each x point has a corresponding i

integer which increases with decreasing x. This information is also recorded in table 8.8

which states explicitly the statistical, systematic and theoretical errors associated with this

measurement.

Because F cc̄
2,theo has not changed from the HERA I measurement the agreement between

the central points of the HERA I and HERA II F cc̄
2 will be as good as their cross-section

agreement in figure 8.19. Overall the measurements agree within errors of the NLO prediction

and with their HERA I counterparts. The statistical error is of a similar order, for although

the HERA II luminosity is twice that of HERA I the reconstruction efficiency is only half

as good. However the HERA II systematic errors are in in some bins slightly larger than

the HERA I measurement due to multiple scattering effects in the MVD and inadequate

detector simulation. Figure 8.21 illustrates how scaling violations are observed at low x with

increasing Q2 in HERA II data. This figure also illustrates how for most values of x the

HERA I and II measurements are almost exactly the same. Data are somewhat lower than

the predictions at the lowest x and highest Q2 points.

The cross-section results are given in table 8.7 which also includes the separate contri-

butions of statistical and systematic errors. Table 8.8 lists the final F cc̄
2 measurement along

with the statistical and systematic error contributions. The calculation of the theoretical

error is not repeated since no improvements can be made over the HERA I predictions.

Moreover the machinery and expertise necessary to reproduce these calculations is no longer

present at ZEUS. This table also gives the ratio of statistical to mean systematic error and

the extrapolation factor necessary to expand the measured kinematic region to the entire

phase space. This quantity is always less than 4 and typically is between 1.5 and 2. The

ratio of statistical to systematic error is typically 0.7 and is almost always < 1. In the
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highest Q2 region the measurements are statistically limited in HERA I and the HERA II

measurements are slightly more accurate.

8.6 Comparison with theory
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Figure 8.22: The ratio of F cc̄
2 measurement with the NLO prediction shown in a series of

plots corresponding to Q2 points. The DIS parameter x runs along the x-axis on each sub

plot. The grey band represents the ratio of the prediction given by the ZEUS NLO PDF

fit over itself which is 1 by definition. Statistical and systematic errors are included on the

HERA II F cc̄
2 points and the error propagated from the fit to data is given on the NLO PDF

fit.

Figure 8.22 shows the ratio of the measured value of F cc̄
2 to the prediction from the

ZEUS NLO PDF fit. In general there is agreement within errors between the measured
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and predicted values although there is a tendency for the prediction to underestimate the

measurement at low x and for an over estimation at higher x. This trend appears to be

independent of Q2 although the error associated with the highest Q2 points is large. It

appears therefore that the ZEUS-S PDF fit could be systematically improved by the inclusion

of new charm data from the HERA II running period. Under the ZEUS-S parameterisation

the gluon PDF at Q2
0 takes the form

xf(x) = p1x
p2(1− x)p3

where p1 = 1.77±0.09±0.49, p2 = 0.2±0.01±0.04 and p3 = 6.2±0.2±1.2 [74]. Since the x

terms are small in the region where F cc̄
2 is measured (and the trend observed) an adjustment

of p2 is unlikely to correct for this effect. A refit using HERA II charm data is likely therefore

to result in a reduction of p3 which will correct for this trend and give a better theoretical

description of the data.

8.7 Future work

Improvements are being made to the regular ZEUS tracking package which will better ac-

count for multiple scattering in the MVD and will improve the vertex assignment of the D∗

decay tracks. When this tracking package is complete it will be possible to re-measure F cc̄
2

using the same procedure in this thesis with reduced ∆M(D∗) background and increased

statistics. At the time of writing this work is still in the development stages.

Moreover, when the HERA II ZEUS detector is fully optimised, it will be possible to

simultaneously extract measurements of F cc̄
2 and F bb̄

2 using only the impact parameter (IP)

of the tracks. The IP can be thought of as the distance of closest approach to the reference

point in the transverse plane, and can be used to discriminate the events with heavy quarks

whose lifetime is proportional to IP. This procedure has the advantage of not relying on

hard selection cuts which opens up a large phase space for measurement and will increase

statistics and will not require complicated kinematic reconstructions. However the MC does

not yet describe the HERA II data sufficiently well and much work is required to optimize

the extraction process.
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If the systematic errors associated with the HERA II measurement can be reduced it

will be possible to improve the measurement in statistically limited bins by combining the

HERA I and II results together. It may also be possible to reduce the background on the ∆M

distributions by using dE/dx tagging to identify the (K, π, πx) D
∗ decay tracks, however

with the present tracking technology this is likely to significantly reduce the overall statistics.

The measurement will converge with the predicted value once this charm data is in-

cluded in the ZEUS-S PDF fit. Improvements to the gluon PDF will also be important to

experiments at the LHC which will begin operation in the summer of 2007.

8.8 Summary

This chapter began with a summary of the selection cuts that defined the DIS data sample

from which differential cross-sections and F cc̄
2 were unfolded. The method by which the cross-

sections and F cc̄
2 are calculated was then described and the systematic and theoretical errors

associated with these measurements presented. The chapter concluded with a discussion of

the final cross-section and F cc̄
2 measurements with the systematic, statistical and theoretical

errors included with reference to the agreement with HERA I and the NLO predictions. The

F cc̄
2 measurement was found to be in agreement with the HERA I measurement and the NLO

prediction, and the measurement was performed to new precision in the highest Q2 region.
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Chapter 9

Measurement of log(1/xp) in the Breit

frame

This chapter presents a feasibility study of the measurement of log(1/xp) in the Breit frame.

