Endcap Systemtest Report

13 June 2002 - Valencia SCT Week

R.Bates, P.Bernebeu, P.Dervan, F.Doherty, A.Greenall, J.Grosse-Knetter, C.Ketterer, J.Melone, J.Pater, T.Smith, N.Spencer, R.Wallny

Forward Systemtest Report

- Description of system (3 outer modules)
- Noise vs. bias time
- First comparisons of performance of grounding/shielding schemes
 - using shunt shields
 - with shunt shields shorted

13 June 2002

J.Pater - endcap systemtest report

13 June 2002

J.Pater - endcap systemtest report

Measurement Technique

- Single threshold scans with 2 fC injected charge:
 - reference scan
 - scans under condition being studied
- Assume gain = 55
- Plot noise difference with respect to the reference.

Noise vs. Bias Time

- Reference scan taken immediately after HV ramped up
- Further scans every ten minutes until noise is stable
- Plot on next slide...

Noise vs. Bias Time

Last 8 Scans from Previous Slide:

HV or LV?

- Powered modules, waited ~ 1 hr
- Then took scans every 10 minutes until noise 'settled'
- HV off 5 minutes
 - next scan: noise still low
- HV off ~100 minutes
 - next scan: noise high again, then decayed
- LV off ~100 minutes
 - next scan: noise still low

HV - not LV.

Noise vs. Bias Time - Conclusions

- Significant decrease in noise vs. bias time observed on some endcap modules
- Magnitude and time constant of the effect variy from module to module
- Effect tends to be worse at centre of module, milder at edges
- Unlikely to be problem for atlas operation, but:
 - should be kept in mind when testing modules
 - reproducibility of results!
 - may affect QA?

Grounding and Shielding on the Systemtest Sector

- Continuous shielding of all cables and tapes
- Common-mode chokes at PPF2
- Capacitors from (almost) all lines to shield at PPF1
- Sector enclosed in a solid copper box ("thermal shield")
- Interconnected Foil Rings on Disk:
 - at outer radius
 - at each ring of cooling blocks
- Thermal shield, support frame, disk skins, foil rings, cable shield and cooling circuit all connected together near PPFO

G&S on sector, cont'd

- NB have recently found and fixed several problems in general shielding:
 - gaps in cable shielding
 - dodgy connections between cable shield sections
 - missing capacitors at PPF1
- Every fix has yielded improved
 - performance
 - reproducibility
- Probably there are more problems that we haven't found yet.
 - → Results are Preliminary!

Grounding Options

"Shunt Shields In"

- cable shield AC-tied to
 VME crate ground
- cable shielding stops at thermal enclosure
- all modules' DGNDs connected to shield at PPFO

"Shunt Shields Shorted"

- cable shield AC-tied to DGND at VME
- cable shielding continues to PPFO
- all modules' DGNDs connected to cooling circuit via blocks

Noise Injection Techniques

- Sine wave (10V_{p-p}, 6 MHz) injected, via coil about ferrite ring, onto cooling pipe
 - injected signal ~400 mV $_{p-p}$

- Sine wave (8V_{p-p}, 6 MHz) injected, via coil about ferrite ring, onto power tapes
 - over shielding
 - between PP1/PP2, near PP1

Injection onto Pipe, Shunt Shields In

Injection onto Pipe, Shunt Shields Shorted

Injection onto Pipe, comparing results from 2 ground schemes

Pipe/Tape/Module Layout

Injection onto Tapes, Shunt Shields In

Injection onto Tapes, Shunt Shields Shorted

Injection onto Tapes, comparing results from 2 ground schemes

Ground Scheme Comparison Summary

- With setup as it is now:
 - The 2 ground schemes are ~ equally good at rejecting noise injected onto cooling pipe
 - Shunt-shields-in ground scheme does better job of rejecting noise injected onto power tapes
- NB still working to improve shielding in general...