Current status at: 24.02.2001

SCT-DCS MONITORING SOFTWARE

S.G.Basiladze (MSU), R.Brenner (Uppsala)

Contents

1. Introduction
1.1. Software design aims and main features
1.2. The main structure elements of DCS
1.3. The types of DCS information

2. User tools for dealing with DCS
2.1. Names organization of the Detector Tree
2.2. Data Base, Configuration files and their levels
2.3. Calibration algorithms
2.4. Watching/Community groups
2.5. Status byte convention

3. Core software in “C”

3.1. The hierarchy of DCS actions
3.1.1. The “far side” Functions and they numbers
3.1.2. Transactions, structure of messages
3.1.3. The “near side” Requests and Responses

3.2. Scan and Event waiting Loops

3.3. Control Functions and Script Tables/Files

3.4. Error handling

4. LabView version of SCT DCS software

5. PVSS application
5.1. Indicator & Control Panels and Objects
5.2. PVSS Data Points structure
5.2.1. Data Points loading from the Data Base
5.3. PVSS Calls of “C”-functions

6. Calibration software
7. Testing and Simulation software
7.1. Manual Controller in “C”

7.2. CAN-bus analyzer

8. Supplements

AW

P
D=y

12
12
13
14
16
17
19
20

21

22
22
27
29
29

30
32
33
35

37

Introduction
1.1. Software design aims and main features

Wide Range and Usage Simplicity. The first aim of the project was to make “scalable”
software that allows to create a smple local test stations (1-2 FieldBus boxes with several tens
of channels) and from other hand to build the complex geographical distributed slow control
systems that may contain 5-6 hierarchical levels and thousands of the channels (FieldBuses are
on the down level(s) in that systems).

All the manipulations with the nodes (and their branches) in hierarchical system structure
(tree) are based on a simple set of functions such as Open/Close, Set/Get Data/Status, etc. This
set of functions is hardware and protocol independent and may be used on the any hierarchical
level.

All the important for user and changeable parameters of monitoring and control are placed
into the configuration file(s) and may be changed without software recompiling. The originad
configuration files are creating, filling and editing as the tables in Microsoft Access Data Base.

Created software is platform independent — any computer under Unix, Linux, Windows
(and VM S — historically) may be used in the system (except user interface).

Hard-Open. Any type of FieldBuses and FieldBus nodes may be used in the system as well
as some specific interconnection protocols (PC parallel and serial ports, GPIB buses, VME
buses, etc.) in addition to the main CAN-Open protocol.

The current software is able to maintain 2 versions of CAN-controller cards, 8 versions of
CAN-Boxes, Seria & Pardle portsof IBM PC and VME —bus modules.

Flexibility and High Performance. The flexibility is supported by hierarchical modular
organization of the software; the main structure elements (libraries) are shown in Fig.1.

Figure 1
Request Library Data Base
Net Net
|- - - DCS TransActions Library |
System Functions Library
y - £
y - £
é)
Controller Card CAN Box (r i\
Procedures Operations Configuration
Libraries Libraries and
\. J Calibration
Hardware Simulation Library Files
\‘7 A‘) Software
NI-CAN orIC-CAN EIMB-CAN Hardware
Controller Boxes e Boxes
. CAN | | | CAN

As it may be easy seen from Fig.1, there is some hierarchical set of actions in the system:
operations, procedures, functions, transactions and requests. The operations are performing on
the driver (CAN-box) level, the procedures — on Controller card (CAN-Open) level, the system

functions are hardware independent and on the user level the system requests are generating. The
transaction level isjust an intermediate layer between requests and functions.

The main software components are realized in “C”, that ensures the high execution speed
and efficiency of actions. The desirable configuration of DCS system (operation system, set of
libraries) may be selected by using “#ifdef - #else - #endif” keys before compilation. In
particularly, the Transactions library (Client/Server mode) may be included or excluded
(smulated). Dueto it the code has no redundancy practically and is very compact.

Powerful Diagnostics, Testing and Simulation. The “on-run” diagnostics means that:
- an ability of the node to perform requested action is checking before the command execution;
- the result of execution on the every step is checking, in the case of fault on some level the full
hierarchical pointer to incorrect operation (address and function, starting from upper layers) is
represented in an error code;
- if network connection is used than every “near side” request is confirmed from “far side” by
feedback message.

The special testing programs were designed for checking of DCS hardware and two
simulation mechanisms are built into the software:

- data simulation, the random values around Normal physical value may be generated in this
mode;

- error simulation, the random errors with desirable probability are generated in that mode, it
allows to test system stability and tolerance to possible deviations out of normal operation.

1.2. The main structure elements of DCS

Preliminary NOTE: all the terms that are defined in this section are started from Capital letter in
the followed text (because they have a specified meaning in the boundaries of this document
only).

The beginning notions of SCT DCS are the following: User (physicist) and Expert (System
creator or maintain person); Detector Tree, DCS Tree and their Agent.

Detector Tree is the hierarchical structure of SCT-detector itself (see Fig.2 from the
right). It may contain up to 6 levels, the main of them are the following:

- Detector level, includes SCT-detector asapart of ATLAS,

- Section level, maybe the barrel cylinders or the forward tracker disks;
- Sector level, the staves (parts of cylinder) or sectors (parts of disk);

- Module level, the microstrip detector modules of a stave or disk;

- Sensor/Actuator level, the module channels for monitoring or control.

DCS Tree - the hierarchical structure of Detector Control System (DCS) for SCT-detector
(see Fig.2 from the left). It may contain up to 6 levels, the main of them are the following:

- System level, based on Local Control Station (LCS) —I1BM PC and is a part of
ATLASDCS;

- Host level, the subparts of SCT DCS based on Satellite Control Stations (SCS)
—I1BM PC also;

- Node level, PC controller cards for FieldBuses or local communications;

- Port level, the ports of CAN-controller card, or PC serial/paralléel port, or a port
of Ethernet card;

- Unit level, the devices that are connected to CAN-bus, or to other seria or paralléel
links;

- Channdl level, the parts of Unit that get a monitoring data from one Sensor or put

control data to one Actuator.

Agent — tree node on the any level that has brunches to the down Agents (if level > 1).

WARNINGS: 1. Theterm “Agent” is used here instead of usual term “node” (of tree) because

“Node” is occupied for the 4-th level of DCS Tree.
2. The CAN-Open node (CAN box) isaUnit in this document.

The both structures have a common root and (on the down level) the equal number of channels,
but the number of intermediate levels and the number of Agents on the every level may be

different.
UPPER ATLAS LEVELS
o
/ ()\ Expert User /()
/\
HARDWARE : SOFTWARE :
Local Control DCS Syst|p,p,I,A Processes Detector
Station
Ethernet /I\ TCP/IP /I\
) Host) Section
Satellite Control DCS Functions
Station /I\ /I\
PCI Bus TCP/IP
CAN Controller Node CAN Procedure Sector
CAN Bus /'\ A\
- “CAN Open”
CAN Box Unit Module
CAN Drivers
Mini Link / \
Mulx Demu
/I\ /I\ Channels
Chan Chan Actuator Sensor
System Numbers -> o. .. .N N . . 0
of the Channels “Name Convertor’”

Agents Names and Addresses. As it is well known, every Agent identification may be
represented in the following forms:
- Name , readable text string;
- Address, “numerical name” — set of numbers.
The Names are using here for the Detector Tree Agents, i.e. for sensors identification (they are
oriented on a User) and the Addresses are using for the DCS Tree Agents, i.e. computers, cards,
boxes and channels identification (they are necessary for Expert).

In principle, every Name may be individual, but nobody is able to remember a large set of
Names, dueto it the hierarchical (local) Names are using only because they reflect the structure of
Detector Tree and the set of local Namesisrelatively small.

The Addresses are organized in a hierarchical manner also — local Addr(ess) is just a
number of channel in a box, box in a port, etc. The delimiter between the local Iden(tificator)sis
“.” for both - Names and Addresses.

Loca and System Numbers. It is supposed that DCS Tree has “full” and fixed structure
(logicaly): every Agent on some level has an equa number of subAgents (not al of them may be
occupied physically). In this simplified case:

Local Number isaserial number of Agent in the group that belongs to one upper Agent;

System Number isatota serial number of Agent on its hierarchical level (see Fig.2).
The Host, Node, Port, Unit, Chan(nel) terms are used in DCS Tree for its hierarchica Agents
definition and for their Local Number definition as well:

Host - the serial number of Power PC (if many) ;

Node - the serial number of CAN Controller card in one Host;

Port - the serial number of CAN Controller Port (or CAN bus) in one Node;
Unit - the serial number of CAN-box on the CAN-bus (for one Port) ;

Chan - the serial number of CAN-box channel.

If the DCS Treeisfull it may be described by limited set of numerical values — every value
represents the maximum number of Agents on appropriate level: HOSTmax, NODEmax,
PORTmax, UNITmax, CHANmax; than the System Number of any Agent in DCS Tree may be
easy calculated:

for a Node Nnum = (Host * NODEmax) + Node;
for a Port Pnum = (Host * NODEmax * PORTmax) +
(Node * PORTmax) + Port;
for a Unit Unum = (Host * NODEmax * PORTmax * UNITmax) +
(Node * PORTmax * UNITmax) +
(Port * UNITmax) + Unit.

These system numbers are non-visible usually neither for User nor for Expert, but they are
widely used in the software (as indexes) for access to Node and Unit structures.

In addition to the individual System Addresses two formal “to-all” and “to-nobody” codes
(100 and 99 now) may be used for addressing. The tALL code permits to have an access to all
the Agents of selected level and toNOB excludes any access on a current level:

Node System Iden (Addr): Host . Node . tNOB . tNOB . tNOB
Unit System Iden (Addr): Host . Node . Port . Unit . tALL
Chan System Iden (Addr): Host . Node . Port . Unit . Chan

For instance, the first line in the upper case means that access is performing to the Node, but not
below; the second line means that access (with the same System Function) is performing to the
all channels of selected Unit; the last line means the individual access to the Chan.

Multiplexing and demultiplexing in CAN. Every CAN message on a CAN bus usually has
a Data Fragment that contains the set of bytes (say — 8). One or two bytes correspond to 1 Cell
that is carrying Data from/to one DCS Chan. For example, the Data from 3 channels (16 bits)
may be sent in one CAN frame (the 7-th byte may be used as a Chan Iden and the last one for a
status).

Every CAN box may have several CAN frames with the individual internal addresses (for
instance, PDO1 and PDO2 in CAN Open); it means that DCS Chan-s are organised inside
CAN box as interna two level structure — Data Cells are combined in the CAN Fragments
(frames). The local seria number of channel in DCS Address Tree may be calculated in asimilar
way:

Chan = (Frag * CELLmax) + Cell,
where CEL L max — maximum possible number of Cellsin one Frag(ment).

Because the internal CAN box organisation may be very different (for instance, the ATLAS
ELMB box has one CAN cdl, but it is sending Data from 32 Chan-s in seria) the internd
structure of MULtipleXors and DEMUItiplexors (i.e. frames and cells) is“transparent” for User
(as it is shown in Fig.2) and for him one DCS Unit contains the DCS Chan-s only. The only
place where frames and cells may be “visible’ isthe Chan format in the Unit Configuration file.

While sending the data into one DCS Chan only, some care should be taken about other
Data Cells in the same CAN frame (they should be filled by appropriate Data for other DCS

5

Chan-s). The way was chosen for obtaining the “frame coherence” is to keep the copy of current
data of CAN cellsin the software structures that are associated with the Unit.

Over Nodes. Sometimes (for Control mainly) maybe necessary to use the Nodes with a
minimal number of internal Units (say 1); the good example is paralel Port of PC. If the usud
Node (and its branches) of DCS Tree will be used for such Agent than the large number of
software structures for Units ((PORTmax * UNITmax) - 1) will be empty but they will occupied
the computer memory.

The special “Over usua Scan Tree” Nodes may be used in this case. It may have severa
Over Ports but every Port has one Unit only. The Over Nodes are not included in scanning
procedure (see below) but they are available for individual requests.

1.3. The types of DCS information

Data — aportion of information from/to Sensor/Actuator; the Data may be
-Raw , meansthe Datawill be sent to (were taken from) channel directly,
- Physical, Datain float representation that were converted from the Raw data by using
specified calibration formula (it may contain up to 4 calibration constants).

State — every Sensor or Actuator channel and upper Agents have 32-bits Control Status
Register (CSR), it contains an Agent state (On/Off) and starus (Normal/Error). The
upper 16 bits may be sent as CSR word to external device connected to a channel.

Info —the common term for Data and/or Stat(e) of a channel.

The Data should be represented for User in the Physical form (temperatures, voltages, currents,
etc.) and conversion from Raw ADC counts to calibrated data is performed on the “far” side
(where Data are taking) but not on the “near” side where User is requesting them.