This quantity has not been measured before using a charm-only sample and will give a

handle on the hadronic final state of the event. Careful measurement will also determine

if the production mechanism used in the MC simulation is consistent with what is seen in

nature. It opens with a definition of the Breit frame and xp before comparing the inclusive

HERA I measurement to the charm-exclusive LO MC prediction. A discussion is made of

how the HERA II population of the Breit frame is statistically limited and has large errors

which arise from boosting the reconstructed tracks to the Breit frame, reconstructing the

D∗ candidates and performing background subtraction on an extremely statistically limited

sample. These effects conspire to give a large acceptance correction which can not be used

for Q2 < 40 GeV2. A measurement was made for 40 < Q2 < 80 and 80 < Q2 < 160 GeV2.

The chapter concludes with an outlook of how this measurement may be improved in future

analyses.

9.1 Analysis procedure

The data and MC samples used in this study are identical to those used in the extraction of

F cc̄
2 in chapter 8. Events containing a D∗ candidate and which pass the necessary selection
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cuts are boosted and rotated into the Breit frame in which the exchange boson is completely

space-like. The velocity of the Breit frame with respect to the laboratory frame is given by

−→
β = (−→q + 2x

−→
P )/(q0 + 2xP0) (9.1)

where (P0,
−→
P ) and (q0,

−→q ) are the 4-momenta of the proton beam and exchange photon

respectively. This boost is discussed in section 2.7 and in more detail elsewhere [28]. It may

be interpreted as a boost and rotation so that the photon is along the negative z axis and

the plane of the scattered lepton contains the φ = 0 direction. The region of z < 0 is defined

as the current region and is where the measurement is performed. The volume for which

z > 0 is known as the target region and contains both the scattered lepton and the proton

remnant.

As discussed in section 2.7 the boson-gluon fusion (BGF) method of charm production

has a tendency at low Q2 to populate the target rather than the current region of the Breit

frame. Since BGF is the dominant source of charm production the current region is sparsely

populated by D∗s and measurements of the scaled momenta in this region are statistically

limited.

Scaled momentum, xp, is defined by

xp = 2pBreit/Q (9.2)

and was evaluated for the D∗s which populated the current region of the Breit frame which

has a high measurable acceptance. log(1/xp) was histogrammed by generating right and

wrong charge distributions of ∆M(D∗) and performing the background subtraction in each

log(1/xp) bin. These quantities were used to evaluate N(D∗) in the procedure explained in

section 5.5.1 but now for bins in log(1/xp) as well as Q2. The ∆M(D∗) distributions were

thus statistically limited with distributions such that the background subtraction could not

be performed accurately in all bins, leading to large uncertainties in measuring log(1/xp).

Where it was possible to extract a measurement it could only be done with large statistical

errors.
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9.2 Measurements

Figure 9.1 shows the log(1/xp)
inclusive measurement for all charged particles obtained from

the ZEUS 1994-7 data [27]. The distributions have an approximately Gaussian shape with

maxima which shift towards higher values as the energy increases. The growth in height

reflects the increased multiplicity associated with a rise in Q. The rising edge of these

distributions lie almost on top of each other with small variations. The mean and multiplicity

of the distributions rise linearly with logQ2.

Figure 9.2 shows the RAPGAP true log(1/xp) distributions for the same range of Q2

values normalised to NTrue(D
∗). Using this charm-only sample, the key features present in

the inclusive sample are not reproduced; there are no obvious scaling violations in terms

of multiplicity growth, mean, width or skewness unlike the inclusive sample. The tail of

the distribution does not fall to zero as log(1/xp) → 0 because the BGF charm production

mechanism leads to an intrinsic pT in the D∗ and causes xp > 1 for a significant fraction

of events. The results of this MC truth analysis indicate that the momentum of the D∗ is

directly proportional to the Q of the event since the ratio of pBreit(D
∗)/Q is approximately

constant. All of these features are an indication that the underlying physics being measured

is indeed different from that of the inclusive sample.

Figure 9.3 shows the number of data and MC reconstructed D∗ candidates as well as the

corresponding number of MC truth D∗s in a series of log(1/xp) bins. In each Q2 range the

distributions have been normalised to the number of D∗s counted in that Q2 bin. In most

bins the evolution of the reconstructed D∗s does not match well that of the true level D∗s

whose leading edge remains approximately fixed. At lower Q2 the position of the peak occurs

much later in log(1/xp) in the reconstructed sample than in MC truth, although the peaks

do appear to converge at large Q2. In a well reconstructed, highly resolved event one would

expect the MC and true distributions to fall within nearby log(1/xp) bins. This indicates

that it is difficult to resolve D∗s in the Breit frame with minimal drift between bins. However

the MC reconstruction does agree with the data for Q2 < 160 GeV2 indicating that these

low resolution and acceptance effects are faithfully reproduced in the simulation.
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Figure 9.1: Evolution of log(1/xp)
Inclusive measured at HERA I for an inclusive sample of all

charged tracks [27].
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Figure 9.2: Evolution of RAPGAP MC true log(1/xp) for D∗ production.
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Figure 9.3: The number of reconstructed D∗s in data (open circles) and MC (solid triangles)

in bins of log(1/xp). The plots have been normalised to N(D∗) in each Q2 bin.

