VXI

NI-VXI"
User Manual
July 1996 Edition
Part Number 321228A-01
=

© Copyright 1996 National Instruments Corporation.
All Rights Reserved.

Internet Support

GPIB: gpib.support@natinst.com
DAQ: dag.support@natinst.com

VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindowsiw.support@natinst.com
HiQ: hig.support@natinst.com

VISA: visa.support@natinst.com
Lookout:lookout.support@natinst.com

E-mail; info@natinst.com
FTP Siteiftp.natinst.com
Web Addresshttp://www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

= = FaxBack Support
(512) 418-1111

Y
Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

& . .
International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30,

Hong Kong 2645 3186, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456,
Mexico 95 800 010 0793, Netherlands 0348 433466, Norway 32 84 84 00,

Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70,

Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Important Information

Warranty

Copyright

Trademarks

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by
receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CUSTOMER'’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR

NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the

liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues.
National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner's failure to
follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner'’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other
events outside reasonable control.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

LabVIEV\/®, NI-488.2TM, NI-VISATM, NI-VXI TM, and VXIpc:TM are trademarks of National Instruments Corporation.
Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical or
clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the user
or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

Table
of
Contents
About This Manual
Organization Of ThiS ManUAL............uuuiiiiiiiiiiiieee e e e e e e Xiii
Conventions Used in ThisS Manualuuuuueiiiiiiiiiieeeeece e a e Xiv
[2Y=1E=10To l o TolU o 0 =T o) =i [o] o [P XV
Customer COMMUNICALIONccceiiii i i i e e e e e e e e e e e s e e s e s s rn e aaeeeeeeeeees XV
Chapter 1
Overview of NI-VXI
VXIDUS OVEIVIEW.... .. e et e e s e e e e e e e e e e e et et e e e e eaeeeeeeeeesaarannans 1-1
VXI DBVICESot eeeeereaeanan 1-1
REQIStEr-BasSed DEVICESccoeiiiieiiii ittt e e e e e aaaaaas 1-2
MeESSAJE-BASEU DEVICESuuuiiiiiiiiiiiiiiei ettt e e e e e e e e e e e enaees 1-3
WOrd Serial ProtOCOIuuiiiiii e 1-3
Commander/Servant HIerarChi€s.........ccoooieeiiiiiiiiieeiiie e 1-4
Interrupts and ASYNChIONOUS EVENLSccoiiiiiiiiiiiiiiiiiieeee st 1-4
MXIDUS OVEIVIEW ...t e e e e ettt e e e e e e e e e e e e e e e e et et e e e e eeeeeseeeeeseseanas 1-5
MXI=2 OVEIVIEW ...ttt e e et e e e ettt e e e e e e e e e e et et e et e e e e e eeeaeeeesaesaa bt s eeeeeaaaeeannes 1-5
Chapter 2
Introduction to the NI-VXI Functions
[T Tod 170 o I ©] o 10] o 1 PR 2-1
VXI/VME FUNCHON GrOUPS ...ciiiiiiieeeeeee e ettt ee e n e e aa e e e e e e e e e s snnannnns 2-1
VXI-ONlY FUNCHON GIOUPS ..vvvveeiieiieeeeeeeeeeies et eeeeeeeeeaaeaeeeeaeenannannns 2-3
(O 11T aTo) V1 - G UUEPRURR 2-3
= T o)AV T T 011 L @Y USSP 2-4
TYPE DEFINILIONS. ... e e e e e 2-4
Input Versus Output Parameters..... ..o 2-4
Return Values and System EITOrScococcciiiiiiiiiiiieiee e ee e 2-5

© National Instruments Corporation v NI-VXI User Manual

Table of Contents

Multiple Mainframe SUPPOIt........ciiieeeee it e e e e e e e e e e e aeeees 2-5
(7o) 011 0] 1] £ UT OO UURPPRRPIIN 2-5
The extender and controller Parameters.............vvveeeeeieieeeeeeeeeeeceeee e 2-7
LU LS o AL Y A USSR 2-9
[(ST Lo L= 1 =TRSO 2-9
The datasize.h Fileccoieiiiiiiiiccc e 2-9
The busSaCC.h Fileovviiiiiiiicc e 2-10
The devinfoO. N File ..o 2-10
The Beginning and End of an NI-VXI Programccccccvveevveiieeieeeeeeennnn, 2-10
System Configuration TOOIS...........ooiii it 2-11
Word Serial CommUNICALION...........ceevvviiiiiiieieee e eeeeraarana 2-13
MaASTEIr MEMOIY ACCESS ... ciiitiiieei ittt eeaa s 2-14
SIAVE MEMOIY ACCESS ..uveiiiiiiiiiieiee e e et e e st r e e e e e aaaae e e e e s e s s s s annnnes 2-16
Interrupts and SIgNaAlSuvviiiiiiiiiieiiiecee e 2-17
I T T 1T U EEEEPPRRRR 2-19
Chapter 3
Software Overview
System Configuration FUNCHONSoooiiiiiiee e 3-1
ClOSEVXIIDIANY ...ttt e e e e e e e e e e e eeeeeees 3-2
CreatEDEVINTO ...ue e 3-2
FINADEVLA ..ottt e e e e e e eeeeeaaan 3-2
GEIDEVINTO. ettt 3-3
GetDEVINTOLONG ...vtiiiieiiiiieiee et 3-3
GetDEVINTOSRNOIo e 3-3
(=YD Y 101 (0 1] | GO PR STR 3-3
INIEVXHIBIAIY e 3-4
SEIDEVINTO v 3-4
SetDEVINTOLONGeiiiiieiiiiiiee e 3-4
SetDEVINTOSNOI it 3-5
SEIDEVINTOST ...t 3-5
Commander Word Serial Protocol FUNCLONS.............uciiiiiiiiiiiiccceeecceee e 3-5
Programming ConSiderations............couuuuriiieeiiiiiiiiee et 3-7
Interrupt Service ROULINE SUPPOIT......ccoiiiiiiiieiiiiiiii e 3-7
Single-Tasking Operating SyStem SUPPOItoccuvieeeeiiiiiiiieee e 3-8
Cooperative MultitaSking SUPPOITccooiiiiiiiiiieiiiiieee e 3-8
MUIEIEASKING SUPPOIT....eeeeiiieiiiiiiiie e 3-8
ATAT A Y= oL SRR 3-10
LAY | 3-10
ATAT AT 11/ o [N 3-10
ATAT] o] o T USSR 3-11
WSEETIMO ... e e e e e e e e e e e 3-11

NI-VXI User Manual vi © National Instruments Corporation

Table of Contents

LTAT] 11 ¢ T TR 3-11
AT S I L o TSP PPTUPPTTRPR 3-11
A4S (o OSSR 3-12
ATAT A (o | PRSI 3-12
AT ST 1] o PP TP TTRTTUPP PRI 3-12
W SSEITIMO . ..cee e e e e e e aaaas 3-13
WV SHIg e 3-13
VL S £ U PTRSPPPRN 3-13
ATAT T 1 SR RPPTRR 3-14
Servant Word Serial Protocol FUNCLIONScoocvviiiiiieie e 3-14
Programming ConSiderationscouiuuriiieeiiiiiiiieee s 3-15
DefaultWSSCmMAHANAIEToiiiieiiceeeee e 3-17
DefaultWSSECMAHANAIET........cooeieeiie e 3-17
DefaultWSSLCMAHANAIET.......... i 3-17
DefaultWSSIdHANAIETcovvieeeee e e 3-18
DefaultWSSWITHANIET..........ovieeeeie e 3-18
GENPIOEITON .o 3-18
GetWSSCMAHANAIETe e 3-18
GetWSSECMAHANAIETcceeeeieeeeeeee e 3-19
GetWSSLCMAHANAIEN ... 3-19
GEtWSSIAHANAIET.........vei et 3-19
GEtWSSWITHANAIETceveeeeee e 3-19
RESPPIOTEITON ... e 3-19
SetWSSCMAHANAIET e 3-19
SetWSSECMAHANGIE!vvviiiiiiie e 3-20
SetWSSLCMAHANAIETccvveiiiieee e 3-20
SEtWSSIAHANAIET ...vciieiiie e eee 3-20
SEtWSSWITHANAIET ...ecieeri e e eees 3-20
ATA ST Yo 1o] o ST 3-21
TA S Yo [1F=1 o] L=, 3-21
VA S T=T = Lo [PR 3-21
WSSLNORESP .ottt 3-21
WSSLSENARESP ...ttt e 3-21
WS SNORESP ...ttt e e 3-22
ATAT TS (o T 3-22
WSSSENURESD .ottt e 3-22
AV S 3 o A 3-22
High-Level VXI/VMEDUS ACCESS FUNCLIONScvviiiiiiiiiiiiiceee e 3-23
Programming ConSiderationsS............couuuurriieeiiiiiiiiee et 3-23
RN 1 N 3-24
VXHNREQ .ttt ettt e e e s s rab bt e e e s abb e e e e e e e 3-24
V2,41 11101V PR 3-24