Every DCS Agent and channel Data have a status that contains 4 conditions, the following

colors are associated with them:

- Normal status — Green, - Warning status— Y ellow,
- Alarm status — Red, - Fatal status— Cyan.

The state of the every Agent on any level has 4 conditions al so:

- Off (the power may be Off, or no initialisation), - Idle (Agent wasinitialised but not in use),
- Readly, - Active.

Every Agent of slow control system needs usually some Configure information from the
upper system layers for starting up. The channels should have in addition the Calibration
information for converting Raw values to the unified (physical) Data for the upper layers. The
upper layer Agent should be able to get (set) the current information about the State(s) of
monitoring devices. The Synchro information may be necessary also for co-operative work of all
the DSC parts.

In principle, the inter-Agents information exchange may be driven
- by Call (on Info Request from the upper level);

- by Event (on Info Sending from the down level);

- by Loop (periodically).

In the slow control system the first or the third mechanisms is using mainly, except some extra
cases (for software Interlock) where the second type have to be used for obtaining the minimum
detection time of afault.

Every Request should have a Response in the TimeOut limits. The TimeOut value is a part
of Config Info.

2. User tools for dealing with DCS

2.1. Names organization in the Detector Tree

The hierarchical Sensor Name reflects sensor position and/or function in the monitored part
of Detector. The Local Name have to be short but quite understandable and its length should be
constant preferably (the practice shows that 4 letters is near to optimum). Because the number of
Agents with some (typical) Name may be large enough the additional /ndex for the name is
necessary also. Below isalist of the Local Names that were used for Cooling sub-system.

Table 1
Sensor Names
General: Short: Detailed: Short:
Alignment Algm
Cooling Cool
Current Curr
High (Volt) Curr HivoCurr
Humidity Humi
Ambient Humi AmbiHumi
Interlock Lock
Hardware Lock HardLock
Software Lock SoftLock
Mechanics Mech
OverCurrent Ovcr
High (Volt) Ovecr HivoOvcr
Low (Volt) Over LovoOver
Pressure Pres
Barometric Pres BaroPres
Temperature Temp
Ambient Temp AmbiTemp
Cable Temp CablTemp
Cooling Temp CoolTemp
High Voltage Temp HivoTemp
Low Voltage Temp LovoTemp
Module Temp ModlTemp
Shield Temp ShldTemp
Stave Temp StavTemp
Voltage Volt
High Volt HighVolt
Low Volt Low Volt
Actuator Names (will be added)
Detector Names
Comments:
Module level 3 Module
Sector level : Stave (Barrel)
Sector (Forward)
Section level : Layer (Barrel)
Disk (Forward)
Detector level: SCT Barrel
SCT Forward

For instance, the full name of detector module Sensor may be:

SCT Barrel . Layer04 . Stave03 . Module0O2 . HighVoltOl

User usually deals with the Names only and an “C”-code converts them to DCS addresses “on
the fly” (User is relatively slow “control device’, his reaction time is 300-400 ms, this time is
enough even if the conversion subroutine is calling from interpreter).

2.2. Data Base, configuration files and their levels

The examples of Data Bases are shown in Fig.3, the left oneis using for Testing (“C”) and
for SiLab (LabView), the right one was done for SCT Cooling (PV SS).

Figure 3

i db_SLAB : Database Hi=lE imdb_COOL : Database H[=1E3

1|.]|]§ﬂ|]ﬂ|]&$|]]]]Zﬂ]ﬂ «e’js,:%]
Csck_cnf Csck_cnf

Csct_grl Csct_cnf_pts

Csck_gr2 Csck_hos

Csct_ar3 blew Csct_lim blew
Csck_grd Csct_nod

Csct_hos Csct_sys)

Csct_iri Csct_uni

Csct_lim ELMEicool

Csct_nod

Csct_off

Csck_uni

The main Data Base tables are the following (see next page):

- Csct_sys, SCT_SY Stem configuration, shows (but not defines) the DCS Tree constants and
what History and Error fileswill be used in the Run;

- Csct_hos, SCT_HOSt configuration, defines Input/Output queues lengths, TimeOut values,
the period of monitoring, the number of scanning loops in the Run and simulation
mode;

- Csct nod, SCT_NODe configuration, describes the physical (manufacture and production)

namesthe logical Idens and initial Status of DCS Nodes and their Ports,

- Csct uni, SCT_UNIt configuration, describes the same parameters for Units;

- Csct_cnf, SCT_CoNFig table shows the sensors Names, Chan-s addresses and their

initial status, calibration constants, types of calibration formula and limit;

- Csct lim, SCT_LIMits, gives 16 complex values for the limit-types (the typical values

of Normal/Warning/Alarm/Fatal limits have a number as an Iden).

Every configuration and/or calibration Info may be changed by User before a Run and then it
should be exported to the Bin-directory of a project as a plain text file. The Hosts must be placed
in the Tables in the serial incremental order because every Table is reading only until the end of
found Host section. The end of all the tables is marked by the “99” (unreal) number of a Host.

Figure 4

The System, Host, Node, Unit configuration Tables and the left columns of Chan-s Table

Hle Edit ¥iew Insert Format Records Iools Window Help

E-Haky = LR AR == Rl
=lo|x|
[Index | HestMax | ModeMax | PortMax | Uniti [ChanMax [LimiM | OverNode | OverPot | Inifile | RunFile [Offfile =]
1 1 1 1 2 64 16 2 2 100 100 100,
Record: [[1k [e ot 1 1| | _»H
=lolx|
Index [Host [Manufact | Product | Iden [SendMax | TakeMax | SendOut | TakeOut | EventOut | MoniPerd | ScanNi’
|*| 1 0/18mM IBM_PC PCEPHC103 100 200 1] 10 a0
2 99 Mone MNone Mane 0 200 i} 10 50 30 O
| Recard: o[- [vllie [wulww]of 2 ol] _.[_,
=lojx|
Index | Host] Node | Manufact [Product | Iden [nSTS[p00iden]pS00] Baud00] p01iden]pS01] Baud01] p02iden [pS02] Baud02 | p03iden] pS03][Baud03] Comment | =
il 1 0 Matlnstr MIFCAN AtlCaol |4 CAND 4 250000 CANT 0 250000 Mone |0 O/Mone |0 0/ Scan Node
| 2 a 1/1BM_PC PC_PP AtlCool 4 LPT1 14 OLPT2Z 0 O/Mone |0 O/Mone 1D 0/ Over Mode
| 3 0 2 IBM_PC PC_3P AtlCool 4 COmM1_ C4 9600 COMZ2 | C4 9600 Mone |0 O/Mone 1D 0| Over Mode
| 4 99 3 Mone Mone Mone 0 MNone 0 0 Mone 0 Mone 0 0 Mone 0 0 =l
Record: [[1w oo of 4
=o)X
Comment Level05 | Level04 | Level03 H
I o 0 ATLAS ELME 1 c4 2 g8 1)2.49% Scan Unit | |SCT Layer01 | LoopO1
| o 1 ATLAS ELMB 2 c4 2 B 1/2.49% Scan Unit | [SCT Layed1 | LoopO1
|] 2 ATLAS ELMB 3 c4 2 B 12,495 Scan Unit |_[SCT Layerd1 | LoopO1l
|| i 3 ATLAS ELMB 4 c4 2 & 112,491 Scan Unit [M]=cT Layer1 | LoopO1
| i 4 ATLAS ELMB 5 c4 2 &8 12,495 Scan Unit | [SCT Layerd1 | LoopOi
| 0 5 ATLAS ELME & c4 2] 12492 Scan Unit | [SCT Layed1 | LoopO1
| 0 B ATLAS ELMB 7 c4 2] 12493 Scan Unit | [SCT Layerd1 | LoopO1l
|| 0 0 IBM_PP PP_DEY 0 14 1 8 ooo Cwer Unit | [SCT Layerd1 | LoopO1
|| 1 0IBM_PP PP_DEY a 10 1 g ono Cwer Unit | [SCT Layerd1 | LoopOi
|| 0 0IBM_SP SP_DEY 0 54 1 8 ooo Cwer Unit | |SCT Layer01 | LoopO1
| 1 0 IBM_SP SP_DEY 0 54 1] ooo Cwer Unit | [SCT Layerd1 | LoopO1l
|| a 99 Mone MNone a o 1 g 0o.o = SCT Layerﬂ‘l LoopO1 =l
Record: oo | [[1 v |wi[sm|of 12 [Record: 14 [« | 2] e [ovi] of 252

Datasheet Yiew

Figure 5

The upper part of Chan-s configuration/calibration Table

&, Microsoft Access

Fle Edit View Insert Format Records Tools Window Help

E-E ElkV w 2l Il Tl dh e Dy)
Wesctonfctable @]

Levelld LevelD3 Lewvel02 Leveld1 EoN| Host | Node | Port | Unit| Chan | Stat | Cal A| Cal B | Cal C | Cal D [Conw| Limit | Refer [Comme*]

L Layer1 Loopd1 Outlet02 BackPres01 || o 1] 1] 0 144 0 1034 0 1000 40 2 95 Pressure
| |Layer1 Loop01 Stavel3 InjePres01 ! a 0 1} 1] 244 0 1.0417 |0 1000 40 2 99 Pressure —
| |LayerD1 Loopd1 Stave0d InjePres01 ! u] 1] 1] u] 0c4 0 1.0434 0 1000 40 2 99 Pressure
| |LayeiD1 Loop01 Stave03 CoolTernpd? || a 0 0 1 G 44 2 16244 12418 7.9491 a0 1 99/ NTC

| |Layerd1 Laop01 Stave03 CoolTernp2 |1 1] 0 1} 1 944 -B 18277 12418 7.9491 30 1 99 NTC

| |LayerD1 Loop01 Stavel3 CoolTernpd3 || 1] 0 1} 1 1044 -3 15202 12418 7.8431 30 1 939 NTC

| |LayerD1 Loopd1 Stavel3 CoolTempD4 || a 0 0 1 1144 -4 18321 12418 7.9491 a0 1 99 NTC

| |Layerd1 Laop01 Stave04 CoolTernp0t |1 1] 1} 1} 1 1244 0 15153 12418 7.9491 30 1 99 NTC

| |LayerD1 Loop01 Staveld CoolTernpl2 || 1] 0 1} 1 13 44 B 15230 12418 7.8431 30 1 939 NTC

| [Layed1 Loop01 Staveld CoolTempd3 || a 0 0 1 14 44 2 18172 12418 7.9491 a0 1 99 NTC

| |Layerd1 Laop01 Stave04 CoolTernp0d |1 1] 1} 1} 1 16 44 -5 15193 12418 7.9491 30 1 99 NTC

| |LayerD1 Loop01 Stave0d StavTempd1 || 1] 0 1} 2 2444 14 1.0137 (257 .44 38895 20 1 95 PT1000

| [Layed1 Loop01 Stavel3 StavTemp02 || a 0 0 2 25644 2 1.0170 |257 .44 3.8395 20 1 95 PT1000

| |Layerd1 Laop01 Stave03 StavTemp03 || 1] 1} 1} 2 2644 -1 10167 |257. 44 3.8895 20 1 99 PT1000

| |LayerD1 Loop01 Stave0d StavTempOd || 1] 0 1} 2 2744 9 1.0202 (25744 38895 20 1 95 PT1000

| [Layed1 Loop01 Stavel3 StavTempls || a 0 0 2 28 44 12 10178 25744 3.8395 20 1 95 PT1000

| |Layerd1 Laop01 Stave03 StavTempOs || 1] 1} 1} 2 2944 -4 10186 |257.44 38895 20 1 99 PT1000

| |LayeiD1 Loop01 Stave0d StavTempd? || 1] 0 1} 2 30/ 44 -12 1.0136 (257 .44 38895 20 1 95 PT1000

| [Layed1 Loop01 Stavel3 StavTempOs || a 0 0 2 3144 2 1.0190 257 .44 3.8395 20 1 95 PT1000

| |Layerd1 Laop01 Stave03 StavTemp03 || 1] 1} 1} 2 0c4 -5 10212 |257.44 38895 20 1 99 PT1000

| |LayeiD1 Loop01 Stave0d StavTempi0 || 1] 0 1} 2 144 4 1.0166 257 44 38895 20 1 95 PT1000

| |LayerD1 LoopO1 Staveld StavTermnp11 || 0 1] 1] 2 244 g 1.0164 257.44 3.8885 20 1 99 PT1000

| |LayerD1 Loop01 Stavel3 StavTempl2 || 1] 0 1} 2 344 2 10175 (25744 3.8895 20 1 95 PT1000

| |LayeiD1 Loop01 Staveld StavTempd1 || a 0 0 2 444 -7 10226 257 44 38895 20 1 99/ PT1000

| |Layer1 Loop01 Staveld StavTemp02 |1 1] 0 1} 2 544 3 1.0187 257 44 3188595 20 1 99 FT1000

| |LayerD1 Loop01 Staveld StavTemp03 || 1] 0 1} 2 G 44 17 10177 |257.44 38895 20 1 95 PT1000

| |LayeiD1 Loop01 Staveld StavTempOd || a 0 0 2 744 14 10206 |257.44 3.8895 20 1 99/ PT1000

| |Layer1 Loop01 Staveld StavTempO5 || 1] 0 1} 2 844 -2 1.0195 |257.44 38895 20 1 99 FT1000

| |LayerD1 Loop01 Staveld StavTempls || 1] 0 1} 2 944 -2 1.0188 (25744 38895 20 1 99 PT1000

| |LayeiD1 Loop01 Staveld StavTempd? || a 0 0 2 1044 9 1 0209 257. 44 3.8895 20 1 99/ PT1000
Record: 0| 1) o[(] af 483 s = = 5 = : = T o i Ty 4-[“
Datasheet view