9.3 Discussion of measurements

The discrepancy between MC truth and the reconstructed values of xp can be attributed

to a poor reconstruction of either Q or pbreit(D∗), both of which feature in the definition

of xp in equation 9.2. The Q2
DA resolution plots in figure 6.10 illustrate how the agreement

between the true and reconstructed values of Q2 improves with rising Q2. Figure 9.4 shows

the area normalised pbreit(D∗) distribution for MC and data reconstruction overlayed on the

MC truth prediction. This figure illustrates how difficult it is to reconstruct D∗s in the Breit

frame by demonstrating the extent to which pbreit
true (D∗) is smeared. We can conclude that

the reconstruction procedure gives an overestimation of the generated momentum which is

approximately constant with rising Q2. Therefore the high Q2 convergence between MC
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Figure 9.4: Area normalised pbreit(D∗) of for MC (black) and data (red) reconstruction and

for MC truth (dashed blue).

truth and reconstructed log(1/xp) can be attributed to the improved Q2 resolution with

increasing Q2.

Figure 9.5 shows the correlation between the reconstructed and true values of log(1/xp)

as a profile plot in which the spread of (log(1/xp)REC − log(1/xp)TRUE) is given on the y-

axis with true log(1/xp) running along the x-axis. At lower Q2 the reconstructed values

are systematically higher than the truth, although as Q2 increases the correlation becomes

increasingly one-to-one; a consequence of the increasing Q2 resolution with rising Q2. These

plots show that the 40 < Q2 < 80 and 80 < Q2 < 160 GeV2 bins give the best correlation

between true and reconstructed values, after which the statistics drop considerably and

background subtraction cannot be performed meaningfully. Therefore acceptance corrections
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Figure 9.5: The correlation between the reconstructed and true values of log(1/xp) shown

in bins of Q2 in a number of profile plots. The red line indicates y = x.

are only performed in the 40 < Q2 < 80 and 80 < Q2 < 160 GeV2 regions in the extraction

of a final measurement.

The ratio of wrong to right charge D∗ candidates in the measured Q2 and log(1/xp) bins

converge to the same value as log(1/xp) increases. Since the background subtraction method

is not statistically reliable when NWC(D∗) ≈ NRC(D∗) the log(1/xp) > 1.25 points are

discarded. NWC(D∗) and NRC(D∗) are the number of wrong and right charge D∗ candidates

as defined in section 7.2. Because the adjustment of the background normalisation area

is susceptible to statistical fluctuations it is not performed as part of the systematic error

assessment of the final measurement.

In summary there are several effects at work which conspire to make a measurement of
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Figure 9.6: Illustration of how the truth log(1/xp) distribution (solid black line) is smeared

by the various errors associated with reconstructing xp. This measurement involves a recon-

struction ofQ (dashed pink), a boost into the Breit frame (dashed cyan) and a reconstruction

(dashed green) and background subtraction (solid blue) of the D∗ momentum in this frame.

log(1/xp) challenging with the current data set and reconstruction tools. These are sum-

marised in figure 9.6 which illustrates how the truth log(1/xp) distribution is smeared by

these errors to a significant degree. A measurement of xp requires a reconstruction of Q

(dashed pink), a boost into the Breit frame (dashed cyan) and a reconstruction of the π, πs

and K (forming the D∗) momenta in this frame (dashed green). Finally in each log(1/xp)

bin the background D∗ candidates must be subtracted to give the measured quantity (solid

blue). The errors associated with each of these stages conspire to increase the position of the

observed log(1/xp) peak and to smear the distribution to such an extent that the acceptance

correction factor is large for most Q2 bins.
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Figure 9.7: The acceptance corrections associated with the measurement of log(1/xp) in bins

of Q2 and log(1/xp).

9.4 Final results

The bin-by-bin acceptance correction factors as defined by equation 6.1 are given in figure

9.7. Corrections are made in the regions 40 < Q2 < 80 GeV2 and 80 < Q2 < 160 GeV2

where the acceptance is reasonably flat and the resolution is commensurate with the bin

size. For Q2 > 160 the statistics are not sufficient to perform an adequate measurement and

likewise the log(1/xp) > 1.25 values are rejected due to statistical limitations.

The same systematics considered in the measurement of F cc̄
2 in chapter 8 are performed,

with the exclusion of varying the background normalisation factor which is susceptible to

statistical fluctuations. As with the measurement of F cc̄
2 the largest source of systematic error

is the switch from RAPGAP to HERWIG (±40%) and adjusting the track loss probability
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(±25%). However the measurement in this case is limited by statistics and not systematics.

The results of this correction with systematic and statistical errors are given in figure

9.8 and table 9.1. They are in agreement with the RAPGAP and HERWIG LO predictions

within the prescribed uncertainties. A gaussian distribution is fit to the acceptance corrected

data points and is shown as a blue curve whose fit parameters are given in the figure. The

mean value of log(1/xp) has been extracted using these fits for both Q2 bins and assessed

for systematic errors, concluding that

< log(1/xp) >Q2=56= 0.578± 0.046+0.092
−0.010

and

< log(1/xp) >Q2=108= 0.437± 0.074+0.045
−0.030

as seen in table 9.2. These values are consistent with each other and so < log(1/xp) > is

not observed to exhibit scaling violations. Similarly the difference between the width or

amplitude in each of the Q2 bins is not statistically significant and so these quantities are

said to scale with Q2.