© National Instruments Corporation vii NI-VXI User Manual

Table of Contents

RY (o 11 S PP EPTSPP 3-25
Y2 S o 18 1 L= U 3-25
Low-Level VXI/VMEDUS ACCESS FUNCLIONSeviiiiiiiiiiiiee st 3-26
Programming ConSIiderationS.........ccccuuuviiiiiiirieiierieeee e e e eessessseeieneveneeeeeeees 3-27
Multiple-Pointer Access for a WindoW............cccoooviiiiiiiiiicciiiiiiieiiececeeee e 3-28
OWNET PrIVIIEQE ...t 3-28
ACCESS-ONIY PriVIlEQE.....ceeeeee et 3-29
L€ T=11)Y (=1 o /= SO 3-30
LT =] (O0] 0] 1= PP T PP 3-30
LCT=) o 1171 =T o = P PEPEERRR 3-30
GOtV XIDUSSIALUScoiiiiiiiie ettt seaneee s 3-30
GetVXIDUSSIAtUSINGeoiiiiiiiiiiiee e 3-31
GEetWINAOWRANGE ...t e e e e e e e e e e e e e e e e e 3-31
MAPVXIAAAIESS ...t r e e e e e e e e aaaaaeeas 3-31
MaPVXIAAAIESSSIZE....ceeeiiiiiiiiee e e e e e e e e 3-32
SEIBYLEOIUET ...iiiiiiieee e e e —————————————— 3-32
SECONEEXL . e e e eees 3-32
Y= 171 =T T 3-33
UNMAPVXIAGAIESScoveeeeeiiiiiee e s e e e e e e e et s e e e e e aaaaeees 3-33
R4 == 3-33
N X POKE ..t e e e et —————— 3-33
Local Resource ACCESS FUNCHIONScoiiiiiiiiiieiii ittt e e 3-34
GEIMYLA <. e e e a e e e e ane 3-34
REAAMONDIDceiiiiiiiiiiiiie ettt e e e s e e e s anbbaeeee s 3-34
SEIMODID ...t ae s 3-34
WXEHNLR ettt e et e e e st e e e e e s bbb e e e e s abbaeeaeeean 3-35
VXIMEMAIIOC ... 3-35
VXIMEMECOPY ittt e e e e et r e e e e e n e e e e aabneeeeaees 3-35
VXIMEMEFTEE ... et e e e e e e 3-35
VXIOUELR Lot e e s e e e e et e e e e e e e 3-36
VX1 SIgNaAl FUNCHONS ...ttt e e e e e e e e e e e e e e s 3-36
Programming ConsSiderationS............uuuuiiiiiiieeeeeeieeeiiiiiess e e e e e e eeeeaanean 3-38
WaitForSignal Considerations...........ccovviiieiiiiiiiiiiie e 3-39
DefaultSignalHandler ... 3-40
DisableSignallnt...........oooviiiiiiiiii e e 3-40
ENableSignallnt.........ccoo oo 3-40
GetSIgNalHANAIETeeeie e 3-41
0T 01 (=3 T o [o T= | 3-41
SetSIgnalHANAIETeeiie e 3-41
T[T = o S 3-42
I T =11 =1 T [3-42
S T [=1 = o o USRI 3-42
RTAT V1 o1] o = | 3-42

NI-VXI User Manual

viii © National Instruments Corporation

Table of Contents

VXTI INEEITUPE FUNCLIONS ...ttt e e 3-43
Programming ConSIiderationS...............uuueiiieiiiiiiiaiaaaa e 3-45
ROAK Versus RORA VXI/VME INtEITUPLErSuuuiieiiiiiieiiiaaaeeeaee e 3-46
ACKNOWIEAGEV XINT ..t 3-46
ASSEIVXIINT . 3-47
DEASSEITVXIINT. ...t 3-47
DefaultVXIINtHANAIET ..o 3-47
DiISADIEVXIINT ..t 3-48
DisableVXIIOSIgNAlINT.........oouiiiiieeeee e 3-48
EN@DIEVXINT .o 3-48
ENnableVXItoSIigNalINt...........eeiiiiiiiiiieee e 3-49
GetVXIINHANAIET ... 3-49
ROULEVXIINT ..t 3-49
SetVXINHANAIE.......oeiiiiiii e 3-50
VXHNtACKNOWIEAGEMOUEcooiiiiiiiiiiee et 3-50
VXI THYGEN FUNCHIONS .ottt 3-51
Capabilities of the National Instruments Triggering Hardware 3-52
External Controller/VXI-MXI-1 Trigger Capabilities 3-53
Embedded, External MXI-2, and Remote Controller Trigger
CaPADIlItIES ...eeeiiieieee e 3-54
AcCCEPLOr TrgQer FUNCHIONSoiiiiiiiiie ittt 3-54
ACKNOWIEAGETIIG .. eteeeee ettt e et e e e e 3-55
Default THgHANAIETccooiiiiiee e 3-55
Default TrgHANAIEI2 ..o 3-55
DiSADIETIIGSENSE ...ceiiiiiiiiiiii e 3-55
EN@DIETHgSENSE. ..t 3-55
GetTHGHANAIET ... 3-56
SetTHGHANAIET ... 3-56
L= Y1 o T I o PP PPTO PP PP PP 3-56
Map TrgOEr FUNCLONSccoiiiiiiiiie ettt e et e e e et ee e e s aees 3-56
MAPTIIGTOTIIG c ettt e e et e e e 3-56
UNMAPTHGTOTIIQ -eveeeeeeiiiiieee ettt 3-57
SOUrCe TrGQEr FUNCLIONSuuiiiiiiiiieiie e e e e st e e e e e e e e e e e e e e s e s aesannnnnnene 3-57
] (o I T OO PP PO PUPPTOPRPPRP 3-57
Trigger Configuration FUNCHIONSoooiiiiiiiie e 3-58
THYASSEICONTIG . ..ei it 3-58
THYCNIICONTIG ettt 3-58
THYEXICONTIQ it 3-58
THYTICKCONTIG .t 3-59
System Interrupt Handler FUNCLONS..........coooiiiiiiiiiiiie e 3-59
ASSEITSYSIESEE ..eeeeiiiiie ettt 3-60
DefaultACTAIIHANIETcooiiiiiiie e 3-60
DefaultBUSEITOrHANAIEKcooiiiiiiiiiie e 3-60

© National Instruments Corporation ix NI-VXI User Manual

Table of Contents

DefaultSoftResetHAaNdIETuviiiiiiiiiieeeeee e 3-61
DefaultSysfaillHANAIE!ccoviiieeee e 3-61
DefaultSysresetHandIer ... 3-62
DiSADIEACTAIL.....eeiiiiiieeie e —————————— 3-62
DiSablIESOftRESELt 3-62
DiSAbIESYSTaIL.....uuiiiiiiiiiiiiiee e ——— 3-62
DiSADIESYSIESEL ...t 3-63
ENADIEACTAIl......ccco e 3-63
ENADIESOfRESEL .. .vviiiiiiiiiieieeee e ——————— 3-63
ENaBIESYSTall....uuveiieiiiiiiieice e ——————————— 3-63
ENADIESYSIESEL ...ttt ———— 3-64
GetACTaIIHANAIET ... 3-64
GetBUSEIOrHANAIETuvviiiiiiiiiiee e 3-64
GetSOftRESEtHANAIET ... 3-65
GetSYSTAIIHANAIETvveeieeieeeececce e 3-65
GetSysresetHandIEr...........ooo i ——————— 3-65
Y=V @ = 11| F= T o | = S USRPPPP 3-65
Y= =0] = g (o] f 5 F= T o | =T U 3-65
SetSOftRESEIHANIE ... e 3-66
SetSysfailHANAIETeiii e 3-66
SetSysresetHaNIEr...........ueii i 3-66
VXI/VMEDUS EXtender FUNCLONScooiiiiiiiiiiiiiies e e e e e e e e e e eenannes 3-67
= o =X I 1 o PSRN 3-67
o o I 1 o SRR 3-67
= 10]| = TP 3-68
= Y1 PPN 3-68

Appendix A
Function Classification Reference

Appendix B
Customer Communication

Glossary

Index

NI-VXI User Manual

© National Instruments Corporation

Figures

Figure 1-1.
Figure 1-2.

Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2.

Figure 3-3.
Figure 3-4.

Tables

Table A-1.
Table A-2.

Table of Contents

VXI Configuration REQISLEISccoiiiiiiiiieiaaeii e 1-2
VXI Software ProtOCOISuuuiiiiiiiiiiiiieiieeee e 1-3

An Embedded Controller Connected to Other Frames via

Mainframe Extenders Using MXI-2ccooiiiiiiiiiiiiiiiiieeceee e 2-6
An External Controller Connected Using MXI-2 to a Number of
ReMOtE CONIOIEIScoeeiiiiiiii e 2-7
Preemptive Word Serial Mutual Exclusion (Per Logical Address)....... 3-9
NI-VXI Servant Word Serial Model ... 3-16
NI-VXI Interrupt and Signal Model.............cooviiiiiiiiiii e, 3-39
NI-VXI Interrupt and Signal Model............ccccooviiiiiiiiiiiieeen 3-45
Function Listing BY GrOUPcceeeeiiiiic e A-1
Function Listing by NaME.........ccooiiiiiiiiiieee e A-8

© National Instruments Corporation Xi NI-VXI User Manual

About
This
Manual

This manual describes in detail the features of the NI-VXI software and
the VXI/VME function calls in the C/C++ and BASIC languages.