2.3. Calibration Algorithms

The cdibration part of “Csct_cnf” Table contains the information for conversion of Raw
values to Physical ones. The calibration procedure consists of 2 steps; on the first step the
normalization of ADCs parameters (offset/pedesta and slope/gain) is performed, i.e. the
electronicsitself is calibrated. On the second step the sensors parameters are normalized to typical
values. As was said before the number of calibration constantsis equal to 4, the current calibration
formulafor the first step is the following:

s=B*(x - A),

where s - isthe sensor value from “ideal” ADC,

X -istherea ADC count (integer),

A,B - arethefirst step calibration constants.
The following base approximations may be used on the second step (the number of calibration
formula, for using in “Csct_cnf” Table, is shown from the right):

linear approximation

y =(s- C)/D, if s=D*y+C Q)
square root approximation

y = [SquareRoot(C*C + 4D*s) - C]/2D, if s=D*y*y + C*y (2
logarithm approximations

y = C +[In(s)/D], if s=exp[D*(y- C)] (©))
y =1/{[1C] +[In(s)/D]}, if s=exp{D*[(Ly)-(VC)]} (4)
where y - isthe physical value (float),
S -isthesensor value,

C,D - arethe second step calibration constants.
If A=0, B=1, C=0, D=1 the Raw values will be on the “output” (y = x) for caibration formula (1).
The complex sensors, for instance for humidity monitoring, may be described in calibration
table aso. The formulafor calculating of the humidity is
h=H1/(H1 + H2). (20,9
Relative Humidity, RH is calibrated by:
RH =B*h- A. (10,b)
The A,B-calibration constants should be placed in therecord for the second sensor (H2) and in
its last column (Refer) should be presented the reference on the first sensor (H1) local number
in the same Unit.
Basing on upper equations the following calibration formula is using for the PT1000s on
the second step:
T=(R/D)-C; (20)
and for the NTC-sensors:
T=(@/(1/C)+(Ig(R) /D) + (Ig%R) / 4700000))) - 273.15; (30)

and for Pressure sensors:
P=(B* (x-A))* 100* (100/65536) / D; (40)
(Divider->100 100<-Voltage Range, mV)

where R - isthe sensor resistance: R=s* Ra/ (65536 * ((E - U) / 100);

Ra- is Adapter resistance (Ohm),

E - isthe ELMB-box reference voltage (mV),

U - isthe sensor voltage: U =s* 100 (mV) / 65536;
There are 2 additional conversion formulas for testing CAN-boxes. The first one represents Data
in aRaw format (ADC counts):

10

y =X, (*1)
the A,B,C,D-constants are ignored in this case; and the second one converts ADC count into the
input (Sensor) voltage:

y = (s/65536) * 100 mV; (*2)
where* - may be 1, 2, 3 or 4 here (i.e. any conversion may be replaced by *1 or *2).

2.4. Watching/Community Groups

The Data from monitored sensors may be selected by using the various criteria’s. Every
criteria combines the proper channelsinto a
Group — the set of monitored Chan-s that are selected for sampling investigation of Data. For
instance, the ssmplest way is to combine al the sensors of one type into one Group. The second
way — to unite them basing on their “geographical ared” community (for instance, for Ladder or
Disk), etc.

The 8 selection Groups are possible in the current “C” (testing) software. The 8-bits array
is using in the CSR (the second byte) of any channel as a (linear) Group code; it means that
every Chan may belong up to the 8 Groups simultaneously. The testing software has no “screen
object” for selecting and combining desirable channels into a Group, due to it the information
about the Chan-s Addresses and their serial order in a Group is stored in “Csct_gr1-8" files (see
|eft Data Base in Fig.3).

NOTE: 1. The start Group number is‘1’;
2. The start Order number is*1’ (‘0’ means the “channel absence” —may be used as a
mask);
3. In the Request attributes the Group number corresponds formally to Chan number and
the Order number corresponds formally to Input-Info (see 3.3).
The Chan-s that are listed in the Group-files are included automatically in the set of monitored
channels.

The 16 selection Groups are available in PV SS environment for watching Data in graphical

form. The pop-up panel may be called from an every Plot for (up to) 16 Data manual selection.

2.5. Status Byte convention

Lets repeat that every DCS Agent (on the Node, Port, Unit and Chan levels) has an unified
“Control-Status Register” (CSR):

CAN Specific CSR | Group Code | R w S E
| | (bit array) | | | |
| | | | | | | | | |80]140]20]10] 8] 4] 2] 1]h

The meaning of R(ead), W(rite), S(tatus), E(rror) fields is shown below:

HexCode:
E Bit 0,1 - Severity of Error: 0 - Normal (No Error), Oh
2 - Warning, 2
1 - Alarm, 1
3 - Fatal; 3
S Bit 2,3 - Operation mode 0 - Module is OFF Systen, 0
1 - Module is IN Systen, 4
2 - Module is READY, 8
3 - Module is ACTIVE (Busy) ; (©
R: W:
w Bit 4,5 - Write Abilities 0 - No Ability, 00 00
R Bit 6,7 - Read Abilities 1 - By Call (from Upplevel), 40 10
2 - By Event(from LowLevel), 80 20
3 - Periodically. CO0 30

11

The “general” status information (2 low bytes) is writing to the every Agent CSR from the
Config Files during the initiaisation. The “W” and “R” fields describe the logic of Agent Info
exchange (4 conditions - see 1.3), i.e. Agent abilities for writing and reading.

In addition to 2 general status bytes there are 2 CAN specific CSR bytes that may be used
in the different ways. They may be written and/or read to/from external device by using the
special DCS “send/take status’ functions.

3. Core software in “C”

3.1. The hierarchy of DCS actions

The CAN equipment is only the part (down level part) of the entire slow control system
and CAN protocols can't cover all the needs of a complex system. For instance:
- “CAN Open” protocol is defined in the boundaries of one CAN bus only,
- the possible number of CAN cells for one COB-Id is very limited.
But the standard “CAN Open” protocols may be successfully included on the down level in the
set of DCS protocols.

The current hierarchical organization of the main DCS actions is shown in the Fig.6. The
based actions are “Write” and “Read” Data or Status; the additional: “Init” and “Close”.

l \V Figure 6

Name —p SET GET N\ Near side -
What to do Info Info External Buffer: Request layer
Data input Channels Data
Request Request Channels State
Expert J/
Way '____1 | Network or Direct Link ‘\Copy’
< >
DCS TransAction DCS message: R Far side -
Response layer
Segment Length
‘Read’ Physical Data
Chan-s State Y,
DCS Function
L s Manufacture
e t and Protocol
‘Write’ Status / Raw Data i Independent
General Structure n Level

/N i
CAN (Open)

Procedure P s CAN Protocol
t
i
n

e Oriented
CAN Specific Level
Status Structure
’ U
CAN Operation Manufacture

‘Send’lT‘Take’ Driver Level

The manufacture drivers and/or "CAN Open" profiles are the base (first level) elements
of DCS actions hierarchy. The severa simple CAN-box Operations are combined in one CAN
Procedure for changing of CAN modules State or setting/getting the Data. The specific (vendor
defined) Status structures are using on thislevel.

12

Every Node/Unit on the next level is represented by its Node/Unit General Structure
which contains the main changeable Node/Unit attributes (parameters) and Raw Data (for Unit).
These Structures are initialized from the Config Files when an Init Function of the proper level is
called. System Functions are using for Info exchange with General Structures on thislevel.

The next is so-called TransAction level where the CAN (or other) Info is placed into the
Message buffer. There are 2 types of the DCS messages:

- short ones, where only one channel Data or Statusis sending as an integer (raw) value,

- long ones, where the physical Data and Status information from all the channelsis sending.

In the last case the monitored Data are converted in the calibrated form and the message
information is “compactizied” (a form of compression, see Sect.3.1.4). All the Data and Status
Requests are the short messages. The Response DCS message maybe short or long. The format
of DCS message is described below, the message buffer on the “far” side is storing the Info
about one Scan only and it is rewriting periodically in the asynchronous mode.

The last - "Request” level permits to make setting and getting DCS Info by using the
Names of Detector parts. Every Request may be a broadcast or broadcall command for CAN

hardware because a Detector Name (“...”."tALL”) may correspond to a group of the CAN
channels.

There are two possibilities in the interconnections between Request and Response layers
(Fig.6):

- remote mode, real TCP/IP Client/Server connection from near to far side,
- local mode, direct “near” to “far” interna connection (Net ssmulation);
in the last case a DCS messageis using just asinterna Buffer for one Scan.

3.1.1. The“far side” Functions and they numbers

Below isalist of the main DCS Functions:

Table 2
0x10: int InitDCShost(int Host) ;
0x14: int InitDCSnode(int Host, int Node, int Port) ;
0x18: int InitDCSunit(int Host, int Node, int Port, int Unit);
0x20: int WriteDCSstatus(int Host, int Node, int Por#, int Uni#, int Cha#,
ui Wsts);
0x24: int SendDCSstatus(int Host, int Node, int Port, int Unit, int Chan,
ui Wsts);
0x28: int TakeDCSstatus(int Host, int Node, int Port, int Unit, int Chan,
ui *Rsts) ;
0x2C: int ReadDCSstatus(int Host, int Node, int Por#, int Uni#, int Cha#,
ui *Rsts) ;
0x30: int WriteDCSdata(int Host, int Node, int Port, int Unit, int Chan,
ui Wdat);
0x34: int SendDCSdata(int Host, int Node, int Port, int Unit, int Chan,
ui Wdat);
0x38: int TakeDCSdata(int Host, int Node, int Port, int Unit, int Chan,
ui *Rdat) ;
0x3C: int ReadDCSdata(int Host, int Node, int Port, int Unit, int Chan,
ui *Rdat) ;
0x48: int WaitDCSevent(int Host, int Node, int Port, int Unit, int Chan,
ui *Edat, ui *Ests);
0x4C: int TakeDCSevent(uc *Host, uc *Node, uc *Port, uc *Unit, uc *Chan,
uc *More, ui *Cdat, ui *Csts);
0x50: int CloseDCSunit(int Host, int Node, int Port, int Unit);
0x54: int CloseDCSnode(int Host, int Node) ;
0x58: int CloseDCShost(int Host) ;
uc -> unsigned char, ui -> unsigned int
=> may be absent, if Port,Unit,Chan—-number == tNOB -> Access To_ NOBody

13

The “Write” and “Read” functions are writing and reading Data or full Status word to/from Unit
General Structures; the ‘Send’ and ‘Take' functions provide in addition the Data and CAN
specific CSR exchange between Unit's structures and CAN hardware if an appropriate DCS
Chan iswritable or readable (see 2.5).

The Functions are manufacture and CAN protocol independent and may be widely used for
many types of Buses and Serial Lines. All the Functions return a"zero" or an Error Code.

3.1.2. Transactions, structure of messages

The DCS TransAction (see Fig.6) is an equivalent of the DCS Function but it is organized
asinternal DCS message with the fixed “byte ordered” platform independent format.

The request (command - from the left) and response (execute - from the right) messages
have the usual fields:

COMmand Message (to CAN) EXEcute Message (from CAN)
BOO : Message Number Message Number+l (exe msg num: even)
B01-02: Message Length Message Length (in Bytes)
BO3 3 To.. - Chan Iden From - Chan Iden (or VME address)
B0O4 3 To.. - Unit Iden From - Unit Iden (3)
BO5 : To.. - Port Iden From - Port Iden ()
BO6 3 To.. - Node Iden From - Node Iden ()
BO7 : To.. - Host 1Iden From - Host Iden

BO8 : What - Func Iden What - Func Iden (CAN/VME Function)
B09-13: From - Five Bytes To.. - Five Bytes

B14-17: Info - Reserve= 0 Info - Error Code (LowByte is in B14)
B18-21: Info - Reserve= 0 Info - Error Addr (LowByte is in B18)
B22-25: Date - Day, H,M,S Date - Day, H,M,S (Day is in B22)
B26...: Data - of 1 Frame Data - of 1 Frame (and Status info)

Every Message starts from a current (incremented) non zero Number, it is odd for
COM_message and even for EXE message. Two next bytes contain the message Length
identifier. Five Bytes of an address (To..) are carried in the Bytes 03-07. Function Code is
placed in"What to do" Byte (B08) of a Message.