9.5 Outlook and future work

A statistically limited measurement has been performed for two bins from 40 < Q2 < 160

GeV2 after which the statistics fall dramatically. Using the current reconstruction tools and

the current HERA II data set it is difficult to progress further in this exploratory analysis.

The full HERA II data set when HERA operation stops in the summer of 2007 will double

the statistics and permit a measurement in the Q2 > 160 GeV2 region.

The current ZEUS reconstruction technologies are challenging with respect to recon-

structing the D∗ candidates in the Breit frame. Improvements are being made to the tracking

tools which will reduce the distortion arising from multiple scattering as well as providing

superior vertexing capabilities. This should improve the resolution of the reconstructed D∗s

so that the measurement may be performed in lower Q2 bins. Whilst it is unlikely that the

Q2 resolution will improve, it will be possible to improve the accuracy with which the πs

(and hence D∗) is reconstructed. Improvements to the reconstruction of x will also reduce
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Q2 bin (GeV2) log(1/xp) bin 1/σtotdσ/d log(1/xp) ∆stat ∆sys

40, 80 -0.25, 0.0 0.013 ± 0.022 +0.008
−0.003

0.0, 0.25 0.162 ± 0.088 +0.007
−0.030

0.25, 0.5 0.298 ± 0.085 +0.024
−0.055

0.5, 0.75 0.299 ± 0.085 +0.021
−0.109

0.75, 1.0 0.241 ± 0.050 +0.060
−0.011

1.0,1.25 0.059 ± 0.029 +0.017
−0.014

80, 160 -0.25, 0.0 0.038 ± 0.030 +0.006
−0.013

0.0, 0.25 0.192 ± 0.074 +0.026
−0.046

0.25, 0.5 0.285 ± 0.121 +0.021
−0.061

0.5, 0.75 0.286 ± 0.102 +0.069
−0.013

0.75,1.0 0.058 ± 0.091 +0.016
−0.063

1.0, 1.25 0.087 ± 0.090 +0.041
−0.027

Table 9.1: Measurements of 1/σtotdσ/d log(1/xp). The data are presented in bins of Q2

including the associated statistical and systematic errors.

< Q2 > (GeV2) < log(1/xp) > ∆stat ∆sys

56 0.578 ± 0.046 +0.092
−0.010

108 0.437 ± 0.074 +0.045
−0.030

Table 9.2: Measurements of < log(1/xp) > and associated statistical and systematic errors.
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Figure 9.8: The log(1/xp) measurement in the regions 40 < Q2 < 80 GeV2 and 80 < Q2 <
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and statistical errors have been added in quadrature. The data are compared to RAPGAP

(dotted) and HERWIG (full).

the error associated with the boost into the Breit frame and hence the overall measurement

error.

9.6 Summary

This chapter studied the feasibility of performing a measurement of xp in the Breit frame.

It opened with a definition of the Breit frame and xp before comparing the inclusive HERA

I measurement to the charm-exclusive LO MC predictions. A measurement was feasible and

performed for 40 < Q2 < 80 and 80 < Q2 < 160 GeV2 which agreed with both the LO MC

prediction within the uncertainties.
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Chapter 10

Summary

This thesis opened with a brief introduction to the basics of Deep Inelastic Scattering with

emphasis on the Lorentz invariant variables used to characterise these events and the re-

lationship between cross sections and structure functions. A discussion was made of the

evolution of the Quark Parton Model and the impact this had on the theory of structure

functions. The basic principles of DGLAP evolution, parton density functions and the nature

of heavy quark production at ZEUS were presented. An outline was given of Monte Carlo

event generation and the different implementations of the hadronisation and fragmentation

stages of quark jet production.

The focus was then shifted to the design and operation of the ZEUS detector itself,

describing the MVD, CTD, CAL, HES and SRTD components. The first three were used in

the final measurements whereas the CAL, HES and SRTD were aligned in a later chapter

which concluded that only a minimal adjustment of the SRTD position was required, with

negligible effects on reconstructed DIS event kinematics.

Satisfied that these components were correctly aligned, a SLT J/Ψ trigger was developed

using the new GTT tracking algorithm. Following an efficiency, signal-to-noise and trigger

rate study a suitable trigger based on invariant mass reconstruction was developed and

installed online. This trigger is capable of detecting unique J/Ψ events that are not detected

by existing triggers which typically rely on detection of energy deposits in the CAL. When

used in conjunction with existing triggers statistics would be improved by as much as 50%.

This work was published as part of a larger GTT NIM paper [38].
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The stability of the existing DIS trigger system was tested and found to be well simu-

lated in MC. The relevant DIS kinematic variable reconstruction methods were then defined

and their resolutions measured. The double angle method was found to be superior and

was adopted as the principle reconstruction technique in this thesis. To improve the MC

description of E − pZ it was found necessary to scale the hadronic system by 0.97 and to

scale and smear the electron energy by 0.98 and 3% respectively. The event selection cuts

were then given and a comparison of DIS control plots was made between the DIS Monte

Carlos, HERWIG and RAPGAP, finding that RAPGAP most accurately describes the data.

As a result of this RAPGAP was used to calculate the acceptance corrections.