Organization of This Manual

TheNI-VXI User Manuafor C/C++ and BASIC is organized as
follows:

© National Instruments Corporation

Chapter 1Qverview of NI-VXlintroduces you to the concepts of
VXI (VME eXtensions for Instrumentation), VME, MXI
(Multisystem eXtension Interface), and their relationship to the
NI-VXI application programmer’s interface (API).

Chapter 2|ntroduction to the NI-VXI Functionftroduces you to

the NI-VXI functions and their capabilities. Additional discussion

is provided for each function’s parameters and includes descriptions
of the application development environment. This chapter
concludes with an overview on using the NI-VXI application
programming interface.

Chapter 3Software Overvieywdescribes the C/C++ and BASIC
usage of VXI and VME functions and briefly describes each
function. Functions are listed alphabetically in each functional
group.

Appendix A,Function Classification Referencegntains two tables
you can use as a quick reference. Table Behction Listing by
Group, lists the NI-VXI functions by their group association. This
arrangement can help you determine easily which functions are
available within each group. Table ARynction Listing by Name

lists each function alphabetically. You can refer to this table if you
don't remember the group association of a particular function. Both
tables use checkmarks to denote whether a VXI function also
applies to VME and also whether it is associated with C/C++ and/or
BASIC.

Xiii NI-VXI User Manual

About This Manual

« Appendix B,Customer Communicatipeontains forms you can use
to request help from National Instruments or to comment on our
manuals.

« TheGlossarycontains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, and metric
prefixes.

« Thelndexcontains an alphabetical list of key terms and topics used
in this manual, including the page where each one can be found.

Conventions Used in This Manual

bold

bold italic

bold

monospace

italic

monospace

NI-VXI User Manual

The following conventions are used in this manual:

Bold text denotes parameters, menus, menu items, dialog box buttons
or options, or error messages.

Bold italic text denotes a note, caution, or warning.

Bold text in this font denotes the messages and responses that the
computer automatically prints to the screen. This font also emphasizes
lines of example code that are different from the other examples.

Italic text denotes emphasis, a cross reference, or an introduction to a
key concept.

Text in this font denotes the names of all VXI function calls, source
code, sections of code, function syntax, console responses, variable
names, and syntax examples.

In this manual numbers are decimal unless noted as follows:

- Binary numbers are indicated by a -b suffix (for example,
11010101b).

» Octal numbers are indicated by an -o suffix (for example, 3250).

- Hexadecimal numbers are indicated by an -h suffix (for example,
D5h).

« ASCII character and string values are indicated by double quotation
marks (for example, "This is a string").

« Long values are indicated by dnsuffix (for example, 0x1111L).

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and
terms are listed in th&lossary

Xiv © National Instruments Corporation

About This Manual

Related Documentation

The following documents contain information that you may find
helpful as you read this manual:

- |EEE Standard for a Versatile Backplane Bus: VMEbus
ANSI/IEEE Standard 1014-1987

« Multisystem Extension Interface Bus Specificatiéersion 2.0

« VXI-1, VXIbus System Specificatigtevision 1.4, VXlbus
Consortium

« VXI-6, VXIbus Mainframe Extender Specificafi®evision 1.0,
VXlbus Consortium

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with
our products, and we want to help if you have problems with them. To
make it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in

Appendix B,Customer Communicatipat the end of this manual.

© National Instruments Corporation XV NI-VXI User Manual

Chapter

Overview of NI-VXI

This chapter introduces you to the concepts of VXI (VME eXtensions
for Instrumentation), VME, MXI (Multisystem eXtension Interface),
and their relationship to the NI-VXI application programmer’s
interface (API).

Comprehensive functions for programming the VXIbus/VMEbus are
included with the NI-VXI software. They are available for a variety of
controller platforms and operating systems. Among the compatible
platforms are the National Instruments line of embedded controllers
and external computers that have a MXlbus interface.

Note: The following chapter discusses features unique to VXI as well as
common VXI/VME features. VME users can skip to the section entitled
Interrupts and Asynchronous Events.

VXIbus Overview

Concepts of the VXIbus specification include the VXI device,
message-based devices, the World Serial Protocol, the
Commander/Servant hierarchy, and hardware interrupts and
asynchronous events.

VXI Devices

A VXI device has a uniquigical addresswhich serves as a means of
referencing the device in the VXI system. This logical address is
analogous to a GPIB device address. VXI uses an 8-bit logical address,
allowing for up to 256 VXI devices in a VXI system.

Each VXI device must have a specific set of registers, called
configuration registergFigure 1-1).These registers are located in the
upper 16 KB of the 64 KB A16 VME address space. The logical
address of a VXI device determines the location of the device’s
configuration registers in the 16 KB area reserved by VXI.

© National Instruments Corporation 1-1 NI-VXI User Manual

Chapter 1 Overview of NI-VXI

Offset

3F "] Device

I — Dependent
VXI Configuration 20 _| Registers
Space —

g | Reserved

Reserved Reserved
« Upper 16 KB of A16 e— " —by VXIbus
space reserved for 1A eserve Specification

VXI configuration space 18 Reserved

16 | A32 Pointer Low
* 64 bytes per device 14 | A32 Pointer High

Shared Memory

- — Protocol
— 12 | A24 Pointer Low Registers
« 8-bit logical 10 | A32 Pointer High]
address specifies
base address for 0E [Data Low 7] o
each device Data High Communication
0c ata fig Registers
oA | Response/Data — Required for VXI
] Extended Message-Based
* 256 devices per ; Devices
VX system 08 | Protocol/Signal |
06 | Offset Configuration
04 | Status/Control | Registers
02 | Device Type Required for all
00 | ID Register VXI Devices

Figure 1-1. VXI Configuration Registers

Register-Based Devices

Through the use of the VXI configuration registers, which are required
for all VXI devices, the system can identify each VXI device, its type,
model and manufacturer, address space, and memory requirements.
VXlbus devices with only this minimum level of capability are called
register-basedlevices. With this common set of configuration
registers, the centraliz&Resource ManaggRM), a software module,
can perform automatic system configuration when the system is
initialized.

NI-VXI User Manual 1-2 © National Instruments Corporation

Chapter 1 Overview of NI-VXI

Message-Based Devices

In addition to register-based devices, the VXIbus specification also
definesmessage-baseatkvices, which are required to have
communication registelig addition to configuration registers. All
message-based VXlbus devices, regardless of the manufacturer, can
communicate at a minimum level using the VXI-speciiiéadrd Serial
Protocol.In addition, you can establish higher-performance
communication channels, such as shared-memory channels, to take
advantage of the VXIbus bandwidth capabilities.

Device-
Specific
Device- Protocols
Specific
Protocols
488.2
Syntax
Device- Shared-
Specific Memory 488-VXIbus
Protocols Protocol Protocol
Word Serial Protocol
Device-
Specific
Protocols Communication Registers
Configuration Registers

Figure 1-2. VXI Software Protocols

Word Serial Protocol

The VXlbus Word Serial Protocol is a standardized message-passing
protocol. This protocol is functionally very similar to the IEEE 488
protocol, which transfers data messages to and from devices one byte
(or word) at a time. Thus, VXI message-based devices communicate in

© National Instruments Corporation 1-3 NI-VXI User Manual

Chapter 1 Overview of NI-VXI

a fashion very similar to IEEE 488 instruments. In general,
message-based devices typically contain some level of local
intelligence that uses or requires a high level of communication. In
addition, the Word Serial Protocol has messages for configuring
message-based devices and system resources.

All VXI message-based devices are required to use the Word Serial
Protocol and communicate in a standard way. The protocol is called
word serial because if you want to communicate with a message-based
device, you do so by writing and reading 16viitrdsone at a time to

and from the Data In (write Data Low) and Data Out (read Data Low)
hardware registers located on the device itself. Word serial
communication is paced by bits in the device’s response register that
indicate whether the Data In register is empty and whether the Data
Out register is full. This operation is very similar to the operation of a
Universal Asynchronous Receiver Transmitter (UART) on a serial port.

Commander/Servant Hierarchies

The VXlbus specification defines a Commander/Servant

communication protocol you can use to construct hierarchical systems
using conceptual layers of VXI devices. The resulting structure is like a
tree. ACommandeis any device in the hierarchy with one or more
associated lower-level devices,ServantsA Servant is any device in

the subtree of a Commander. A device can be both a Commander and a
Servant in a multiple-level hierarchy.

A Commander has exclusive control of its immediate Servants’ (one or
more) communication and configuration registers. Any VXI module
has one and only one Commander. Commanders use the Word Serial
Protocol to communicate with Servants through the Servants’
communication registers. Servants communicate with their
Commander, responding to the Word Serial commands and queries
from their Commander. Servants can also communicate asynchronous
status and events to their Commander through hardware interrupts, or
by writing specific messages directly to their Commander’s Signal
register.