Client is starting by issuing of a Request Message (with the next odd number) for
Datal/Status reading or writing (the request attributes are placed in the Bytes 26-29).

Server can control of CAN modules and can execute commands from the Client Requests.
Server acknowledges every Message receiving (by incrementing BOO and repeating of B0O3-13in
the Reply Message) and if there was short Info request - includes Read Data and/or Status
starting from Byte B26. In the case of some error detecting the Server puts the first byte of an
error code in Byte B14 and the second byte - in Byte B15, in the next 2 bytes the Error Address
code will be written.

Every Message has 4 bytes for Day(month)/Hour/Minute/Second Time stamp — in the
Bytes B22-25.

The Info Coding in DCS Message for monitored Data. There is the hierarchical set of
embedded segments for Host, Node, Port, Unit and Chan portions of Info in the CAN Message.
The number of segments on the every level is equal to HOSTmax, NODEmax, PORTmax,
UNITmax, CHANmax correspondingly. The every fragment is starting from its length (2 Bytes),
dueto it the CAN Message may be easy decoded and encoded.

The Chan Info contains Data and Status fields. They both are “half Byte” encoded: code
starts from a current value length (the first half of Byte) and then the value itself (float or integer)
Is represented in binary-decimal code. For instance, for “zero value” coding the only one Byteis
needed for 32-hit Integer (code = 01h) and 2 bytes are used (code = 0B 03h) for the Float.

14

HalfByte (hB) codes for Numericals:

Byte

First hByte

Length in hB/B

Third hByte

Second hByte

0..9 — Digits (Decimal),
10 - Minus Sign,
11 - Float Dot;
Chars coding, if the First hByte:
12 - Char String, size = Length,
13 - Char String, size = Length + 15,
14 - Char String, size = Length + 30,
15 - Char String, size = Length + 45.

(NULL)

Last hByte

The Name of Detector structure part may be coded also as a Byte Array. The length of string (up
to 60 Bytes) isin the ‘ Length’ hByte. The schematic structure of DCS-message is shown below:

Figure 7

Data Section Length

Host 0 Length

Node 0 Length

Port 0 Length

Unit 0 Length

Chan 0 Data compact
Chan 0 Status compact

Chan 1 Data compact
Chan 1 Status compact

code
code

code
code

Unit 1

Unit 2..

Port 1

Port 2..

Node 1

Node 2..

Host 1

Host 2..

Data Normalization. As we need to know the detailed behavior of monitoring parameter
around its Normal value only the "three slope" scale may be used as it is shown in Fig.8. For so-
called Data Normalization procedure the Limits are standardized:

Alarm Low is always equal to 64, Alarm High is always equal to 192,
Fatal Low is always equal to 32, Fatal High is always equal to 224,

Minimum is always equal to o, Maximum is always equal to 255,

15

and Normal value is always equal to 128 - see Fig.8. As aresult the 8 bits (1 Byte) only is
necessary for monitoring Data (internal) representation. Such format is very suitable for
graphics Data out and for the further Data Compression.

Figure 8
Normalised Value
2554 Monitored Data
Distribution
2241
192
1284
Minm = Norm - (3* (Norm-FatL))
64 Maxm = Norm + (3* (FatH-Norm))
324
Raw Value
—= : —L : :
Minm FatL AlrL Norm AlrH FatH Maxm

If FatL=n*32, AlrL=n*64, Norm=n*128, AlrH=n*192, FatH=n*224 ("n" is any integer) are
installed for the X-axe then the conversion scale will be linear (see LimiType "14" (n=1) and
"15" (n=10) in the Calibration Table).

3.1.4. The “near side’” Requests and Responses

There are 2 near side high level subroutines for manipulating with the single channel Data
and/or Status info (short messages). The first string in the attributes describes DCS Address of
the channel. All the general Functions that are listed in p.3.1.1 may be used in the Request(). The
CopyResponse() subroutine just takes the reading Info from the EXE_message and may be used
for checking the quality of Request execution.

int Request(int Host, int Node, int Port, int Unit, int Chan,
int Func, /* The DCS FUNCtion */
unsigned int Info) ; /* The Data/Status Info for an INPut */

int CopyRespond(int Host, int Node, int Port, int Unit, int Chan,
unsigned int *Info) ; /* Pointer for Data or Status OUTput */

Two additional system functions may be requested also (see detailsin p.7):

0x80: int SetDCSstate(int Scod); - Set DCS System State
0x84: ui GetDCSstate(void) ; - Get DCS Global state parameters

There are special Requests for Info in calibrated and “normalized” forms:

0x90: GetDCSinfo — Function Code for Request
0x94: GetDCSnormal — Function Code for Request (see p.5.2) ?

Thefull Data & Stat information from all the channels of the last Scan is sending in the compact
format on this request. After it the small (Group) portions of Info may be copied from EXE-

message locally.

16

The External Calls. For using “by call” from higher level system software the described set
of core programs and subroutines may be represented as a single “functional box” with some
inputs and outputs. In this case al the requests may be sent and all the responds may be taken (or
copied from exe-message — see Fig.6) by using one complex higher level subroutine.

Two External Calls may be used for sending of the local or remote Requests to CAN
hardware and receiving the Responses with Data/Status Info:

int SetGetByAddress (int *Host, int *Node, int *Port, int *Unit, int *Chan,

int *Func, /* The DCS FUNCtion */
int *Iinp, /* The Data/Status Info for an INPut */
float *Dout, /* Pointer for Data OUTput *x/
int *Sout, /* Pointer for Status OUTput *x/
int *Eout) /* Pointer for Error OUTput *x/

int SetGetByName(char *Name, int *Func, int *Iinp,
float *Dout, int *Sout, int *Eout,
int *Numb) /* The NUMBer of Chans found by Name */

The first subroutine is oriented on Expert Requests because it deals with DCS addresses and the
second one — on User Requests (Detector Name is in the arguments). The first subroutine returns
(on Dout and Sout addresses) one Data and one Status value; the second one — the group of Data
and Status values that was found “under” broadcall Detector Name - it may be the CAN-box,
subComponent or all the Detector.

The writing and reading (mainly discussed before) are the examples of “single” action. For
easy control of the system resources more complex control is necessary that is including a seria
sequence of actions, such as scanning, opening and closing.

There are 2 system requests that may be called via “SetGet” subroutines for setting and
getting the general DCS Status and for making the monitoring Scan:

0x80: int SetDCSstate (int Scod) ;
where Scod - System Status CODe: 0x00 - Set OFF System State,
0x04 - Set IDLE System State,
0x08 - Set READY System State,
0x4C - Set ACTIVE State and Scan Data,
0xCC - Scan Data Periodically;
0x84: int GetDCSstate(void) ; - returns of Scod.

Two additional System Requests are defined for more specialized operations by using the
Detector's Names:

0x88: SetDCSdata - for Data writing to the group of CAN channels
(makes WriteDCSdata & SendCANdata) ;
0x90: GetDCSinfo - for copying the results to Data and Status Buffers.

By using System Requests in the External Calls any extern connection to the DCS System (via
interprocess mechanism or directly) may be done very easy. The core software, in particulary,
may be represented as DLL library and be used in any environment (LabView or PVSS).

3.2. Scan and Event waiting Loops

There are 2 types of the Clientsin SCT-DCS (if TransAction library isincluded):

— "Main Client" that may be run by Expert only. It is able to generate any
request to the Server;

— "Look Client" may be used by everybody. It is able to send "GetDCSinfo"
request only.

17

The Server is starting by the Local Client as a “Child”, they both are sitting in a Host
computer. The “Parent” is a Main client for the server. The Server executable program should
be prepared beforeitscal and should be put into the file with “Cserver.exe” name.

O - Watch-dog Timer Figure 9
“isolation”

Local Client

(Parent)

Main Look
Remote Client Remote Client
. “on Call” “on Event” .

Group Server Group
(Child)

Look Look
Remote Client Remote Client

“on Time”
Group

A A
Look Look
Remote Client ... Remote Client

The other clients (their number may be up to 30) are subdivided in3 groups. they can get
slow control data “on Call” (by sending request every time they need) or “on Event” (that is
discovered in the system) or Periodically (“on Time” — regular). The “event” and regular clients
should register themselves before data getting by sending to Server a Request with GetDCSinfo
function and with the Info value
- 0x88 for adding to Event list (0x84 —for deleting), see CSR hits in 2.5,

- OxC8 for adding to Periodical list (0xC4 —for deleting).
After it they will receive the proper datafrom the Server.

The TCP/IP links are using for remote clients. All the links are realised in unblocking
manner (there is no indefinite waiting time during “read” and “write” transActions (see watch-
dog timersin Fig.9), therefore nobody can cause the system hang-up.

The Server Loops (time sharing) organisation is shown in Fig.10. The average Detecting
Time:

- for Scannable modules - tens or hundreds of sec (Tmon / V12);
- for Eventable modules - hundreds of msec (if Server is out of Scan).

The advantages of "Periodical Sending" modein CAN (Tsend < (Tmon/ 2)):

— CAN bus loading is more regular;
- there is no waiting time for response, therefore a Scan time is very short;
— there is no CAN-boxes TimeOut and hang-up problems.

The CAN Unit is sending Data to Server only if the monitoring procedure was done
successfully, in other case it returns an error.

Quick Loop procedures. In the '‘Quick Loop' a Server is checking;

- the 'Event List' that contains "look at me" Flags from the channels that ar
able to send the CAN messages in some Extra Cases;

— the possible requests from Main and Look Clients; 4

18

until the Period of Monitoring (Tmon) is not over, after it Server starts new Main Loop again.

Figure 10

New Time

CAN
Hardware

[Time < Tmon ?]
(\ N\
Is Client ? Main

J

) Server

CAN Response

Y

[Make Scrlpt Quic

~

Line Loop

) Loop

Is Event ?

Periodical
Sending

CAN
Hardware

Send Scan data to
“Regular" Clients

3.3. Control Functions and Script Tables/Files

The manipulation with the Actuator channels needs sending some control Info in non-
predictable order (at the time of Code compiling) in addition to getting Actuators Data and Status
from some addresses that may be varied also. The Info exchange protocol may be based on some
other functions than simple numerical Vaue Write/Read (see p.3.1.1). For instance, it may be
based on Text String Sending/Taking (cooling “Chiller” machine) and maybe very slow (needs
several seconds waiting after every Request). The special system subroutine was created to meet
these requirements, it is ableto read and to execute the
Script - serial set of commands that are represented in the form of atext lines.

There are 3 Scripts in the core software now (see left DataBase in Fig.3):

- Csct ini , the script that is executing during system initialization,

- Csct off, thescript that is executing during system closing,

- Csct run, the script that is executing “ step by step” in aQuick Loop (see Fig.10).

One Script Lineis executing in one Quick Loop cycle, the next Line is reading on the next cycle
only. The important new function in a Script is ‘WaitMsec' (milliseconds). If ‘WaitMseC’ is
presented in the Line than incrementing of Sript Lines will be postponed till wait interval will be
over (the Script itself will be transparent for Quick Loops).

The Functions that may be used in the script Requests and their “text format” (in the left
columns) are shown below:

InitHost: func = INITdcsHOST InitNode: func = INITdcsNODE
InitUnit: func = INITdcsUNIT SendStat: func = SENDdcsSTATUS
ReadStat: func = READdAcsSTATUS TakeStat: func = TAKEdcsSTATUS
SendData: func = SENDdcsDATA ReadData: func = READdcsDATA
TakeData: func = TAKEdcsDATA SendStri: func = SENDdcsSTRING
TakeStri: func = TAKEdcsSTRING MoveStri: func = MOVEdcsSTRING
ClosUnit: func = CLOSEdcsUNIT ClosNode: func = CLOSEdcsNODE
ClosHost: func = CLOSEdcsHOST WaitMsec: No Request on it

The format of the Script Lineis the following:

19

Request Host Node Port Unit Chan Func Info/Stri
or

WaitMsec Time None None None None None None

If some of the parameters are not necessary for the request (for instance, Node, Port, Unit, Chan
for ‘InitHost’) they should be described as ‘None’ . Any String may be commented by inserting
‘# before‘Request’ or ‘WaitMsec'.

Three additional functions were created for dealing with the Strings:

0x40: int SendDCSstring(int Host, int Node, int Port, int Unit, int Chan,
char *Stri);

0x44: int TakeDCSstring(int Host, int Node, int Port, int Unit, int Chan,
char *Stri) ;

0x9C: MoveDCSstring - FunctCode for Far side Request.