The tracking capabilities of HERA II were then compared with those of HERA I and

the method of D∗ reconstruction from tracks was described. Whilst HERA II tracking was

found to be superior at high pT the resolution was inferior at lower momenta owing to

multiple scattering from the MVD. The technique used to count D∗s using ∆M background

subtraction was outlined and found to have greater background at HERA II. A comparison

of D∗ kinematics control plots between RAPGAP and HERWIG was then made showing

a discrepancy between MC and data for pT (πs) distributions, particularly at low pT . This

discrepancy was a large source of systematic error.

With the MC understood it was at last possible to proceed to the measurement of F cc̄
2

and associated differential cross-sections using the D∗ → Kππs decay chain. The method by

which the cross-sections and F cc̄
2 are calculated was described and the systematic and the-

oretical errors associated with these measurements presented. The HERA II measurements

were found to be in good agreement with HERA I. Good agreement was found with the

NLO prediction although the results were systematically higher at low x and lower at high

x. As a result it was recommended that the PDF be refit to the new charm data to correct

for this. These results were made preliminary in March 2007 by the collaboration.

This thesis concluded with a feasibility study of performing a measurement of the scaled

momentum quantity, xp, in the Breit frame using only charm data. A measurement was

feasible and performed for 40 < Q2 < 80 and 80 < Q2 < 160 GeV2 which agreed with

both the LO predictions within systematic and statistical uncertainties indicating that the

production mechanism is well understood.
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Appendix A

Trigger

A.1 GTT Analysis Trigger Definitions

The success of any proposed trigger will depend of course on its performance against the

standard trigger system already in use. This section of the appendix outlines the details of

these triggers which are already in operation at the SLT.

A.1.1 SPP 04

If (.not.(FLTevt(58).or.FLTevt(62)) ) then

Iflag=0

ElseIf ( CCGefemc .gt. 5.0 .and. CCGetoth .lt. 1.0 ) Then

CALL SBIT1(ISUBTR2(3),4)

ElseIf ( pzovere .lt. 0.96 .and. CCGetote .gt. 1.5 .and. CCGetoth .lt. 1.0) Then

CALL SBIT1(ISUBTR2(3),4)

ElseIf ( pzovere .lt. 0.96 .and. CCGetote .gt. 6.0 .and. CCGetoth .lt. 4.0) Then

CALL SBIT1(ISUBTR2(3),4)

Endif

FLTevt(58) is an RCAL isolated electron trigger with some additional energy cuts tuned

for J/Ψ.
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FLTevt(62) is an isolated electron trigger.

A.1.2 HFL 19

c FLT

slotset = FLTevt(8).or.FLTevt(9).or. FLTevt(10).or.FLTevt(11).or.FLTevt(14).or.FLT evt(15)

c loose = tight SLT

HFL19 PZoE = 0.96

HFL19 PT12 = 0.75

IF(slotset.and.(ep vtx.or.no ctd).a nd. (barrel time pass).and. (PzOverE.lt.HFL19 PZoE))

THEN

IF ( no ctd .or. ( slu.ge.2 .and. slf.ge.2

.and.

( hfl many tracks

.or. (SltPt(1).gt.HFL19 PT12.and. SltPt(2).gt.HFL19 PT12 ))))

THEN

CALL SBIT1(ISUBTR3(3),19)

ENDIF

ENDIF

FLTevt(8,9,10,11,14,15) are a number of CAL energy cuts

A.1.3 MU 02

IF ( (FLTevt(14).or.FLTevt(15)).and. barrel time pass) Then

CALL SBIT1(ISUBTR3(3),23) Endif

FLTevt(14) is a Barrel muon Cal Energy cut. FLTevt(15) is an RCal muon Energy
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A.1.4 GTT 05

IF( barrel time pass .and. (P zOverE.lt.0.96) .and. (FLTevt(8) .or. FLTevt(9)

.or. FLTevt(10) .or. FLTevt(11) ) )

then

if (rmui9s.or.rmui9n)

then

if ( ((GTT NVTXTRK.gt.3).and.(abs(GTT z VTX).lt.50.)).or.

((GTT NVTXTRK.le.3).and.(abs(GTT zVTX).lt.70 .)) !.or. no gtt )

then

CALL SBIT1(ISUBTR4(3),5)

endif

else

CALL SBIT1(ISUBTR4(3),5) endif endif

FLTevt(10) & (11) are muon CAL cuts.

MU06 is essentially MU01 with some vertex requirement.

A.2 F cc̄
2 Trigger Description

A.2.1 FLT triggers

• FLT 30 requires

– A deposit of at least 2.08 GeV in an isolated EM tower with a deposit of at most

a third of this value (or < 0.95 GeV) in the HAC tower behind it AND

– EMC deposit > 2 GeV in the RCAL OR

– Total RCAL EMC deposit > 3.7 GeV OR

– A CFLT tower energy deposit > 0.5 GeV AND and SRTD hit

• FLT 34 requires
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– An isolated electron in the RCAL and an RCAL energy deposit >

• FLT 36 requires

– An isolated electron in the RCAL and an RCAL energy deposit > and a CAL

energy deposit >

• FLT 44 requires

– BCAL EMC energy > 4.8 GeV OR

– RCAL EMC > 3.4 GeV

• FLT 46 requires

– FLT 30 AND

– CTD tracks originating from a vertex

A.2.2 TLT triggers

HFL 02

A heavy flavour TLT trigger. Requires a DIS electron OR one of the HFM triggers with

loose cuts. HFM triggers are triggers on each of the D mesons (with loose cuts on ∆ M,

Pt(D*), Pt(Pi) etc.)