Interrupts and Asynchronous Events

Servants can communicate asynchronous status and events to their
Commander through hardware interrupts or by writing specific
messages (signals) directly to their Commander’s hardware Signal

NI-VXI User Manual 1-4 © National Instruments Corporation

Chapter 1 Overview of NI-VXI

register. Devices that dmt have bus master capability always transmit
such information via interrupts, whereas devicesdidtave bus

master capability can either use interrupts or send signals. Some
devices can receive only signals, some only interrupts, while some
others can receive both signals and interrupts.

The VXlbus specification defines Word Serial commands so that a
Commander can understand the capabilities of its Servants and
configure them to generate interrupts or signals in a particular way. For
example, a Commander can instruct its Servants to use a particular
interrupt line, to send signals rather than generate interrupts, or
configure the reporting of only certain status or error conditions.

Although the Word Serial Protocol is reserved for Commander/Servant
communications, you can establish peer-to-peer communication
between two VXI/VME devices through a specified shared-memory
protocol or simply by writing specific messages directly to the device’s
Signal register, in addition to the VXI/VME interrupt lines.

MXIbus Overview

The MXIbus is a high-performance communication link that
interconnects devices with a cabled communication link for very
high-speed communication between physically separate devices. The
emergence of the VXIbus inspired MXI. National Instruments, a
member of the VXIbus Consortium and the VITA organization,
recognized that VXI requires a new generation of connectivity for the
instrumentation systems. Additionally, National Instruments realized
that the same technology could be used also for the VMEbus, which is
the foundation technology under VXI. National Instruments developed
the MXIlbus specification over a period of two years and announced it
in April 1989 as an open industry standard.

MXI-2 Overview

MXI-2 is the second generation of the National Instruments MXlbus
product line. The MXIlbus is a general-purpose, 32-bit, multimaster
system bus on a cable. MXI-2 expands the number of signals on a
standard MXI cable by including VXI triggers, all VXI/VME
interrupts, CLK10, and all of the utility bus signals (SYSFAIL*,
SYSRESET*, and ACFAIL¥).

© National Instruments Corporation 1-5 NI-VXI User Manual

Chapter 1 Overview of NI-VXI

NI-VXI User Manual

Because MXI-2 incorporates all of these new signals into a single
connector, the triggers, interrupts, and utility signals can be extended
not only to other mainframes but also to the local CPU in all MXI-2
products using a single cable. Thus, MXI-2 lets CPU interface boards
such as the PCI-MXI-2 perform as though they were plugged directly
into the VXI/VME backplane.

In addition, MXI-2 boosts data throughput performance past
previous-generation MXlbus products by defining new
high-performance protocols. MXI-2 is a superset of MXI. However,
MXI-2 defines synchronous MXI block data transfers which surpass
previous block data throughput benchmarks. The new synchronous
MXI block protocol increases MXI-2 throughput to a maximum of

33 MB/s between two MXI-2 devices. All National Instruments MXI-2
boards are capable of initiating and responding to synchronous MXI
block cycles.

1-6 © National Instruments Corporation

Introduction

NI-VXI Functions

Chapter

to the

This chapter introduces you to the NI-VXI functions and their
capabilities. Additional discussion is provided for each function’s
parameters and includes descriptions of the application development
environment. This chapter concludes with an overview on using the
NI-VXI application programming interface.

The NI-VXI functions are a set of C/C++ and BASIC language
functions you can use to perform operations with a VXI/VME system.
The NI-VXI C/C++ language interface is consistent across hardware
platforms and operating systems.

Function Groups

The NI-VXI functions are divided into several groups. All of them
apply to VXI, but some groups are not applicable to VME.

VXI/VME Function Groups
The following NI-VXI function groups apply to both VXI and VME.

© National Instruments Corporation

System Configuration FunctionsThe system configuration
functions provide functionality to initialize the NI-VXI software. In
addition, the system configuration functions can retrieve or modify
information about devices in your VXI/VME system.

High-Level VXIbus Access FunctienSimilar to the low-level
VXI/VMEbus access functions, the high-level VXI/VMEbus access
functions give you direct access to the VXI/VMEbus address

spaces. You can use these functions to read, write, and move blocks
of data between any of the VXI/VMEbus address spaces. You can
specify the main VXI/VMEDbus privilege mode or byte order. The
functions trap and report bus errors. When the execution speed is
not a critical issue, the high-level VXI/VMEbus access functions
provide an easy-to-use interface.

2-1 NI-VXI User Manual

Chapter 2 Introduction to the NI-VXI Functions

1 &= Note:

NI-VXI User Manual

Low-Level VXIbus Access Functienrkow-level VXI/VMEbus

access functions are the fastest access method for directly reading
from or writing to any of the VXI/VMEbus address spaces. You

can use these functions to obtain a pointer that is directly mapped to
a particular VXI/VMEDbus address. Then you use the pointer with

the low-level VXI/VMEbus access functions to read from or write

to the VXI/VMEbus address space. When using these functions in
your application, you need to consider certain programming
constraints and error conditions such as bus errors (BERR?).

Local Resource Access Functiensocal resource access functions
let you access miscellaneous local resources such as the local CPU
VXI register set, Slot 0 MODID operations (when the local device

is configured for Slot 0 operation), and the local CPU VXI Shared
RAM. These functions are useful for shared memory type
communication, for the non-Resource Manager operation (when the
local CPU is not the Resource Manager), and for debugging
purposes.

VXI Signal Functions-VXI signals are a method for VXI bus

masters to interrupt another device. You can route VXI signals to a
handler or queue them on a global signal queue. You can use these
functions to specify the signal routing, install handlers, manipulate
the global signal queue, and wait for a particular signal value (or set
of values) to be received.

Although signals are defined in the VXI specification, VME customers
may still use the signal register available on any VXI/VME/MXI

hardware. This register provides a simple notification mechanism that can
be used by any bus-master.

VXI/VME Interrupt Functions-By default, interrupts are processed
as VXI signals (either with a handler or by queuing on the global
signal queue). The VXI/VME interrupt functions can specify the
processing method and install interrupt service routines. In addition,
the VXI/VME interrupt functions can assert specified VXI/VME
interrupt lines with a specified status/ID value.

System Interrupt Handler FunctiorsThe system interrupt handler
functions let you install handlers for the various system interrupt
conditions. These conditions include Sysfail, ACfail, bus error, and
soft reset interrupts.

VXI/VMEbus Extender FunctiorsThe VXI/VMEbus extender
functions can dynamically configure multiple-mainframe mappings

2-2 © National Instruments Corporation

Chapter 2 Introduction to the NI-VXI Functions

of the VXI/VME interrupt lines, VXI TTL triggers, VXI ECL

triggers, and utility bus signals. The National Instruments Resource
Manager configures the mainframe extenders with settings based on
user-modifiable configuration files.

VXI-Only Function Groups
The following NI-VXI function groups do not apply to VME.

« Commander Word Serial Protocol Functier8Vord Serial is a
form of communication between VXI message-based devices. The
Commander Word Serial functions give you the necessary
capabilities to communicate with a message-based Servant device
using the Word Serial, Longword Serial, or Extended Longword
Serial protocols. These capabilities include the sending of
commands and queries and the reading and writing of buffers.

« Servant Word Serial Protocol FunctiersServant Word Serial
functions allow you to communicate with the message-based
Commander of the local CPU (the device on which the NI-VXI
interface resides) using the Word Serial, Longword Serial, or
Extended Longword Serial protocols. These capabilities include
command/query handling and buffer reads/writes.

« VXI Trigger Functions—The VXI trigger functions let you source
and accept any of the VXIbus trigger protocols. The actual
capabilities available depend on the specific hardware platform.
The VXI trigger functions can install handlers for various trigger
interrupt conditions.

Calling Syntax

The interface is the same regardless of the development environment or
the operating system used. Great care has been taken to accommodate
all types of operating systems with the same functional interface

(CIC++ source-level compatible), whether it is non-multitasking (for
example, MS-DOS), cooperative multitasking (such as Microsoft
Windows 3x or Macintosh OS), multitasking (for example, UNIX,
Wndows 95, or Windows NT), or real-time (such as LynxOS or
VxWorks). The NI-VXI interface includes most of the mutual

exclusion necessary for a multitasking environment. Each individual
platform has been optimized within the boundaries of the particular
hardware and operating system environment.

© National Instruments Corporation 2-3 NI-VXI User Manual

Chapter 2 Introduction to the NI-VXI Functions

LabWindows/CVI

Type Definitions

C/C++ Example:
typedef char

You can use the functions described in this manual with
LabWindows/CVI. LabWindows/CVI is an integrated development
environment for building instrumentation applications using the

ANSI C programming language. You can use LabWindows/CVI with
Microsoft Windows on PC-compatible computers or with Solaris on
Sun SPARCSstations. The source code you develop is portable across
either platform.

National Instruments offers VXI/VME development systems for these
two platforms that link the NI-VXI driver software into
LabWindows/CVI to control VXI instruments from either embedded
VXI/VME controllers or external computers equipped with a MXI
interface. All of the NI-VXI functions described in this manual are
completely compatible with LabWindows/CVI.