Every letter of a String[i] is copied (while Sending/Taking) into appropriate Chan[i] of the
selected Unit structure. Taking is copied a String into SGET global buffer also. Due to it any
String was read may be moved to any Unit.

3.4. Error Handling

The current principle of DCS functionality (in the construction phase) is "to execute until
the first Error" on the any hierarchical level except “periodical” and Agents closing actions. The
System Error register contains the unified fields for Function, Procedure and Operation errors
and for general Error status:

Error Bits 0,1 - Severity of Error : 0 - Normal (“No Error” is even always),
2 - Warning,

1 - Alarm (Error is odd always),
3

- Fatal;

If the system is working in the "periodical™ or closing mode the Error counter may be used also.
The Error register ERRc (ERR-code) and Error counter ERRn (ERR-number) have 32-bits
length and ERRc has following bits distribution:

Hardware Code | Function | Procedure | Operation Errors | ES

11 bits | 6 bits | 7 bits | 6 bits | 2] I} h

Error Counter

where ES is Error Severity.

There are no Error printing (drawing) facilities in the DCS Functions themselves (because
they are on a"Far side"). The specia set of subroutines was developed for the Errors indication
in the Text or Graphics modes (on the Client/User side). Some examples of the Error Messages
are shown below:

Function Errors: Procedure errors: Operation Errors:

" InitDCSunit : CanCrNotifBox () failure Overflow in CAN chip W
" WriteDCSdata : CanNmtServGlobal () failure Write Queue OverFlow U
" ReadDCSdata : CanBoxWrite() failure Data just read was old "
" WaitDCSevent : Can't find Unit by Name CAN communication form "

20

4. LabView version of SCT DCS software

All the core functions and subroutines are written in *C’ but they may be successfully used

in the LabView environment as LabView CINs, it isshownin Fig.11.
Figure 11

B ctst_lab.vi

Fle Edit Operate Project Windows Help Ei‘b
1

bl

e
2

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 piot 15

0
Q Scan 35 -ASFunc+2 Iinp ONode 0 Port 0 Unit 0 Chan ;:1Group -0 Error -1C8 Stat 19.00 Data Nor |:|
L]

| o

The DCS Scanning Program in LabView is based on the SetGetByAddress() subroutine
and SetDCSstate(Scod) system function is called on the every Scan. The “functional box” (left
green casein Fig.12) has 6 inputs: 5 - for Host, Node, Port, Unit, Chan numbers; linf (input Info)
- for the Request and 3 outputs. Dout - for calibrated (or normalysed) data Getting; Sout — for
current system state; Eout — for an error. The current State and Error information is presented in
according with unified Status (p.2.5) and Error (p.3.4) codes convention (the Data are comparing
with the Limits).

Figure 12
Status+Limits
/Config.File Calibr.File \ \
Error
> LabView
New 4 State _
statef ‘ Scan Buffer User
»| Scanner N Normalyser] |Data _"<
> Channels Data Inp/Outp
Chan N\’ Channels State
Address .
Y X
/)
/\
newState+ChanNumber happy User

<

21

If Func=SETdcsSTATE and linf=4Ch the program is scanning one time al the Sensors (of
al the Units, of al the Ports, of al the Nodes, of all the Hosts) that are included in the Configure
Table, and puts Data and Status values into the DCS-message.

If Func=GETdcsINFO the full Data & Stat message is sending to “near side”.

If Func=COPY grpINFO the program is making a copy of Chan info that is numbered in
‘linf’ (the Group is pointed in ‘Chan’ section of Address).

If Func=COPY chalNFO the addressed Chan Info is copying.

Figure 13

B ctst_lab.vi

File Edit Operate Project Windows Help

[[@[]
256.0- e ————— - 121.00
240.0- o) 123.00
220.0- 1231.00 ‘
200.0- . 115.00
180.0- 140.00
: 127.00
135.00
126.00
128.00
135.00
127008

121.00%
249.00%8
-9999. (g
0.0 I -9999.(

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 por15

Q Scan 36 *FFFunc >4 Iinp ONode 0 Port 0 Unit 0 Chan t41Group =0 Error -1C8 Stat 102.01Data Nor :]
]

| o

The LabView application is operating in simulation mode in both illustration pictures; in Fig.10
Data are represented as Physical values (room temperatures here). In Fig.13 the “temperatures’
are shown as NORMalized values (right control button is green), in this case the Alarm_L/H and
Fatal_L/H horizontal lines are generating automatically. As may be easy seen from Fig.13 the
last channel isin Fatal_H zone permanently.

The demonstration LabView application has 2 control buttons only (Scan and Norm) due
to it the “Csct_grl-4” files are used for other screen settings, the group itself may be selected
with the spin-button.

5. PVSS application

The PVSS application has a name: “ProjNN” where “NN” is the project number. All the
“input” (configuration/calibration) files should be put in “Path...\ProjNN\panels’ folder; all the
“output” fileswill be created in this folder also.

5.1. Indicator & Control Panels and Objects

The main window of the PVSS application is shown in Fig.14. The window contains the
following Controls and Indicators.
System Status Control (4 buttons in the center below); the system may bein the
- Off dtate (exit on press);
- Ready state (isusing for manual control now);
- Active state, the monitoring is possible here in one of 2 modes:
- direct mode, where " C”-core software is using for Datamonitoring (“D” sub-button),
- network mode, where OPC server is sending Datato PVSS application (“Net” sub-button);

22

One additional button is using for Reloading all the settings from the Config filesif somethingin
the system settings was changed.

Agents Stat/Data Control (PVSS Text Field from the right below - for password entering)
iIsusing for further access to manual control of the system Agents.

System Action Indicator (PVSS Text Filed) is placed on the top of agents control field. It
shows what system is doing now (see Fig.14,15,16); if system is performing some non-
interruptible action than indicator is 'Y ellow.

Error Indicator (PVSS Text Field from the left below) supports the error handling
mechanism that was described in p.3.4 (see Fig.18 for explanation of the error message created
for demonstration).

Scan Indicator in the right upper corner of main window, it shows the number of
monitoring Scans were done (in Scan mode). It is green usually but while Scan is in the progress
it has ayellow color (see Fig.15).

Figure 14

W% Vision_1: {NoName)
File Panel 2
nowran£o [n12vaanfo |nizwaofe |nldw2a0fo |nitwsaofo |[nowranfo [n1tewsanto [ndéwnangn |ntwoaoto|nwidan
01:5t01,02 | La01;5t03 04 | La02; 801,02 | LaDZ;5t03,04 | La03; 510102 | La0l4; St01 02 | LaD4;Modules | PipeSens | La01:Pix | PixDet | [0

Plot |

DCS Cooling

QUERY HAMFE: Lev3.Levd.Lev3.LevZ.Levl ADDR: Host.Hode.Port.Unit.Chan

"00"- ISCT.Layerﬂl.Loopﬂl.StaveﬂQ.CoolTemplDD 8 4 Addresses were found
to ALL

Agents |SCT j Layer j1 ::"Luup j1 j Stave jZ leuulTemp j1l]l]ﬂ Enter

year month day hour minutes Stap year rnonth day hour minutes Start

[4 o 4 4l Jun o 3 gl de 22 Joo] sc 2

Ambient temperature 02 (Layer0d)
Aubient humidity 0l

The manual selector in the form of PVSS Tab isincluded in main window. A Tab contains
the Main panel (selected in left top corner of Tab in Fig.14) and 10 watching panels for the
Groups of sensors.

Main panel in its turn contains 4 indicators for ambient temperatures and humidity and the
Query panel with archive Data extractor “by Name” (p.2.1). The query Name may be individual
or broadcast one as it is shown in Fig.14 (4 CAN addresses were found for Cool Temp sensors).
The Start and Stop Y ear-Month-Day-Hour-Minute dates for archive search should be pointed
also. After it the non-zero number of query file should be chosen (“1” in Fig.14) and on File-

23

button click the search is starting. Because a search may take some indefinite time the special
indicator in the top right corner shows how many channels are written in the file already. The
search results will be written in the query file: “Cout_guer 01.dat” where “01” is selected file
number in the File spin-button.

Every watching panel in the Tab contains 2 sub-Tabs — one for the sensors schematic
“Map” - Fig.15 and another one for the “Plot” (graphical curves, see Fig.16 below).

Figure 15

% Vision_15: (NoName)

File Panel 2

[niswsaoto |nidwoanfo’|nisw2adtn |nitwsanto |niiwsaofo |ngwtaofo |n16w0a0£0 |n1dw2a0 s | niswoan
| La01; 503 04 | La02;5t01,02 | La02;5t03 04 | La03; 801,02 | LaD4;5t01,02 | La04;Modules | PipeSens | Lad1;Pix | PixDetl | |

1500 1800 |1800 2000 |1600 1800 1800 |1800 000 1300

CDTED £Tel £Tel £Tel £Tel £Tel tTel CoTeld nPri CaoTel
M——MHM—MHM—MHM—MHM—{MHM D—{ﬁ/i

Stave 02

1600 1700 1600 1400 1600 1600

tTel? tTel £Tels tTel tTel tTel

IMJ=—MHM= M MMM} MM} ——M{M]

Outlet 01

21 .00 19 00 13 00 19 00 22 00 22 00

tTel? tTel tTels tTel tTel tTel

IMJ=—MHM= MMM MMM }——M{M]

1900 2000 1700 1800 1700 1900 1700 |1900 |000 1500 000

CDTED £Tel £Tel £Tel £Tel £Tel tTel CoTel nPri CoTed nPri

BaPr- Back Pressure, CoTe- Cooling Ternperature, InPr - Injection Pressure, StTe - Stave Temperature

‘mimw%

Enter PASSword for Control Panel access:

Hierarchical Status Indicators. The indicators in Fig.15 reflect DCS components status on
the 3 levels:
- sensor status 1S represented by the color of sensor indicator, in according with p.1.3 it maybe
Green/Y ellow/Red/Cyan, if sensor is excluded from the system configuration
(its state is Off) than the indicator has a Gray color (InjePresOl in Fig15);
- group status indicators are placed on the top of appropriate selectors of the Tab (5 are Green
and 5 are Yellow), the mgjority logic is using for Group status determination
(theindicator of La01;St01,02 is Y ellow because more than 3 sensors have the
Warning status, the Fatal —“ Cyan” statuses are ignored in this particular case),
the numbers of Normal/Warning/Alarm/Fatal sensors are shown in the Group
indicator as a short text string;
- system status 1S Visible because every Status Control button has a color (S’ button is Green
in Fig.15).
Sensor Indicator. This indicator is a reference panel that may be connected to the
appropriate DCS channel by using PVSS “dollar parameters’ (short form a Name). Two capital

24

letters with adjacent small letters and an Index are extracting from a short Name and are using as
asensor label (abbreviation) that may be read below indication window. For instance, “ CoTe03"
(upper left corner) isformed from Cool Temp03.

The PVSS Trend pandl is used for a Plot, it is shown in Fig.16 (PVSS application here is
working in simulation mode). The panel has a manual selector also (Ieft down corner) for adding

the channelsin aPlot “by Name'.
Figure 16

% Vision_15: (NoName)
File Panel 2?2

|niSwrians0 |nidwzaofe |niiwsaofo |nidw2a0fn |[nidaofo |niliwSaofo |ndéw0a0£o [n12wiaof|nSwiian
| La01:5t03,04 | LaD2, 510102 | LaD2; 510304 | La03;5101,02 | Lald;5t01,02 | Lald;Modules | PipeSens | La01;Pix | PixDet! | [46

s e o [¥

TEEEEm |

Select

HO ERRORs Ready f| wet |p [mTr. ..

Reload S!sutf| Enter PASSword for Control Panel access:

The Group selection panel is shown in Fig.17. This panel consists of 2 parts, one is a
Group Selector/Indicator and another one is extractor of archive Data for that Group. The first
(upper) part contains:

- Croup Indicator in the left upper corner (it isthe number of sub-Tab);

- Curve Number (Control, spin-button in the left down corner) selects the number
of aline;

- Name Selector (Control) with the Enter button;

- Names/Address Indicator of the sensors/channels that are included in the watching list, the
color and type (solid/dash) of the curve for selected channel is
shown from the left and between themis

- Sensor Indicator (the same asin the Map) for selected sensors/channels;

- Close Button (Contral).

25

WARNING: the PVSS Combo-Boxes and Spin-Buttons “remember” the previous entered value
but the first “field” and “zero” are visible on a panel “pop-up”, it means that every parameter
should be re-selected on panel opening.

If the wrong Name will be entered in the Name Selector than the following Address will be
printed in the Address Indicator section: n”_p”_Unit99 Chan99.

Figure 17

“_SCT_Plot.pnl]

Gruuplz HAME: Levi.Levd . Lev3.Lev2.Levrl ADDR: Host.Hode.Port.Unit.Chan

Close

|19.u

ISCT.