SPP 02

An inclusive DIS trigger.

TLT: 30 < E− Pz < 100 GeV. Electron found by SIRA or EM Electron energy 4 GeV

Box cut 12x12 cm

SLT = FLT DIS or FLT 36 + 30 < E− Pz GeV Remc ¿ 2.5 GeV or Bemc > 2.5 GeV or

Femc > 10GeV of Femc > 10GeV Fhac > 10GeV

FLT (dis triggers) FLT28, 30, 40, 41, 36, 43, 44, 46, 47, 62
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A.2.3 DST Selection

Each event was required to trigger at least one of:

• DST9

– An offline scattered electron is found by any electron finder with an energy greater

than 4 GeV.

• DST 10

– There is a vertex found

These triggers are included for practical purposes to safely reduce the size of the sample used

in the analysis. Tighter cuts are applied later in the analysis.
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Appendix B

Resolution

B.1 Justification of formalism of tracking resolution

The resolution of the CTD when expressed as a function of transverse track momentum (PT )

takes the following form:

σ(PT )/PT = a0PT ⊕ a1 ⊕ a2/PT

where ⊕ indicates that the terms are added in quadrature so that

σ(PT )/PT =
√

((a0PT )2 + (a1)2 + (a2/PT )2)

This form arises from consideration of both scattering effects and inaccuracies in measuring

the position of hits along the fitted track as outlined elsewhere [51]. This appendix briefly

outlines how these effects lead to the resolution formalism given above.

Contribution from errors in hit measurement

The a0PT term arises from an error in the measurement (σHIT) on each hit assigned to the

reconstructed track where, for a CTD track, σHIT ≈ 200µ. The error on a curved track

of radius R obeys the relation σ(R) ≈ σHITR
2 and since a measurement of curvature is in

essence a measurement of momentum it follows that σ(PT ) ≈ P 2
T is also true. We therefore

quickly arrive at:

σ(PT )/PT = a0PT .
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Contribution from multiple scattering

Figure B.1: The effect of multiple scattering of a particle traveling at angle θ through a

medium of thickness L0.

Another important contribution to track smearing is the multiple scatter effect arising

from the presence of dead material in the path of the decay particle. Multiple scattering can

occur inside the CTD, distorting the hits in a process which depends (amongst other things)

on 1/p. This leads to an error contribution of the form σ(PT ) ≈ PT and an additional error

term

σ(PT )/PT = a1.

These first two terms would be entirely sufficient to describe the overall error if there

was no scatter prior to arrival in the CTD. However at ZEUS there exists dead material in

between the vertex and the CTD in the form of the beampipe, MVD and CTD inner wall.

The presence of this material causes smearing of the transverse momentum at the production

vertex (PT ) into the transverse momentum measured inside the CTD (P CTD
T ). This leads

to the additional a2 term which also appears in the parameterisation above. To understand

this term we consider the production of a particle produced at the primary vertex with

momentum p and polar angle θ as illustrated in figure B.1. Since low momentum tracks

are more susceptible to multiple scattering the amount of smearing to θ caused by multiple

scattering depends on 1/p and is given by

σ(θ) =
0.014

P

√

L0/ sin θ
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where L0/ sin θ is the distance in radiation lengths traveled by a particle (before it reaches

the CTD) at angle θ through a particle of thickness L0 [56]. P here is measured in GeV. It is

interesting to observe that during multiple scattering the magnitude of the track momentum

is unaffected by multiple scattering, only the direction is altered.

Given that σ(PT ) = σ(θ)p cos θ it follows immediately from substitution that σ(PT ) =

p cos θ
√

L0/ sin θ × 0.014/p which leads inexorably by cancellation to

σ(PT )

PT

=
0.014

√
L0

PT

cos θ/
√

sin θ

At this stage it is possible to assign approximate values to coefficients here and gauge any

detrimental effect that the installation of the MVD may have had on the tracking resolution

at ZEUS. To some extent the detrimental effects of increased multiple scattering will be

offset by reduced errors on assigning hits to tracks once the MVD has been properly aligned.

For tracks that are fully contained within the CDT cos θ/ sin θ ≈ 0.5 both before and after

the ZEUS upgrade. Taking this approximation the a2 error term takes the general form

σ(PT )/PT = a2/PT

as required.
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Figure B.2: The Dead Material Map of the MVD as a function of θ and φ as implemented

in the 2002 MC.

Prior to the installation of the MVD a particle will have to traverse only the CTD and

beampipe, a distance corresponding to 3% of a radiation length allowing for an approximation
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of σ(PT )/PT ≈ 0.0012/PT . The inclusion of the MVD contributes 3.75% of a radiation

length (figure B.2), increasing the total to 6.75% which modifies the error approximation to

σ(PT )/PT ≈ 0.0019/PT .

This represents the last significant contribution to the error assigned to the CTD tracks.

When all of these contributions are combined we obtain the final form of the error

σ(PT )/PT = a0PT ⊕ a1 ⊕ a2/Pt

whose coefficients are extracted by fits to data as outlined in section 7.3.2. Such fits yield

the following results:

CTD Tracking : σ(PT )/PT = 0.0063PT ⊕ 0.0083⊕ 0.0032/PT

REG Tracking : σ(PT )/PT = 0.0038PT ⊕ 0.0134⊕ 0.0033/PT

ZTT Tracking : σ(PT )/PT = 0.0034PT ⊕ 0.0150⊕ 0.0034/PT

The corresponding HERA I result is

HERA I : σ(PT )/PT = 0.0063PT ⊕ 0.0070⊕ 0.0016/PT .