The following data types are used for all parameters in the NI-VXI
functions and in the actual NI-VXI library function definitions. NI-VXI
uses this list of parameter types as an independent method for
specifying data type sizes among the various operating systems and
target CPUs of the NI-VXI software interface.

INTS; /* 8-bit signed integer */

typedef unsigned char UINT8; /* 8-hit unsigned integer */

typedef short

INT16; /* 16-bit signed integer */

typedef unsigned short UINT16; /* 16-bit unsigned integer */

typedef long

INT32; /* 32-bit signed integer */

typedef unsigned long UINT32; /* 32-bit unsigned integer */

Input Versus Output Parameters

NI-VXI User Manual

Because all C/C++ function calls pass function parameters by value
(not by reference), you must specify the address of the parameter when
the parameter is an output parameter. The C/@*-®fjerator

accomplishes this task.

For example:
ret = VXlinReg (la, reg, &value);

2-4 © National Instruments Corporation

Chapter 2 Introduction to the NI-VXI Functions

Becausevalue is an output paramete&yalue is used when calling
the function instead ofalue . The input parameters dee andreg .

Return Values and System Errors

All NI-VXI functions return a status indicating success or failure. The
return code of 0x8000 is reserved as a return status value for any
function to signify that a system error occurred during the function call
except for the commander word serial operations. This error is specific
to the operating system on which the NI-VXI interface is running.

Multiple Mainframe Support

The NI-VXI functions described in this manual support multiple
mainframes both in external CPU configurations and embedded CPU
configurations. The Startup Resource Manager supports one or more
mainframe extenders and configures a single- or multiple-mainframe
VXI/VME system. Refer to th&XIbus Mainframe Extender
Specification Revision 1.3 or later, for more details on multiple
mainframe systems.

If you have a multiple-mainframe VXI/VME system, please continue
with the following sections. If you have a single-mainframe system,
you can skip to th&Jsing NI-VXIsection later in this chapter.

Controllers

A controlleris a device that is capable of controlling other devices. A
desktop computer with a MXI interface board, an embedded computer
in a VXI/VME chassis, a VXI-MXI, and a VME-MXI may all be
controllers depending on the configuration of the system.

There are several types of controllers that may exist in a VXI/VME
system; embedded, external, and remote.

« Embedded controlle-A computer plugged directly into the
VXI/VME backplane. An example is the National Instruments
VXIpc-850. All of the required VXI/VME interface capabilities are
built directly onto the computer itself. An embedded computer has
direct access to the VXI/VMEDbus backplane in which it is installed.

+ Remote controlle~A device in the VXI/VME system that has the
capability to control the VXI/VMEbus, but has no intelligent CPU
installed. An example is the VXI-MXI-2. In NI-VXI, the
parent-side VXI-MXI-2 (that is, the VXI-MXI-2 with a MXI-2

© National Instruments Corporation 2-5 NI-VXI User Manual

Chapter 2 Introduction to the NI-VXI Functions

cable connected towards the root frame) in the frame acts as a
remote controller. An embedded or external controller may use a
remote controller to control the remote mainframe.

- External controlle—A desktop computer or workstation connected
to the VXI/VME system via a MXI interface board. An example is
a standard personal computer with a PCI-MXI-2 installed.

In general, a multiple mainframe VXI/VME system will have one of
the following controller configurations:

- An embedded controller in one frame that is connected to other
frames via mainframe extenders using MXI-2. VXI-MXI-2 or
VME-MXI-2 boards in the other frames can also be used as remote
controllers. See Figure 2-1.

Extender Only

Embedded Controller

Extender and Remote Controller

Figure 2-1. An Embedded Controller Connected to Other Frames via
Mainframe Extenders Using MXI-2

« An external controller connected using MXI-2 to a number of
remote controllers, each in a separate frame. The external controller
can use the remote controllers for control of the VXI/VME system,
or it can use its own controller capabilities. See Figure 2-2.

NI-VXI User Manual 2-6 © National Instruments Corporation

Chapter 2 Introduction to the NI-VXI Functions

Remote Controller Extender Remote Controller
and Extender Only and Extender

Figure 2-2. An External Controller Connected Using MXI-2 to a
Number of Remote Controllers

The extender and controller Parameters

In NI-VXI, some functions require a parameter naraggnderor

controller. Since some extenders act as controllers, there is often
confusion concerning what logical addresses should be passed to these
functions.

Theextender parameter is the logical address of a mainframe extender
on which the function should be performed. Usually, functions with an
extender parameter involve the mapping of interrupt lines or trigger
lines into or out of a frame.

Thecontroller parameter is the logical address of an embedded,
external, extending, or remote controller. Usually, functions with a
controller parameter involve sourcing or sensing particular interrupts
or triggers in a frame. According to the definitions of the different
types of controllers, the only valid logical addresses foctmeroller
parameter are:

« The external or embedded controller on which the program is
running

+ A parent-side VXI-MXI-2 or VME-MXI-2 in a frame

© National Instruments Corporation 2-7 NI-VXI User Manual

Chapter 2 Introduction to the NI-VXI Functions

NI-VXI User Manual

Most functions that take @ntroller parameter will allow you to pass
(-1) as the logical address. This selects the default controller for the
system. Notice that the default controller is determined by the
following factors:

- If the program is running on an embedded controller, the default
controller is the embedded controller.

« If the program is running on an external controller, you will be
able to configure whether the default controller is the external
controller or the remote controller with the lowest numbered
logical address. With this behavior, if you write a program on an
embedded controller referring to the controller as logical
address-1, you will be able to swap the embedded controller
configuration with an external controller configuration without
changing your source code.

Notice that -1 is never a valid value for #ad¢ender parameter. In
addition, the logical addresses of embedded and external controllers
also are never valid values for thetender parameter. Thextender
parameter refers only to devices that can map interrupt lines, trigger
lines, or other signals into or out of a frame.

2-8 © National Instruments Corporation

Chapter 2 Introduction to the NI-VXI Functions

Using NI-VXI

This section presents a general overview of the more commonly used
class of functions available in NI-VXI. Additional information
summarizes how you can use the functions to perform certain tasks and
further describes the general structure of NI-VXI programming.

Header Files

Althoughnivxi.n is the only header file you need to include in your
program for NI-VXI, the software distribution actually includes several
additional header files along witlivxi.n . Some of these files have

type definitions and macros that can make using NI-VXI easier, and
make the code more portable across different platforms. The three main
files of interest aréatasize.h , busacc.h , anddevinfo.h

The datasize.h File

Thedatasize.h file defines the integer types for use in your

program. For example, INT16 is defined as a 16-bit signed integer, and
UINT32 is defined as a 32-bit unsigned integer. Using these types
benefits you by letting you apply specific type sizes across platforms.
Using undefined types can cause problems when porting your
application between platforms. For example, an int in DOS is a 16-bit
number but a 32-bit number in Solaris or LabWindows/CVI.

In addition to the integergatasize.h defines several types for other
uses such as interrupt handlers. For examlexi_HVXIINT is an
interrupt handler type. Merely defining a variable with this type is
sufficient to create the function prototype necessary for your interrupt
handler. Also, different platforms require different flags for use with
interrupt handlers. To simplify this problenstasize.h defines
NIVXI_HQUAL andNIVXI_HSPEC, which are used in the handler
definition and take care of the platform dependencies. See the
Interrupts and Signalsection later in this chapter and yoesid me

file for more information. In addition, refer to ChapteiS&ftware
Overviewfor specific information.

© National Instruments Corporation 2-9 NI-VXI User Manual

Chapter 2 Introduction to the NI-VXI Functions

The busacc.h File

Thebusacc.h file defines constants and macros for use with the
high/low-level and slave memory access functions (seMtster

Memory AccesandSlave Memory Accesgctions later in this

chapter). To make the code more readahlsacc.n defines such
elements as memory space, privilege mode, and byte order as
constants, and it defines macros to combine these constants into the
necessary access parameters. Examine the header file for more
information on the available macros and constants. You can see these
tools in use by reviewing the example programs on memory accesses
that appear later in this chapter and also the example programs
included with your software.

The devinfo.h File

Thedevinfo.h file contains a data type that is used with the
GetDevinfo() function described in thBystem Configuration
Functionssection in Chapter Foftware OverviewThe purpose of this
function is to return various information about the system.
GetDevinfo() can return the information either a piece at a time, or in
one large data structure. The headerdiéginfo.n contains the type
UserLAEntry , which defines the data structure that the function uses.
Refer to the header file for the exact definition of the data structure.

The Beginning and End of an NI-VXI Program

NI-VXI User Manual

All NI-VXI programs must callnitVXllibrary() to initialize the
driver before using any other functions. You must call

CloseVXllibrary() before exiting from your program to free
resources associated with NI-VXI. The first function creates the
internal structure needed to make the NI-VXI interface operational.
When InitVXllibrary() completes its initialization procedures,
other functions can access information obtaineBB$MANthe

VXIbus Resource Manager, as well as use other NI-VXI features such
as interrupt handlers and windows for memory access. The second
function destroys this structure and frees the associated memory. All

programs using NI-VXI must calhitvXllibrary() before any
other NI-VXI function. In addition, your program should include a call
to CloseVXllibrary() before exiting.