Layerdl.

Loop01

.Stavell.

CoolTempO1

: n0 p0 Unit0l.

Chanon

|19.u

ISCT.

Layerdl

.Loop01.

Stavre0l.

CoolTempOZ2

: n0 p0 Unit0l.

Chano1

|zu.u

ISCT

Layernl

.LoopDl1.

StaveOdl.

CoolTempD3

: n0 p0 Unit0l.

Chani2

ISCT

Layeridl

.LoopDl1.

Stave0l.

StarTemp0l

: n0 p0 Unit02.

Chan32

ISCT

Layer0l

.LoopDl.

Stavre0l.

StarTemp02

: n0 p0 Unit02.

Chan33

ISCT

.Layer0l

.Loop0l1.

Stavre0l.

StarTemp03

! n0 p0 Unit02.

Chan34

ISCT

.Layer0l

.Loop01.

StavreDdl.

StavTempO4d

: n0 p0 Unit02.

Chan35

ISCT

.Layer0l

.Loop01.

Stavre0l.

EtavTempOh

: n0 p0 Unit02.

Chan36

ISCT

.Layeril

.LoopD1.

StavrelZ,

CoolTempDl

: n0 p0 Unit0l.

Chan04

ISCT

Layeridl

.LoopDl.

StavredZ2,

CoolTempD2

: n0 p0 Unit0l.

Chanii

ISCT

Layernl

.LoopDl1.

Stared2.

CoolTempD3

: n0 p0 Unit0l.

Chanio6

ISCT

Layer0l

.LoopDl.

Stare02.

StarTemp0l

: n0 p0 Unit02.

Chan44

ISCT

.Layer0l

.Loop0l1.

Stavre02.

StarTemp0O2

: n0 p0 Unit02.

Chandih

ISCT

.Layer0l

.Loop01.

StavrelZ.

StavTemp03

: n0 p0 Unit02.

Chandb

ISCT

.Layeril

.LoopD1.

StavrelZ,

StarTempDd

: n0 p0 Unit02.

Chand47?

ISCT.

Layeril

.LoopD1

.Stavel2.

StarTempD5s

: n0 p0 Unit02.

Chanlé

j|AmhiHumi — Loop ~ BackPres jl]

hour minutes Start

Ao o o] maefr

year month day hour minutes Stop year month

[2002 j|2 ﬂ|15 ﬂ|2u j|5 ﬂ|2|:u:|1 j|1

day

Al

The Group archive Data extractor is practically the same as was described in Fig.14, the
search results will be written in the group file: “Cout_grup_NN.dat” where “NN” is non-zero
number.

The Control panel is represented in Fig.18, it is opening on the password entering in
Agents Stat/Data Control text field that was shown in Fig.14 (down right corner). By using this
panel every Function from a system set (Table 2) may be requested manually in Scan mode — see
the part of a Function list in the combo-box. The identification of desirable sensor/channel may
be done via the Name selector or via Address selector as well (2 Enter buttons). The returned
Physical Data or State (hexadecimal code) will be shown in their indicators. The input value (it
may be Raw value, State or RunScript “step” number) is entered with the help of a spin-button
(at center).

26

Thereis apossibility to send/take a string via PC serial port; the string may be entered (and
taken string may be indicated) in the String Text Field (below). The info exchange with the PC
parallel port may be donein usua way. The panel may be closed by click on Close button.

Figure 18

“_SCT_Plotpnl M= B

HAME :

Lev5.Levd.Levr3.Lev2.Lerl

ADDR :

Ho=st .Hode.Port.Unit . Chan

Close

ISCT Layer0l.Loop0l1.5tavre02. CoolTempD3

: h0_n0_p0 Unit01.Chan06

r

ADDR : HDSTIﬂ_ﬂ

FUHCTIOH

Layer

j1 ::IILnup
I

HODE

STRINGI

IdleSyst

j 1 jl Stave

PORT

Iﬂ_ﬂ UHIT

jZ ::"CquTemp j3 ﬂEnter
g omn
-| Rasfvr/STAT/STEP Iu_j DATAI

Il]_ﬂ Enter

STAT |

InitNode
InitUnit
Write Stat

"Comment: ReadStat Requests were sent before system Init"

The Fig.18 illustrates the attempt of reading status of CoolTemp03 sensor before the
system initialization. In the case of error the details of error info appear in the Error Indicator of
the main window (see Fig.14). The recommended system state for manual Control is Ready (but
it may be donein the Active state aswell) in Scan mode.

5.2. PVSS Data Points structures

The main elements of PVSS Data Points (DP) are similar to the elements of DCS Data
Base. The DP-élements for DCS Agents (Host, Nodet+Port, Unit, Chan) are represented in

Fig.19.

Figure 19

% Vision_1: data point parametrizati u! 4% Vision_1: data point parametrizati -: ¥%Vision_1: data point parametrizatig #% Vision_1: data point parametrization
Fle Panel 2 File Panel ? File Panel 2 File Panel 2
r filter options: - filter options: - filter options filter options:
™ internal datapoints ™ internal datapoints " internal datapoints " internal datapoints
dp-filter: dp-filter: dp-filter: dp-filter:

- 2% SCTdesCOOL11 - -1 ho_Node0D - DECS_Unit + 54| Sref C
ANALOG1 E common - 1 hO_n0_p0_UnitD0 - _| ChanOO0
COUNTER_SUB E lock E common E common
DCS_chan + *3| Stat E lock = lock

+ + ot Name + 3| Stat + *3| Stat
- DCS_Host + =b] Iden + =B Name + =] Name
- -l Hostoo + | Time + 88| Iden + | Iden
E common + | Rswl + | Time + | Time LI
B lock + | Rsw2 + _|Rswl + _|Rsvl
+ *#|Gtat + 29 Queu + | Rsw2 + | Rsw2
+ ob| Name + 29] Tout + __| OPCerror + 54| Data
+ 58] Iden - _|PortoD + 54| Sref + 23 Rawy
+ | Time El common + _| ChanDO + 5| CalA
+ | Rswl = lock + _-| ChanO1 + 5| calB
+ | Rsw2 + *8| Stat + | ChanD2 + 54 Calt
+ 3] Pmon + 2k Name + _l ChanD3 + 54| CalD
+ %] Gean + 2b| Iden + _-| ChanD4 + 29| Conv
+ 23] Gimu + | Time + _-| ChanDs + 28| cref
+ 22| Tout + _IRswl + _-| ChanD6 + 22| Limi
+ _-| OPCerror + _|Rsw2 + _-| Chan07 + _-| Chan01
+ DCS_limi + 29 Baud + _-| ChanD8 + _Z| ChanD2
+ DCS_name + __| OPCerror + _| ChanD9 + _-| ChanD3 2t

The common DP-elements for all the Agents are the following (4-1etters names are used):

27

- Stat , inaccording with p.2.5;

- Name , means here the Manufacture name (see Fig.4);
- Iden , means here the Production (version) iden;

- Time , Some “open” parameter for timing;

- Rsvl,2 , reserved for the future system expansions;

- Tout , TimeOut value.

The Manufacture name and Production iden are using in the System Library (Fig.1) for selecting
an appropriate Agent library.
The additional Host DPs from “Csct_hos’ Table are

- Pmon , period of monitoring;
- Scan , Scan serial number (in Scan mode);
- Simu , Simulation bit.

The additional Node DPs from “Csct_nod” Table are

- Queu , queue length in the CAN controller (in Scan mode have to be equal to the
number of monitored Data);
- PortNN , configuration settings for a Port, in particularly the (CAN or serial) port BaudRate.

The additional DPs for a Unit are the Chan-s settings. The Chan DataPoint is a reference
for Unit (if Chan DP type will be changed than all the Unit’s DPs will be changed immediately).
The Chan DP type contains (see Fig.5):

- Data , the Physical Data cell;
- RawV , thecell for Raw Value;
- CalA,B,C,D, A,B,C,D caibration constants;

- Conv , the number of conversion formulg;
- Cref , common reference voltage in a ELMB-box for sensors bias resistors,
- Limi , limit type number of a channel.

The auxiliary DP-elements are represented in Fig.20.
Figure 20

4% Yision_1: data point parametrizati -: 4% Yision_1: data point parametrizati ?’Hvisiun_l: data point parametrizati
File Panel 2 File Panel 2 File Panel 2

% ¥ision_1: data point parametrizati ! 4% Vision_1: data point parametrizatig

File Panel 2 File Panel ?

r filter options

—————————— r filter optionst ————————————— rfilteroptions: ———————— - filter options: r filter options
I internal datapoints I internal datapoints I internal datapoints I" internal datapoints I™ internal datapoints
dp-filter. dp-filter: dp-filter: dp-filter. dp-filter.
DCS_grup ANALOGL - |- =8l scrdescooL11 DCS_numb DCS_stat |
- 1 Grup01 COUNTER _SUB ANALOGL + 1 Alrm + I Ambi

E common DCS_chan COUNTER _SUB + —| Cmax + | Busy

E lock DCS_chan + | Cury + __| Desr
+ 28] NameoD DCS_Host + 2 Eout + 2 Eror
+ =] NameD1 DCS_fimi DCS_Hest + | Fatl + | Hist
+ £b| NameD2 - 2 Limio1 DCS_limi + | Grup + 1L1sl
+ b NameD3 E common DCS_name + __| Hmax + _1L1s3 |
+ 2b] Namen4 B lock - _lleviol + _| Tout + 11251
+ 25| NameDs5 + 28] Name & common +] Lmax + 11283
+ 25| NameD6 + 54| FatL = lock + —] Nmax + —1L3s1
+ 2| Name07 + 5| AlrL + 2t Name + 1 Norm + 1 L4mo
+ 2| Name08 + 54| Warl + 2% Indx + 1 Pmax + i L4s1
+ b Nameng + 54| Norm + - Levio2 + Z| Pmon + 1 Moni
+ b Namel0 + 54| warH + _Levio3 + —|Scan + | Pipe
+ 25 Namell + S| AlrH + _ Levind + _18run + _l8erv
+ 25 Namel2 + 5| FatH + _ Levios + _] Umax - _l8yst
+ 2t Namel13 + _| Limi02 DCS_Node - _lWarn & common
+ =t Name14 + | Limi03 DCS_nhumb & common = lock
+ 2t] Namel5s + | Limi04 DCS_stat & lock + *8|Stat
+ 2t Namel6 + | Limios DCS_unit + 28 Numb DCS_Unit
+ 23] File + 7| Limi06 Elmb DCS_stat Elmb

The first DP-type is a Group, it includes the Names for 16 curves and the archive File number.
The second oneisaLimit type — 16 values for aname of monitored parameter (in according with
Table 1) and its index, for Warning/Alarm/Fatal Low & High values and for Normal value. The
next DP-type created for the sensor Local Names (5 levels) and their indexes.

All the system numerical parameters (numbers) such as DCS-Tree definitions (Hmax,
Nmax, Pmax, Umax, Cmax), number of Errors, Warnings, Alarms, Fatals, etc. are combined
under DCS numb DP-type. In the last section in Fig.20 the States of additional system
components are included.

28

5.2.1. Data Points loading from the Data Base

If something in the system settings was changed the DP-elements should be reloaded by
click on the Reload button in System State Control (see Fig.14). The DCS system should be in
the Off or in the Ready statesin this case.

The configuration file: “OPCCanServer.Cfg” for OPC server is creating in Reload mode, it
should be placed in the OPC server folder (see appropriate manual). The following files are
generated additionally during this process. “OPCini.bak”, “OPCpdi.bak”, “OPCpdo.bak” and
“OPCsdo.bak”, they may be deleted.

5.3. PVSS Calls of “C”-functions

For increasing the PVSS code productivity the mostly repeated DCS actions are making
viathe calls of “C”-core subroutines (see p.3). The full set of System Functions and libraries of
“C”-core code iswidely used in the Direct mode.