The ratio aHERA I
2,fit : aHERA II,

2,fit = 1 : 2 when a2 is extracted from the fit and aHERA I
2 :

aHERA II
2,prediction = 2 : 3 from prediction. From first inspection is appears that HERA II tracking

resolution is under performing compared to our naive calculation. However in the calculation

the modal value of radiation length was selected, in reality the detector map is not uniform

in φ so there are a number of regions where there is more dead material than has been

accounted for in our approximation.
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Appendix C

F cc̄2 Results
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(Q2 (GeV2), x) F cc
2 1 2 3 4 5 6

(5.5, 0.00008) 0.268 10.18% 12.01% 7.67% 3.71% -15.90% -0.91%

(5.5, 0.00018) 0.170 10.92% 11.83% 6.22% 4.19% -13.05% -0.30%

(5.5, 0.00035) 0.142 12.60% 12.10% 0.11% 7.33% 27.81% -1.12%

(5.5, 0.001) 0.098 16.50% 12.76% -10.55% 5.36% 35.47% -0.94%

(7, 0.00018) 0.232 12.99% 12.45% 8.72% 1.89% -15.22% 0.86%

(7, 0.0006) 0.125 11.18% 12.35% 0.83% 5.69% -7.45% -0.78%

(7, 0.0015) 0.074 10.91% 11.67% -10.17% 8.24% 31.27% 0.35%

(11, 0.00018) 0.338 11.83% 12.73% 9.69% 0.10% -15.66% 0.28%

(11, 0.00035) 0.247 9.41% 12.03% 6.73% 1.77% 0.43% -0.56%

(11, 0.001) 0.178 12.09% 13.06% -0.90% 3.96% 1.26% 0.52%

(11, 0.003) 0.096 11.08% 11.94% -11.54% 4.08% 5.59% 0.41%

(18, 0.00035) 0.456 10.76% 12.35% 9.67% -3.80% -29.39% 1.15%

(18, 0.0006) 0.325 10.89% 12.20% 7.08% 0.45% -8.92% -0.50%

(18, 0.0015) 0.174 10.27% 12.60% -2.31% 1.60% 8.01% -0.01%

(18, 0.003) 0.128 9.87% 11.62% -12.05% 2.57% 11.09% -0.10%

(30, 0.0006) 0.426 8.79% 12.96% 10.70% -4.23% -5.57% 0.05%

(30, 0.001) 0.340 9.15% 11.87% 6.92% -3.07% 24.57% 0.75%

(30, 0.0015) 0.268 9.12% 13.05% -3.18% -3.83% -7.74% 0.87%

(30, 0.006) 0.105 7.54% 10.77% -14.37% -4.14% 39.91% -1.20%

(60, 0.0015) 0.402 8.98% 12.09% 9.09% -8.48% -0.37% 1.95%

(60, 0.003) 0.250 7.54% 13.02% 0.44% -8.46% -4.17% 0.30%

(60, 0.012) 0.109 7.81% 11.38% -10.85% -9.49% 30.19% -0.22%

(130, 0.003) 0.378 8.67% 12.98% 6.77% -15.00% -6.82% 0.84%

(130, 0.006) 0.185 7.20% 13.59% -4.60% -15.26% -1.22% -1.17%

(130, 0.03) 0.056 4.74% 10.35% -13.71% -15.73% 35.68% 1.04%

(500, 0.012) 0.047 14.79% 15.08% 4.15% -24.57% 11.20% 1.72%

(500, 0.03) 0.098 14.04% 11.19% -11.74% -24.89% 5.90% -0.74%

Table C.1: Part B of the individual systematic errors associated with the measurement of

F cc̄
2 . A yellow box indicates a shift from the central value of between 5% and 10% once

the systematic has been applied, a magenta box indicates a shift larger than 10%. The

systematics checked are labeled from 1 to 17 according to the key in table 8.1.
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(Q2 (GeV2), x) F cc
2 7 8 9 10 11 12