2-10 © National Instruments Corporation

? Caution:

Chapter 2 Introduction to the NI-VXI Functions

An important note about these two functions is that the internal
structure maintains a record of the number of calls to

InitVXllibrary() andCloseVXllibrary(). Although
InitVXllibrary() needs to be called only once, the structure of
your program may cause the function to be called multiple times. A
successful call ttitvXllibrary() returns either a zero or a one. A

zero indicates that the structure has been created, and a one indicates
that the structure was created by an earlier call so no action was taken

(other than incrementing the count of the number of
InitVXllibrary() calls).

WhenCloseVXllibrary() returns a successful code, it also returns
either a zero or a one. A zero indicates that the structure has been
successfully destroyed, and a one indicates that there are still
outstanding calls titvXllibrary() that must be closed before
the structure is destroyed. The outcome of all of this is that when
exiting a program, you should ca&lloseVXllibrary () the same
number of timeghat you have callehitvXllibrary()

In environments where all applications share NI-VXI, and hence the
internal structure (such as Microsoft Windows), it can be dangerous for
any one application to calCloseVXillibrary() until it returns zero

because this can close out the structure from under another application. It

is vital to keep track of the number of times you have called
InitVXllibrary()

System Configuration Tools

Note:

The System Configuration Functiosection of Chapter Hoftware
Overview describes functions that a program can use to access
information about the system. This is obtained either through
configuration information or from information obtained RESMAN

Armed with these functions, a program can be more flexible to changes

within the system.

The examples in this manual do not check for either warnings or errors in
most of the functions’ return codes. This step is omitted only to simplify
the example programs. We strongly recommend that you include error
checking in your own programs.

© National Instruments Corporation 2-11 NI-VXI User Manual

Chapter 2 Introduction to the NI-VXI Functions

For example, all VXI devices have at least one logical address by

which they can be accessed. However, it is simple to change the logical
address of most devices. Therefore, any program that uses a constant as
a logical address of a particular device can fall if that device is
reassigned to a different logical address. Programmers can use the
NI-VXI function FindDevLA() to input information about the
device—such as the manufacturer ID and model code—and receive the
device’s current logical address.

Consider the case of wanting to locate a device with manufacturer’s
codeABChand model numbet23h You could use the following code
to determine the logical address.

C/C++ Example:

main() {
INT16 ret, la;

ret = InitVXllibrary();

/* -1 and empty quotes are used for don't cares */
ret = FindDevLA("", OXABC, 0x123, -1, -1, -1, -1, &la);
if (ret < 0)
printf("No such device found.\n");
else
printf("The logical address is %d\n", la);

ret = CloseVXllibrary();

In a similar fashion, the functicBetDevinfo() can return a wide
assortment of information on a device, such as the manufacturer name
and number, the base and size of A24/32 memory, and the protocols
that the device supports. This information can be returned in either a
piecemeal fashion or in one large data structure. Notice that this data
structure is a user-defined typéserLAEntry , which is defined in the
devinfo.h header file.

¢ For VME devices, this information cannot be determined by the
VXIbus Resource manager. However, you can enter this information
into the Non-VXI Device Editor ivXledit orVXIltedit . This will
allow you to use these functions to retrieve information about the
devices at run-time.

NI-VXI User Manual 2-12 © National Instruments Corporation

Chapter 2 Introduction to the NI-VXI Functions

Word Serial Communication

When communicating with a message-based devices (MBD) in VXI,
the protocol for string passing is known\@srd Serial The term is
derived from the fact that all commands are 16 bits in length (word
length), and that strings are sent serially, or one byte at a time. VXI
also accommodates Long Word Serial (32-bit commands), and
Extended Long Word Serial (48-bit commands). However, the VXIbus
specification revision 1.4 states that only Word Serial commands have
been defined.

Word Serial Protocol is based on a Commander writing 16-bit
commands to a Servant register (SeeGbmmander Word Serial
Protocol Functionsn Chapter 3Software Overvieywfor more

information on the protocol). The VXIlbus specification has defined
several commands, suchBgte Available, Byte RequeanhdClear.

The bit patterns for Word Serial commands have been laid out in the
VXlbus specification, and your application can send these commands
to a Servant via th&/Scmd() function. However, because string
communication is the most common use for Word Serial Protocol, the
functionswsSwrt() andwsSrd() use the Word Serial comman8gte
Available (for sending a byte to a servant) @yte Requegfor

retrieving a byte from a Servant) repetitively to send or receive strings
as defined by the Word Serial Protocol. In addition, other common
commands such &lear have been encapsulated in their own
functions, such aw/Sclr()

Chapter 3Software Overviewescribes all NI-VXI functions

pertaining to message-based communication for the Commander.
However, there are times when you want the controller to operate as a
Word Serial Servant. NI-VXI allows for the controller to accept Word
Serial commands from a CommandEhis chapter alsdescribes a
different set of functions that a Servant uses for message-based
communication with its Commander.

For examplewssrd() (Word Serial Servant Read) sets up the
controller to accept thByte Requestommands from a controller and
respond with the string specified in the function. In a similar fashion,
thewssSwrt() function programs the controller to accB8yte
Availablecommands. National Instruments strongly recommends that
if you want to program the controller as a Servant, you should aim to
become familiar with the Word Serial Protocol in detail, and implement
as much of the protocol as possible to simplify the debugging and
operation of the program.

© National Instruments Corporation 2-13 NI-VXI User Manual

Chapter 2

Introduction to the NI-VXI Functions

Master Memory Access

You can access VXIbus memory directly through the NI-VXI
high-level and low-level VXIbus access functions, within the
capabilities of the controller. The main difference between the
high-level and low-level access functions is in the amount of
encapsulation given by NI-VXI.

The high-level VXIbus access functions include functions such as
VvXlin() andvXimove() that you can use to access memory in the

VXI system without dealing with such details as memory-mapping
windows, status checking, and recovering from bus timeouts. Although
these functions tend to have more overhead associated with them than
the low-level functions, they are much simpler to use and typically
require less debugging. We recommend that beginner programmers in
VXI rely on the high-level functions until they are familiar with VXI
memory accesses.

You can use the low-level VXI/VMEbus access functions if you want
to access VXI/VME memory with as little overhead as possible.
Although you now have to perform such actions as bus error handling
and mapping—which are handled automatically by the high-level
functions—you can experience a performance gain if you optimize for
the particular accesses you are performing. Consider the following
sample code, which performs a memory access using the low-level
functions. Notice that there is no bus error handler installed by the
program (See thimterrupts and Signalsection). Instead, the program
uses the NI-VXI default bus error handler. This handler automatically
increments th@&usErrorRecv global variable.

C/C++ Example:

#include <nivxi.h> /* BusErrorRecv defined in nivxi.h */
#include <stdio.h>

main() {

NI-VXI User Manual 2-14 © National Instruments Corporation

INT16 ret, la;

UINT16 *addrptr, svalue;
UINT32 addr, window1,
INT32 timeout;
UINT32 addrptrl;

/* Start all programs with this function */
ret = InitVXllibrary();
BusErrorRecv = 0; /* Reset global variable */

/* The following code maps the A16 space with the Access Only */
/* access in order to access the A16 space directly. */
addr = 0xc000L; /* Map upper 16 KB of the A16 space */

Chapter 2 Introduction to the NI-VXI Functions

timeout = 2000L; /* 2 seconds */

/* Notice the use of the macros for defining the access */

[* parameters. These can be found in the NI-VXI header files */

addrptrl = (UINT32) MapVXIAddress(AccessP_Space(A16_SPACE) |
AccessP_Priv(NonPriv_DATA) |
AccessP_BO(MOTOROLA_ORDER) |
AccessP_Owner(0),
addr, timeout, &window1, &ret);

if (ret >= 0) /** MapVXIAddress call is successful **/

/* The following code reads the ID register of a device */
/* at logical address 10. */

la=10;

addrptr = (UINT16 *)((UINT32) addrptrl + 64 * la);
VXlpeek(addrptr,2, &svalue));

if (BusErrorRecv)
printf("Bus Error has occurred.\n");
else
printf("Value read was %hd.\n", svalue));

ret = UnMapVXIAddress(window1l);
} else
printf("Unable to access window.\n");

/* Close library when done */
ret = CloseVXllibrary();

Notice that the return variable for thpVXIAddress() function is a
pointer. While you can dereference this pointer directly on some
platforms, we recommend that you use Welpeek() and

VXlpoke() macros and functions in NI-VXI instead.

You can defineBINARY_COMPATIBLE~vhen compiling your program

to force NI-VXI to use a version &fXIlpeek() andVXlpoke()

macros that will work on all embedded and MXI platforms. In addition,
you can use the functions, rather than the macros, to ensure future
compatibility. To force the compiler to use the functions, put the
function name in parentheses, for example,

(VXIpoke) (addrptr, 2, 0);

instead of
VXIpoke (addrptr, 2, 0);

© National Instruments Corporation 2-15 NI-VXI User Manual

Chapter 2 Introduction to the NI-VXI Functions

1 &= Note:

On modern, 32-bit operating systems running on high-performance
processors (such as Microsoft Windows NT on a Pentium or Solaris 2

on a SPARC), we have found no performance gained by using macros
instead of functions. For this reason, we strongly recommend that you use
functions on these platforms to allow your program to be more portable
across future platforms.