For Network mode (OPC server) the following “C”-subroutines are using only (no other
libraries):

/* THE "C" FUNCTION FOR RANDOM INTEGER GENERATING *x/
/* */
/* Zone - random values range *x/
/* Form - FORM of distrib. curve : *x/
/* Form=0 - (Shif+(Zone/2)) peak *x/
/* Form=1 - Flat from Zero to Zone */
/* Form=2 - Triangular form */
/* Form>>1 - Narrow Gaussian curve */
/* Shif - SHIFt of the distribution center *x/

int RandomInteger (int Zone, int Form, int Shif) ;

/* THE "C" FUNCTION FOR DCS ADDRESS GETTING BY USING SENSOR/CHAN NAME */
/* */
/* Name - NAME of the Sensor/Chan *x/
/* e = .. */
/* Return - Error code *x/

int GetAddressByName (char *Name, int *Host, int *Node, int *Port,
int *Unit, int *Chan) ;

/* THE "C" FUNCTION FOR SENSOR/CHAN NAME GETTING BY USING DCS ADDRESS */
/* R */
/* Name - NAME of the Sensor/Chan *x/
/* Return - Error code *x/

int GetNameByAddress (int Host, int Node, int Port,
int Unit, int Chan, char *Name) ;

/* THE "C" FUNCTION FOR SQIL ADDRESS LIST CREATING BY USING "BROAD" NAME */
/* */
/* Name - Broadcall NAME of Sensor(s)/Chan(s) in SQL */
/* Leng - LENGth of Address List created */
/* Return - Error code *x/

int ListAddressesByBroadName (char *Name, int *Leng) ;

29

/* THE "C" FUNCTION FOR TAKING NUMBERED ADDRESS FROM SQIL LIST */

/* */
/* Numb - NUMBer of Address in SQL List *x/
/* s000 = oooo */
/* Return - Error code */

int GetAddressFromList(int Numb, int *Host, int *Node, int *Port,
int *Unit, int *Chan) ;

/* CONVERT RAW VALUE TO PHYSICAIL DATA AND COMPARE IT WITH THE LIMITS */
/* */
/* Raw0 - RAW Value from current sensor */
/* Rawl - RAW Value from the first (humidity) sensor */
/* Conv - CONVersion formula number *x/
/* Sref - Sensor REFerence (bias voltage) *x/
/* Cal* - CALibration constants A,B,C,D */
/* Limi - LIMIt type *x/
/* Data - Physical calibrated DATA *x/
/* Stus - STatUS (Error Severity) of a Chan(nel) */
/* Return - Error code *x/
/* */
int RawToPhysLimits (int Raw0O, int Rawl, int Conv, float Sref,

float CalA, float CalB, float CalC, float CalD,
int Limi, float *Data, int *Stus);

All these subroutines are placed in “DIlOrigin.c” file (the first DLL-level in “C”). The second
DLL-level is represented by “DIlIPvss.cpp” library (“C++” is necessary for PVSS) it is just an
intermediate (transparent) layer between PV SS and “ C”-code.

6. Calibration software

There are the following possible sources of Physical Data tolerances (in increasing order):
- the differences in the sensors parameters,
- the differences in ADCs offsets (pedestal) and conversion factors (gain),
- the differences in the “bias current” resistors (or divider resistors) for sensors.
It is supposed that bias and divider resistors (Adapters) are the part of electronics, it means that
their differences should be compensated by “A” and “B” calibration constants.

For SCT DCS temperature monitoring the precision requirements are not so high (~ 0.5
©C). In this case the parameters of sensors themselves are practically identical (in one delivery)
and “C” and “D” cdlibration constants may be unified for definite sensor type.

The calibration procedure for ELMBs analogue inputs will be briefly described below; for
other types of CAN-boxes it may be done in a similar way. The calibration procedure is making
in 2 steps:

- intermediate calibration of ADCs (the first correction of “A” and “B” is on the output);
- calibration of Adapter resistors and finding the final valuesfor “A” and “B”.

The first calibration should be done before plugging the "bias current” Adapters (the
origina “1k” direct connected resistors should be used for this test). All the ELMBSs inputs are
connecting in paralel and 10 voltage steps (say 1, 11, 22, 33, ..., 99 mV) are generating in
sequence. The Data for every step from all the channels are taking by "Ctst_txt.exe" program
(Manua Controller of CAN-bus, see p.7 below) and are writing in “Cout_inf.dat” file. After it
"GalnPedestHist.exe" program is starting for watching of measurement results and for “A” &
“B” correction values finding. The example of executing of this program is shown in Fig.21. The
following info may be seen on the screen:

- "step by step” measurements of transfer characteristics of selected channels (Y ellow text);
- the linearity curves from that channels (Green lines);

30

- the projections of the every step of the every line onto Y -axe (i.e. the "pedestal

lines from the | eft);

Figure 21

S' - short Red

= coMpP_1 M=)

gll= 646 673
yi2=5636. 939
g03=647.393
g0d=647.137
g03=647.913
FB6=645.056
g07=648.283
gO8=647.523
g09=645.013
gAM=_582.158
gO01=636.767
gO02=647.230
g03=646.739
g0d=647.291
g0i=646."
go6=647.:
gb7=647.

giv= 5§2.
g01=646."7
g02=647.:
g03=636. 083
god=647.147 |
g0i=646.793 |
g06=648.339 |
giT=6457.9%39
JOE=646.396
g09=648.679
giv= 5§2.;

gl 1l=647--
g02=636.855
gO03=646.739
gid=636.677

g06=616.163
g07=636.308
gna 647. 429

goi=647.9533
g06=645.337
g07=647.908
g0E=647. 616
g09=645.293
giv= 5§2.205
g0l1=637.329
yi2=637. 032
g03=637.208
g03=637.053
g0h= 646 70

A
g08=637.231
g09=645.013
-g.;-"\1nf—

T p09= 177.250
LpAN=_ 10,996 _
‘p0l1= 1.875

T ple= —zn 'jl]'j

‘T p09= 153.908

Vpil= 11.947
T pll= 1 &70

T p03= 3,331
‘P 06=-8§0.581

I L R i T
'p08= 40.813

: pO09=-156.193
. ph‘u’— —1ll 339

.11!]2— l] E-lﬂ
' p03= 3.430
‘p0d= 5.168

' ple= 25.374
T p0T= 23 968

it-Ieasuri\l‘rEnt.s tléme.
ChanBEG= 0

=TH 1‘= il wPRES

-

Fm======q-=-=-

oo

e

-

.
=

ChanFIN= 5

100

31

- the correction values for ELMB channel Gain and Pedestal that were taking between 30 mV
and 70 mV of input voltages (Gray text).

The second step may be done after plugging the "bias current” Adapters into ELMBs and
plugging input connector with 16 resistors (metal film) that “replace” the sensors, i.e. their
nominal values
- 1 kOhm for PT1000,

- 10 kOhm for NTC inputs.

Every of 16 resistors should be measured individually before and its real value should be written
in the proper column of “ELMBsens.dat” File. The "Ctst_txt.exe" is starting 4 times because the
set of calibrated resistors is connecting serialy to other input connectors of ELMB. The final
calibration values for “A” and “B” are calculated by "GainWithAdapt.exe" program and may be
found in “Elmb_NNcal.dat” file.

Figure 22
Temperatures distribution without calibration After calibration
6 -+
5+ _
4 T —
3T _
2 £
R o o o e
1 2 3 4 5 0103 0507
degr.C degr.C

In Fig.22 are shown “channel to channel” distribution of Temperature values before and after
calibration (the measurements were done by P-O.Wallin).

7. The Testing and Simulation software

Testing software is written in “C” and based on “C”-core subroutines (p.3). The same
configuration files (as for main application) are necessary for it running. Testing software may
be used in 2 ways:

- instead of PV SS (LabView) applications for checking CAN hardware state and status;

- in parallel with main application from the second port of CAN-controller card, in this case
CAN-bus should be connected to the both connectors of controller card.

The are 4 reasons to use a specia designed software (in “C”) for testing instead of main (PVSS)

application:

- it is much more faster;

- itismuch more simplein usg;

- CAN-datataking processisvisible;

- every software step may checked with the powerful Debugger (Visua C, Borland C).

32

7.1. Manual Controller in “C”

The first testing and diagnostics program is “Ctst_txt.c”, it provides al the System
Functions (p.3.1.1) and supports a User interface in the text mode. The menu of the first level is

shown in Fig.23.
Figure 23

&4 H:\, _Users\Basilad', Jobs ¥Cproj\zz_¥Cappl\Ctst_txt.exe

SLOW CONTROL TEST

- QUIT

- HELP Initialization in progress...
. DCS Host CScript >

DCS Mode (Controlr>

DCE Unit CCAN hox)

DCE Sensor (Multiplx)

DCS Scan

Show Status

Show Data

Show Errors

w0 G0 =] N OA W L = &
T

Enter a Mumher

If Host Test (2) or Node Test (3 — see Fig.23) or Unit Test (4) was selected than system
initialization will be done automaticaly (it is shown in Fig.23). In the Node Test mode — see
Fig.24, the desirable Node number or Port number or Unit or Chan number for writing may be

defined.
Figure 24

&4 H:\, _Users\Basilad', Jobs ¥Cproj\zz_¥Cappl\Ctst_txt.exe

SLOW COMTROL TEST
3.DCS NODE CCONTROLLER>» TEST

. GoTo ERIT

. GoTo MAIN

- Node HNumb a

. Hode Port a

Init HNode

. GClose HNode

- Unit_Write a

- Unit_WUrite

Init Unit

. Glose Unit

a
1
2
3
4.
5
6
?
8.
?

Enter a Mumher

If Unit Test mode was selected — Fig.25 than Data or State may be sent (to) or taken (from)
any channel of any Unit. The writing Info may be defined via“5” (Data) or “6” (State) and “7” is

33

selector for Data ("1”) or State (“2”) writing. The reading is making by choosing of “8” and
read-then-write cycles are selected by “9”. The number of cyclesis defined via“4”.

Figure 25

&4 H:\, _Users\Basilad', Jobs ¥Cproj\zz_¥Cappl\Ctst_txt.exe

SLOW CONTROL TEST

4_DCS UNIT <BOX> TEST
GoTo EXIT Set UnitW = 3.6.85et Chanll
GoTo MAIN Port_Write: @ Port_Read
Unit_Read Humh a Unit_Write: @ HNode_Read
Unit_Read Chan a Chan_Write: @ HNode_Urite:
Cycles Humbher 1
Firvst++ Send D ah
First++ Send S
Write D:1 or 5:2 1
Read Cycles; D
WrsRd Cycles; S

w000 =] N CA W Ll D =

Enter a Mumher

The next is so-called System Test (“6” in main menu) — Fig.26. The scanning of al the
(included in System configuration) Units is making in this mode. This mode is using for
calibration procedures.

Figure 26

&4 H:\, _Users\Basilad', Jobs ¥Cproj\zz_¥Cappl\Ctst_txt.exe

SLOW CONTROL TEST
6.DCS SYSTEM TEST

8h
28s
i@

GoTo EXIT

GoTo MAIN,. sysS
Monitor Period
Scans Humbe »
Fort Humhe r
Unit Humhe r
Chan Humhe r
Mormalization
One Scan,. Group
MHultScan,., Group

a
1
2
3
4
5
6
?
8
?

Enter a Mumher

Two system operations are possible here: one Scan (“8”) or multiScan (“9”). The number of
scans (“3”) and period of monitoring (“2") in the second case are reading from the Host Config
file. In both cases the watching Group number may be selected (2 digits are typing: “8” and then
“GrupNumb” or “9” and then “GrupNumb” — 1 in Fig.26).

During the program execution in these modes the Raw values taking process is visible —
see Fig.27 on the top. The 1-st and the 3-rd lines show Unit-Chan numbers; the 2-nd and the 4-th

lines show the Raw values in these Chan-s.
Figure 27

B4 H:y _Usersy Basilady, Jobsy ¥Cprojyzz_V¥Capply_Ctst_txt.exe

-31 632 633 634 635 6-36 6-37 6-38 6-37 648 641 642 6—43 644 6—45 616
hSfc ABaB d?h6 aedb 6672 2bhld 132e 66 Aaa AR 1df5 693 bhV18 4c43 13fFf FEFF
—-47 6—48 6—4? 658 6-51 6-52 6-53 6-54 6-55 656 657 6-58B 659 668 662 663
7hbe AA3 11dbh BE66 B@6h @@ 132f B@? 68 Aaa 18e? 241 @A Aaa ABa 37h3

SLOW CONTROL TEST

6.DCS SYSTEM TEST
GoTo EXIT
GoTo MAIN,. sysS
Monitor Period
Scans Humhe r
Fort Humhe r
Unit Humhe r
Chan Humhe r
Mormalization
One Scan,. Group
MHultScan,., Group

48h
28z A 21.2 A 18.8 A 17.2 A 192.%7 F-257.5
18

w000 =] N CA W Ll D =
R

Enter a Mumher

The first 5 monitored Chan-s of the watching group are indicating (status — N,W,A,F and
Physical Data) on the right side of the text pandl.