(5.5, 0.00008) 0.268 0.97% -0.39% -1.37% -7.96% -3.39% -0.94%

(5.5, 0.00018) 0.170 0.03% -1.59% -1.88% 1.98% 6.32% 0.60%

(5.5, 0.00035) 0.142 -0.26% -1.42% 0.95% -7.70% 0.35% 0.41%

(5.5, 0.001) 0.098 -0.85% -0.36% -1.64% -15.53% -2.85% -2.38%

(7, 0.00018) 0.232 -2.31% 1.32% -0.10% -4.49% 3.76% -3.71%

(7, 0.0006) 0.125 0.27% 1.41% -0.36% -1.06% -2.67% 1.59%

(7, 0.0015) 0.074 -0.90% -1.73% -0.10% -6.32% -4.78% -1.32%

(11, 0.00018) 0.338 0.88% 2.00% -2.11% -10.74% -6.56% -2.93%

(11, 0.00035) 0.247 0.00% -0.37% -1.63% 3.88% 0.42% 1.18%

(11, 0.001) 0.178 -0.41% -0.54% 0.08% -2.38% 0.62% -1.59%

(11, 0.003) 0.096 0.61% 0.52% -0.75% -0.28% 5.68% 0.04%

(18, 0.00035) 0.456 -2.89% 1.13% -0.62% -6.46% 0.84% -2.26%

(18, 0.0006) 0.325 -0.15% -0.25% 1.06% 1.04% 2.13% 1.23%

(18, 0.0015) 0.174 -0.11% 0.55% -0.38% -6.04% 2.29% 0.62%

(18, 0.003) 0.128 -0.30% -0.29% -0.65% -6.58% -2.58% 1.13%

(30, 0.0006) 0.426 0.04% -1.34% -0.60% -3.44% 15.54% 1.27%

(30, 0.001) 0.340 0.16% -0.58% -0.76% -2.03% -5.00% -0.34%

(30, 0.0015) 0.268 0.01% 0.66% 0.26% 1.19% 4.79% 0.42%

(30, 0.006) 0.105 0.14% -0.70% 0.49% 4.75% 1.27% 1.67%

(60, 0.0015) 0.402 -1.02% -0.65% -1.23% -2.91% -3.97% -2.24%

(60, 0.003) 0.250 0.58% -0.42% -0.90% 4.41% 0.11% -0.33%

(60, 0.012) 0.109 -0.90% 0.06% 0.75% -0.75% -9.04% 0.94%

(130, 0.003) 0.378 -1.34% 0.20% 3.55% -12.96% 8.06% -3.15%

(130, 0.006) 0.185 0.90% 0.15% -1.43% 5.10% 3.47% 4.28%

(130, 0.03) 0.056 -0.94% -0.25% -0.86% 6.11% -4.13% -3.21%

(500, 0.012) 0.047 -2.02% -4.80% 0.36% -5.91% 79.57% -4.85%

(500, 0.03) 0.098 -0.27% -4.70% -5.26% 31.40% 15.06% 10.83%

Table C.2: Part B of the individual systematic errors associated with the measurement of

F cc̄
2 . A yellow box indicates a shift from the central value of between 5% and 10% once

the systematic has been applied, a magenta box indicates a shift larger than 10%. The

systematics checked are labeled from 1 to 17 according to the key in table 8.1.
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(Q2 (GeV2), x) F cc
2 13 14 15 16 17

(5.5, 0.00008) 0.268 -0.94% 4.41% -3.03% 1.00% -0.61%

(5.5, 0.00018) 0.170 0.60% 3.54% -0.82% 0.76% -0.71%

(5.5, 0.00035) 0.142 0.41% 3.25% -2.22% -0.03% -0.21%

(5.5, 0.001) 0.098 -2.38% 1.41% -2.51% 0.37% 0.00%

(7, 0.00018) 0.232 -3.71% 6.02% -3.62% 0.52% -0.75%

(7, 0.0006) 0.125 1.59% 3.21% -1.65% -0.04% -0.34%

(7, 0.0015) 0.074 -1.32% 2.25% -0.75% 0.26% -0.29%

(11, 0.00018) 0.338 -2.93% 7.60% -0.59% -0.13% -1.18%

(11, 0.00035) 0.247 1.18% 2.54% -0.17% 0.01% -0.14%

(11, 0.001) 0.178 -1.59% 1.53% 1.87% 0.19% -0.25%

(11, 0.003) 0.096 0.04% 1.41% 1.64% 0.00% 0.39%

(18, 0.00035) 0.456 -2.26% 4.67% -3.37% -0.23% 0.49%

(18, 0.0006) 0.325 1.23% 1.36% 0.19% -0.04% 0.11%

(18, 0.0015) 0.174 0.62% 0.78% 2.83% -0.06% 0.00%

(18, 0.003) 0.128 1.13% 0.44% 5.44% 0.17% 0.50%

(30, 0.0006) 0.426 1.27% 8.87% -2.99% -0.07% -0.40%

(30, 0.001) 0.340 -0.34% 3.07% 0.73% 0.25% 0.03%

(30, 0.0015) 0.268 0.42% 1.26% 3.06% 0.08% 0.29%

(30, 0.006) 0.105 1.67% 0.22% 5.66% 0.12% 0.36%

(60, 0.0015) 0.402 -2.24% 7.42% -1.55% 0.74% -0.59%

(60, 0.003) 0.250 -0.33% 1.16% 1.22% -0.10% -0.07%

(60, 0.012) 0.109 0.94% -0.42% 2.66% 0.10% 0.09%

(130, 0.003) 0.378 -3.15% 5.98% -1.54% 0.39% -0.39%

(130, 0.006) 0.185 4.28% 1.22% 1.76% 0.03% 0.03%

(130, 0.03) 0.056 -3.21% 1.97% 6.17% 0.08% 0.26%

(500, 0.012) 0.047 -4.85% 14.54% -1.19% 0.01% -0.72%

(500, 0.03) 0.098 10.83% -1.19% 0.77% 0.00% -0.10%

Table C.3: Part C of the individual systematic errors associated with the measurement of

F cc̄
2 . A yellow box indicates a shift from the central value of between 5% and 10% once

the systematic has been applied, a magenta box indicates a shift larger than 10%. The

systematics checked are labeled from 1 to 17 according to the key in table 8.1.
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Don’t be afraid

What your mind conceives

You should make a stand

Stand up for what you believe

And tonight

We can truly say

Together we’re invincible

Muse, Invincible