Slave Memory Access

C/C++ Example:

main() {
INT16 ret;

It is possible to share local resources such as RAM with the
VXI/VMEbus. You can accomplish this functionality by setting the
appropriate fields in theéXledit orVXitedit NI-VXI resource

editor utility to instruct the controller to respond to bus accesses as a
slave. What address space is used is dependent on the settings in
VXledit orVXitedit .However, the actual VXI/VMEbus memory
addresses are assignedRBSMANand should be read by the program
through theGetDevinfo() function.

Keep in mind that when the controller shares its resources, it may not
allocate them from the local system first. For example, if you instruct
the system to share 1 MB of RAM, the controller will map VXI/VME
addresses (as defined RESMANto 1 MB of local memory. However,

the controller may not have prevented the local system from also using
this space. For example, on a IBM compatible PC, the first 1 MB of
address space contains not only user RAM, but also the interrupt vector
table, video memory, BIOS, and so on. Therefore, it is important that
you first usevXimemAlloc() to reserve a portion of the shared

memory, and then communicate this address to the remote master that
will be accessing the slave memory. For example, assume that the
following code will run on a controller that has shared 1 MB of local
RAM.

UINT32 *useraddr, vxiaddr;

void *bufaddr;

/* Initialize and allocate 4 KB of memory */
ret = InitVXllibrary();
ret = VXImemAlloc(4096, &useraddr, &vxiaddr);

/* Put code here to communicate vxiaddr */
/* returned by VXImemAlloc */

NI-VXI User Manual

2-16 © National Instruments Corporation

Chapter 2 Introduction to the NI-VXI Functions

[* At this point, the remote master can perform */

/*1/0O on the shared, allocated space. In addition, */

/* the program can use the local address to perform */

/* 1/0 on the same space, such as reading back a block */

/* of data */

bufaddr = malloc (4096);
ret = VXImemCopy (useraddr, bufaddr, 4096, 0);

/* Return memory to local system */
ret = VXImemFree(useraddr);
ret = CloseVXllibrary();

Note:

Interrupts and Signals

In NI-VXI, you can set up your controller to function as both an

interrupt handler and an interrupter. You can also have your controller
respond to writes to its signal register. Signaling another device
requires the high-level or low-level VXI/VMEbus access functions, as
discussed earlier. In addition, NI-VXI lets you configure both

interrupts and signals to be handled either through callback handlers or
through the signal queugee the/XI Signal Functionsection in

Chapter 3Software Overviewfor more details about the signal queue,
but for now you can look upon it as a FIFO (first-in, first-out) queue

that you can access via the signal queue management functions, such as
SignalDeq() . Both the signal queue and the callback handler will
provide the status/ID obtained from the interrupt acknowledge or from
the signal register. You can use this value to determine which device
generated the interrupt/signal as well as the cause of the event. See the
VXI Interrupt Functionsection inChapter 3Software Overvieyfor

more information.

Handling either signals or interrupts through the signal queue is very
straightforward. You can use tReuteVXlint() and

RouteSignal() functions to specify that the events should be handled
by the signal queue. After you have enabled the event handler through
either theEnableSignallnt() or theEnableVXItoSignalint()

call, the event is placed on the queue when it occurs. You can use the
SignalDeq() or WaitForSignal() functions to retrieve the event

from the queue.

RESMANllocates interrupt lines to VXI devices that support the
programmable interrupt command. Devices should use only those
interrupt lines allocated to them. Again, you can uSetDevinfo() to
determine what interrupt lines have been allocated to the controller.

© National Instruments Corporation 2-17 NI-VXI User Manual

Chapter 2 Introduction to the NI-VXI Functions

Alternatively, you can choose to handle either signals or interrupts with
a callback handler. You can uReuteSignal() to specify that the

events should be handled by the callback handlers rather than the signal
gueue. After you have enabled the callback handler through either the
EnableSignalint() or theEnableVXlint() call, the callback

function will be invoked when the event occurs. Installing and using
callback handlers is very simple with NI-VXI because all of the

operating system interaction is handled for you. The following section

of code gives an example of using an callback handler.

C/C++ Example:
#define VXI_INT_LEVEL 1 /* this sample only interested in level 1 */

FNIVXI_HVXIINT is a type defined for VXINVME interrupt callback handlers */
NIVXI_HVXIINT *OldVXlintHandler; /* pointer to save the old handler */
NIVXI_HVXIINT UserVXIlntHandIer [* function declr for new handler */

main () {
INT16 ret, controller;

/* Always begin by initializing the NI-VXI library */
ret = InitVXllibrary ();
controller = -1;

/* Get address of the old handler */
OldVvXlintHandler = GetVXlintHandler (VXI_INT_LEVEL);

/* Set callback handler to new user-defined procedure */
ret = DisableVXlint (controller, 1<<(VXI_INT_LEVEL-1));
ret = SetVXlintHandler (1<<(VXI_INT_LEVEL-1), UserVXlintHandler);
ret = EnableVXlint (controller, 1<<(VXI_INT_LEVEL-1));

[/
/* user code */
[/

/* Restore callback handler to what it was before we changed it */
ret = DisableVXlint (controller, 1<<(VXI_INT_LEVEL-1));
SetVXlintHandler (1<<(VXI_INT_LEVEL-1), OldVvXlintHandler);
ret = EnableVXlint (controller, 1<<(VX|_INT_LEVEL-1));

/* Always close the NI-VXI library before exiting */
CloseVXllibrary ();

}
/* The NIVXI_HQUAL and NIVXI_HSPEC should bracket */
/* every interrupt handler as shown below. */
NIVXI_HQUAL void NIVXI_HSPEC UserVXlintHandler (INT16 controller,
UINT16 level, UINT32 statusID)

/* user code for processing statusID */

NI-VXI User Manual 2-18 © National Instruments Corporation

Chapter 2 Introduction to the NI-VXI Functions

Note: Although NI-VXI simplifies the installation and use of callback handlers,
it cannot affect how the system handles interrupts. The programmer must
follow programming guidelines set by the chosen operating system. Some
of these guidelines could include using only reentrant functions, adhering
to timing restrictions, and on Macintosh computers, regaining access to
global variables.

Triggers

The addition of trigger lines to the VMEbus is one improvement the
VXlbus has over VME in the field of instrumentation. To take
advantage of this feature, NI-VXI has a wide selection of functions you
can use to set up your controller to both source and acknowledge
trigger lines. The TIC is a National Instruments ASIC (Application
Specific Integrated Circuit) that gives you the capability to map trigger
lines to trigger lines as well as to external lines, use special
counter/timers, and monitor multiple trigger lines simultaneously.

© National Instruments Corporation 2-19 NI-VXI User Manual

Chapter

Software Overview

This chapter describes the C/C++ and BASIC usage of VXI and VME
functions and briefly describes each function. Functions are listed
alphabetically in each functional group.

System Configuration Functions

The VXI system configuration functions copy all of the Resource
Manager (RM) table information into data structures at startup so that
you can find device names or logical addresses by specifying certain
attributes of the device for identification purposes.

Initializing and closing the NI-VXI software interface, and getting
information about devices in the system are among the most important
aspects of the NI-VXI software. All applications need to use the system
configuration functions at one level or another. When the NI-VXI RM
runs, it logs the system configuration information in the RM table file,
resman.tbl . ThelnitvXllibrary function reads the information
fromresman.tbl into data structures accessible from the

GetDevinfo andSetDevinfo functions. From this point on, you can
retrieve any device-related information from the entry in the table. In
most cases you do not need to modify resource manager information.
However, you can usgetDevinfo functions to modify the

information in the table. In this manner, both the application and the
driver functions have direct access to all the necessary VXI/VME
system information. Your application must call ttieseVXllibrary

function upon exit to free all data structures and disable interrupts.

The following paragraphs describe the system configuration functions.
The descriptions are presented at a functional level describing the
operation of each function.

© National Instruments Corporation 31 NI-VXI User Manual

Chapter 3 Software Overview

CloseVXllibrary ()

CloseVXllibrary is the application termination routine, which

must be included at the end (or abort) of any application.
CloseVXllibrary disables interrupts and frees dynamic memory
allocated for the internal RM table and other structures. You must
include a call tcCloseVXllibrary at the termination of your
application (for whatever reason) to free all data structures allocated
by InitvXllibrary and disable interrupts. Failure to call
CloseVXllibrary when terminating your application can cause
unpredictable and undesirable results. If your application can be
aborted from some operating system abort routine (suchreskkey

or a process kill signal), be certain to install an abort/close routine to
call CloseVXllibrary

CreateDevInfo (la)

FindDevLA (name

CreateDevinfo creates a new entry in the dynamic NI-VXI RM table
for the specified logical address. It installs defawlt L values into the
entry. You must use one of tBetDevinfo functions after this point

to change any of the device information as needed. This operation is
not needed for VME devices since it is recommended that you use the
Non-VXI Device Editor in the/Xledit or VvXitedit NI-VXI

resource editor utility. At the startup of your application,

InitVXllibrary completely initializes the RM table to how the RM
configured the VXI system. No initial changes/creations are necessary
for VXI devices. You can usereateDevinfo to add non-VXI

devices or pseudo-devices (future expansion).

pat, manid, modelcode, devclass, slot,

mainframe, cmdrla, 1a)

NI-VXI User Manual

FindDevLA scans the RM table information for a device with the
specified attributes and returns its VXI logical address. You can use
any combination of attributes to specify a device. A -1 (negative one)
or" specifies to ignore the corresponding field in the attribute
comparison. After finding the VXI logical address, you can use one of
theGetDevinfo functions to get any information about the specified
device.