7.2. CAN-bus analyzer

The second program “NlIsnoop.c” is based on Nationa Instruments code for “CAN-
anayzer” — Fig.28.
Figure 28

H:', _Users\Basilad', Jobs ¥Cproj\zz_¥Cappl_NIshoop.exe

MI-CAN AMALYSER: Type SnoopPort = 1. BaudRate(kBod)» = 258, TimeOut<{sec>: 59

58m:B6s . 88567 . 287h, 2dh 11h dfh 18h C=45% D= 6367
58m:B6s . 83548, 287h, 2eh ?1h £fh ffh C=46 D=65535
58m:B6s . 86512, 287h, 2fh 11h ?1h 8bh C=47
58m:B6s . 89216, 287h, 3dh 21h 8h @h C=48
58m:B6s . 22061 . 287h, 31h 11h 32h 14h C=4%
58m:B6s . 5871 . 287h, 32h 21h 8h @h c=58
58m:B6s . 76473 . 287h, 33h 21h 8h @h G=51
S58m:B6s . 27583, 287h, 34h 91h 8h @h c=52
58m:B6s . a. 287h, 3%h 11h 2dh 15h G=53
58m:B6s . 1853. 287h, 36h 21h 8h @h c=54
S58m:87s . 4497, 287h, 37h 21h 8h @h G=55
S58m:87s . 4501 . 287h, 38h 21h 8h B@h C=56
S58m:87s . 6806 . 287h, 3?h 11h 8dh 1bh c=57
S58m:87s . 78272, 287h, dah 11h dfh 1h C=58
S58m:87s . 12588, 287h, 3bh 21h 8h @h c=5%2
S58m:87s . 12581 . 287h, dch 11h clh 1h C=68
S58m:87s . 15374, 287h, ddh 11h 62h 14h C=b61
S58m:87s . 18441 . 287h, Jeh 21h 8h @h C=62
58m:87s . 21114, 287h. 3fh 11h 7?3h 37h C=63

19NN
IR

b]

LI B B B B |

b]

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

=l e e e e e e e - -
el el e L L L L L L L L e
FFRFFFPFFFRPFFFPRPFEFRPEREERE

nhnhnhnhnhnhnhnh':hnhnhnhnhrhnhnhnh

" "
Soooooooooooooooogg
= =] — — —]] — — —f]]

pESELESERELELERELELERERELELELELELELES]

It should be started from another CAN-port (CAN-bus should be connected to both). Before
running the Port number have to be defined as well as BaudRate and TimeOut values.

35

CAN-analyzer shows:
- time of CAN-frame appearing on the CAN-bus (T);
- number of waiting loopstill the current frame (R);
- COB-ID intheframe (1);
- length of the message info (L) in bytes;
- Raw data bytes (D) — 4 for ELMB;
and then in the last 3 columns. Unit and Chan numbers and Physical Data, i.e. decoded frame
information (D).
Some care should be taken while using CAN-analyzer because it may take a significant
part of processor resources (waiting loops).

The simulation software. The special set of Data/State Read/Write Init/Close simulation
Functions was created (“ Cfun_sim.c” library); it alows to exclude CAN hardware from the slow
control system for testing of other DCS parts and for software debugging. Any errors can be
generated in a random way with desirable probability in Scan mode (needs recompiling), it
permits to check the system sensitivity to errors and the system tolerance to them.

For running in the simulation mode the “DataSimu” bit should be installed in a Host
Configfile.

36

8. Supplements

8.1. The list of software libraries and Version code

Cversion.c - Thisfile contains all the Global "C" variables and structures and controls all the
possible Oper_Modes. It may be Compiled and Run as the Server or as the Client,
or asalLibrary (CIN for the LabView), or asthe Test program in the Text or
Graphical modes. The proper definitions must be done in Define Modes Area.

If CANVHEAD and LIBRaries are defined than the File can be used as a Header
File.

Ctst_txt.c - CAN modules TeST in the TeXT mode, main program (for expert). Tests all the
CAN programs (Open/Close, Write/Read/Event) on the Hardware Independent
Trang/Action Level in the Text Terminal mode.

Ctst_gra.c - CAN modules TeST in the GRAph mode, main program (for expert). Tests al the
CAN programs (Open/Close, Write/Read/Event) on the Hardware Independent
Trans/Action Level in the Graph Terminal mode.

Ccom_lib.c - Thislibrary contains the subroutines for execution of Script described procedures.

Creg_lib.c - Provides CAN high level REQuests for the System Initialization, Setting the States
and Getting Slow Control Data.

Cact_lib.c - CAN ACTions LIBrary. Provides Network (TCP/IP) or Direct Link from Client
CAN/VME program to Server CAN/VME Functions that deal with hardware or
with CAN/VME driver simulators. May be used as

a} SIMulation library of network Actions (SIMa);

b) NETwork Client library (NETC),

c) NETwork Server program (NETS - in this case the name of this File should be
changed to Cact_ser.c).

Csys lib.c - CAN SY Stem LIBrary. Makes the distribution of the calls to the vendor oriented
CAN subroutines for the System Host Initialization, Setting the States and Getting
the Datafrom Detector Control System level.

Cnam _lib.c - Makes on call: Naming file reading and then Detector names and CAN addresses
structuresfilling; getting CAN Address by Detector Name and getting Name by
Address.

Cerr_lib.c - CAN ERRror LIBrary. Provides all the necessary Error Handling System
subroutines on the Procedure (hardware dependent), Function (hardware
independent) and Action (remote control) levels.

Cfun_sim.c - CAN FUNctions SIMulation library. Provides a the necessary (Open/Close,
Write/Read/Event) simulation subroutines for CAN controllers and boxes on the
Function (hardware independent) and Action (remote control) levels.

Comp_lib.c - COMPuter COMPatible LIBrary. Creates Platform independent Input-Output
Text-Graphics facilitiesin "C".

37

Nica lib.c - National Instruments CAN controller LIBrary. Provides all the necessary
(Open/Close, Write/Read/Event) subroutines that are based on Nlcan Controller
drivers for the Procedures (hardware dependent level).

NImb_lib.c - National Instruments & local Monitor Box LIBrary. Provides all the necessary
(Open/Close, Write/Read/Event) subroutines for Nican drivers and for LM B boxes
on the Procedure (hardware dependent), Function (hardware independent)
and Action (remote control) levels.

Nle_lib.c - National Instruments & Embedded Loca monitor box LIBrary with the same
possibilitiesas NImb_lib.c.

Nlor_lib.c - Nationa Instruments & ORic box LIBrary. Provides all the necessary
(Open/Close, Write/Read/Event) subroutines for NTcan drivers and for CST boxes
on the Procedure (hardware dependent), Function (hardware independent) and
Action (remote control) levels.

PCsp_lib.c - Thelibrary for IBM_PC Serial Ports.
PCpp_lib.c - Thelibrary for IBM_PC Parallel Ports.

All the DCS settings and calibration constants are reading from the proper Files during the
Host initiaisation. These files are generated from Microsoft ACCESS Data Base Tables:

Csct_sys - CAN (ATILAS) SCT SYStem parameters,

Csct hst — CAN (ATLAS) SCT HoSTs parameters,

Csct_nod — CAN (ATLAS) SCT NODes parameters,

Csct_uni — CAN (ATLAS) SCT UNIts parameters.

Csct _cnf - CAN (ATLAS) SCT naming and calibration CoNFig info.
Csct lim — CAN (ATLAS) SCT LIMits types parameters.

Csct grl-8 - CAN (ATLAS) SCT Scan selection groups.

Csct ini — Script that is executed on the end of initialization,
Csct run - Script that is executed in the Quick Loop,

Csct off — Script that is executed on the start of system closing.

The both (text and graphics) test programs may be used for any combination of the
working and simulation libraries. After choosing the necessary combination of libraries (in the
Cversion.c file) the proper version code is generating (the first compiler operation). Version code
"register” contains 3 fields - Hardware (8 bits), Simulation (4 bits) and Terminal mode (4 bits)
linear Codes:

| SystCode HardCode | SimuCode | Term| ShowCode |
| | see Hardware Version Code| A F D| M| A S D E|
18000|4000|2000]1000|800|400]200|100| 80| 40| 20| 10| 8| 4| 2| 11h
| |
Simulation CODe: Terminal Code: Show CODe:
D - Driver Simu/Work, If M=1 -> Text terminal mode, E - Errors Show,
F - Function Simu/Work, If M=0 -> Graph terminal mode; D - Data Show,
A - Action Simu/Work; System Code: 00 - ATLAS, S - Status Show,
10 - ZEUS; A - Action Show.

38

8.2. The general view of DCS-hardware for SCT-Cooling in B.175

39

=
=
ﬁ
<
B
=
—
S
9
2}
>
—
=
=
=
e
g
=
N
o0
=
g
R
=
=
N
(=9
g
=
o —
e
o0
=
S
B
~N—
7
)
i~
[
2
)

Measuriment=s done
ChanEEG= 0

= 100

ChanFIN= 4
WPRES

-5 - pHpres =

=5

*EXTH

cooTo o TgHpres =

—516

or

' Space '

p0s= 9

516
16

g5

-11.04%

piV=. . 596.865

p02= 2.185
p03= 0.935

p0d= 31198.988

p07=-21506.588

pl6=-12.777--

p09

733
733
855

866

166

516
V=265.070. .

G 06=516-

-1.26837 ...

ceeeeeecA = 0633 ... B

R

316,510

516.793
516.552

pod=

[

317,323

p05= 5.425
p06= 14.208

516
16
G490
143
516

Yad.310

=-26167.727

0d=_33631.5%59

03=
p0l

p05= 15.438

p06=-0.786

p07
P
pAV=
B

-====-=--r

03=

0g
g02
i

516
16
317
516
16

T

[

PTHGE 05T
pO&= 35914, 150

p09= 10.964
798,249
p01=-5.483---
p02=-5.820
p03= 10.93%
p0d=-31.961

=

pAV=

117
516

A= 363

Fhl=

-5.588
p06=-3.782

916
516
917

g3

rp b=

p07=-29478.994
p0d= 37939.711

916. 787
937.7609
95.119

831.598
p0l= 0.516

-1.040___

pli=
pAV=

L

=516.635__
=516

917

516

03

916
516
916
967

g7

65.913
516.355

Gos=

g0l
Tyl2=51%

1g03

Jgoa

70000]

107
Jy0E

Jog09

g0l
1og02
Tg03

60000 g 04:

4 g0h
< g06
107

149
Jg09

- gAv= 1645
g0l
Jgod

4 g0h

< g06

0000

+ g 07=91%

1go8

Jog09

a000Q}

1og02

1 goa

L gn5=516.817 .

- 06
1g0?
g0 E

30000 g 09

- gav= 365
g0l
1og02

19

Jgod
4 ghh
< g06

20000,

| g09
| oA

8.3. PVSS application speed test

A) Test of Direct Mode speed

~350 Voltages are switching every: 80 sec, 40 sec, 20 sec.

[0 o e T P ol
e

PCE——
1
H
s
-
-
e
-
%
L
1
-
H
{
L
Ll
1
|
1
L.

ad
anaseahal Pl el

|

B) Test of Network Mode speed (OPC server)

~350 Voltages are switching every: 160 sec, 80 sec, 40 sec.

41

8.4. The archive data in PVSS OPC-server mode (for 40 sec)

Nane:
Addr :

2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.

2002.

2002.

2002.
2002.
2002.

SCT. Layer 01. LoopO01. St ave0l. Cool Tenp02,

SCTdcsCOOL11: hO_nO_pO_Uni t 01. ChanO1

02.
02.
02.
02.
02.
02.
02.
02.
02.
02.

02.

02.

02.
02.
02.

12
12
12
12
12
12
12
12
12
12

12

12

12
12
12

21:
21:
21:
21:

21

21:
21:
21:

21

21:

21:

21:

21
21
21

51

:51
:51
:51

48:
48:
48:
48:
:49:
49:
49:
49:
:49:
49:

49:

47
53

17
19

:10.

:18.
: 21,
:25.

45.

27.

830,

.931,
. 659,
55.
01.
03.
09.
12.

407,
457,
439,
581,
360,

.458,
.333,

251,

174,

571,
091,
722,

-5
-5
-5

.85718
.87918
.89017
.85718
.87368
.89017
.88468
.87368
.87918
.88468

.87918

.87368

. 89567
.87368
.87918

2002.

2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.
2002.

2002.

02.

02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.

02.

12

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

12

21:

21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:

21

21:
21:
21:

21

21:
21:

21

21:
21:
21:
21:
21:

21:

49:

49:
49:
49:
49:
49:
49:
49:
49:
50:
50:
50:
:50:
50:
50:
50:
:50:
50:
50:
:50:
50:
50:
50:
51:
51:

51:

24.

33
35

49

37

44
47

04

13.

902,

.323,
.508,
41.
43.
.390,
52.
57.
59.
04.
07.
13.
15.
21.
23.
29.
32.

157,
507,

091,
151,
622,
655,
525,
688,
978,
193,
621,
200,
603,

.826,
40.
.857,
.651,
53.
56.
01.
.329,

107,

505,
073,
521,

341,

14.

14.
14.
15.
.9728
14.
15.
14.
14.
14.
14.
14.
.9949
14.
14.
15.
.9949
15.
15.
15.
15.
15.
15.
15.
15.

14

14

14

15.

9893

9728
9893
0004

9838
0004
9893
9838
9949
9893
9783

9949
9783
0225

0004
0225
017
0004
0114
017
017
0114

017

42