3-2 © National Instruments Corporation

Chapter 3 Software Overview

GetDevinfo (la, field, fieldvalue)

GetDevinfo returns information about the specified device from the
NI-VXI RM table. Thefield parameter specifies the attribute of the
information to retrieve. Possibfeelds include the device name,
Commander’s logical address, mainframe number, slot, manufacturer
ID number, model code, model name, device class, VXI address
space/base/size allocated, VXI interrupt lines/handlers allocated,
protocols supported, and so onfi@ld value of zero (0) specifies to
return a structure containing all possible information about the
specified device.

GetDevinfoLong (la, field, longvalue)

GetDevinfoLong returns information about the specified device from
the NI-VXI RM table. Thdield parameter specifies the attribute of the
information to retrieveGetDevinfoLong is a function layered on top
of GetDevInfo for languages (such as BASIC) that cannot typecast
thefieldvalues of GetDevinfo . GetDevinfoLong returns only the
fields of GetDevinfo that are32-bit integersPossibldields include

the VXI address base and size allocated to the device by the RM.

GetDevInfoShort (la, field, shortvalue)

GetDevinfoShort returns information about the specified device
from the NI-VXI RM table. Thdield parameter specifies the attribute
of the information to retrievesetDevinfoShort is a function layered
on top ofGetDevinfo for languages (such as BASIC) that cannot
typecast thdieldvalues of GetDevinfo . GetDevinfoShort returns
only thefields of GetDevinfo that arel6-bit integers Possibldields
include the Commander’s logical address, mainframe number, slot,
manufacturer ID number, manufacturer name, model code, device
class, VXI address space allocated, VXI interrupt lines/handlers
allocated, protocols supported, and so on.

GetDevInfoStr (la, field, stringvalue)

GetDevinfoStr returns information about the specified device from
the NI-VXI RM table. Thdield parameter specifies the attribute of the
information to retrieveGetDevinfoStr is a function layered on top

of GetDevInfo for languages (such as BASIC) that cannot typecast
thefieldvalues of GetDevinfo . GetDevinfoStr returns only the
fields of GetDevinfo that arecharacter stringsPossibldields

include the device name, manufacturer name, and model name.

© National Instruments Corporation 3-3 NI-VXI User Manual

Chapter 3 Software Overview

InitVXIlibrary ()

InitVXllibrary is the NI-VXI initialization routine. An application
must calllinitVvXllibrary at application startupnitVvXllibrary

performs all necessary installation and initialization procedures to
make the NI-VXI interface functional. This includes copying all of the
RM device information into the data structures in the NI-VXI library.
This function configures all hardware interrupt sources (but leaves
them disabled) and installs the corresponding default handlers. It also
creates and initializes any other data structures required internally by
the NI-VXI interface. When your application completes (or is aborted),
it must callCloseVXllibrary to free data structures and disable all

of the interrupt sources.

SetDevinfo (la, field, fieldvalue)

SetDevinfo changes information about the specified device in the
NI-VXI RM table. Thefield parameter specifies the attribute of the
information to change. Possilfields include the device name,
Commander’s logical address, mainframe number, slot, manufacturer
ID number, manufacturer name, model code, model name, device
class, VXI address space/base/size allocated, VXI interrupt
lines/handlers allocated, protocols supported, and so fieldAvalue

of zero (0) specifies to change the specified entry with the supplied
structure containing all possible information about the specified device.
You should use this function only in very special situations, because it
updates information in the NI-VXI interface and can affect execution.
At the startup of your applicatiomitvXllibrary completely

initializes the RM table according to how the RM configured the VXI
system. No initial changes are necessary for VXI devices.

SetDevinfoLong (la, field, longvalue)

NI-VXI User Manual

SetDevinfoLong changes information about the specified device in
the NI-VXI RM table. Thdield parameter specifies the attribute of the
information to changeSetDevinfoLong is a function layered on top

of SetDevinfo for languages (such as BASIC) that cannot typecast
thefieldvalues of SetDevinfo . SetDevinfoLong returns only the
fields of SetDevinfo that are32-bit integers Possibldields include

the VXI address base and size allocated to the device by the RM. You
should use this function only in very special situations, because it
updates information in the NI-VXI interface and can affect execution.
At the startup of your applicatiomitvXllibrary completely
initializes the RM table to how the RM configured the VXI system. No
initial changes are necessary for VXI devices.

3-4 © National Instruments Corporation

Chapter 3 Software Overview

SetDevinfoShort (la, field, shortvalue)

SetDevinfoShort ~ changes information about the specified device in
the NI-VXI RM table. Thdield parameter specifies the attribute of the
information to changesetDevinfoShort is a function layered on top

of SetDevinfo for languages (such as BASIC) that cannot typecast
thefieldvalues of SetDevinfo . SetDevinfoShort ~ changes only the
fields of SetDevinfo that arel6-bit integers Possibldields include

the Commander’s logical address, mainframe number, slot,
manufacturer ID number, model code, device class, VXI address space
allocated, VXI interrupt lines/handlers allocated, protocols supported,
and so on. You should use this function only in very special situations,
because it updates information in the NI-VXI interface and can affect
execution. At the startup of your applicatiamitVvXllibrary

completely initializes the RM table to how the RM configured the VXI
system. No initial changes are necessary for VXI devices.

SetDevinfoStr (la, field, stringvalue)

SetDevinfoStr ~ changes information about the specified device in the
NI-VXI RM table. Thefield parameter specifies the attribute of the
information to changesetDevinfoStr is a function layered on top of
SetDevinfo for languages (such as BASIC) that cannot typecast the
fieldvaluesof SetDevinfo . SetDevinfoStr returns only thdields

of SetDevinfo that arecharacter stringsPossibldields include the
device name, manufacturer name, and model name. You should use
this function only in very special situations, because it updates
information in the NI-VXI interface and can affect execution. At the
startup of your applicatiomyitvXllibrary completely initializes

the RM table to how the RM configured the VXI system. No initial
changes are necessary for VXI devices.

Commander Word Serial Protocol Functions

Word Serial communication is the minimal mode of communication
between VXI message-based devices within the VXI
Commander/Servant hierarchy. The Commander Word Serial functions
let the local CPU (the CPU on which the NI-VXI interface resides)
perform VXI message-based Commander Word Serial communication
with its Servants. The four basic types of Commander Word Serial
transfers are as follows:

« Command sending
+ Query sending

© National Instruments Corporation 3-5 NI-VXI User Manual

Chapter 3 Software Overview

- Buffer writes
. Buffer reads

The Word Serial Protocol is a 16-bit transfer protocol between a
Commander and its Servants. The Commander polls specific bits in the
Servant’'s VXI Response register to determine when it can write a
command, when it can read a response from the Data Low register, and
when a Word Serial protocol error occurs.

Before a Commander can send a Word Serial command to a Servant, it
must first poll the Write Ready (WR) bit until it is asserted (set to 1).
The Commander can then write the command to the servant’s Data
Low register. If the Commander is sending a query, it first sends the
guery in the same manner as sending a command, but then continues
by polling the Read Ready (RR) bit until it is asserted. It then reads the
response from the servant’s Data Low register.

A buffer write involves sending a seriesRyfte AvailableBAV) Word
Serial commands to the Servant, with the additional constraint that the
Data In Ready (DIR) bit as well as the WR bit be asserted before
sending th&yte Available The lower 8 bits (bits 0 to 7) of the 16-bit
command contain a single byte of data (bit 8 is the END bit).
Therefore, on®yte Availablas sent for each data byte in the buffer
written.

A buffer read involves sending a serieBgte RequeSBREQ) Word
Serial queries to the Servant, with the additional constraint that the
Data Out Ready (DOR) bit as well as the WR bit must be asserted
before sending thByte RequesiThe lower 8 bits (bits 0 to 7) of the
16-bit response contain a single byte of data (bit 8 is the END bit).
Therefore, on®yte Requess sent for each data byte in the buffer
read.

In addition to the WR, RR, DIR, and DOR bits that get polled during
various Word Serial transfers, the functions also check the ERR* bit.
The ERR* bit indicates when a Word Serial Protocol error occurs. The
Word Serial Protocol errors are Unsupported Command, Multiple
Query Error (MQE), DIR Violation, DOR Violation, RR Violation, or
WR Violation. After the Servant asserts the ERR* bit, the application
can determine the actual error that occurred by sendiepd

Protocol Error query to the Servant. The NI-VXI Word Serial
functions query the Servant automatically and return the appropriate
error codes to the caller, at which time the Servant deasserts the
ERR* bit.

NI-VXI User Manual 3-6 © National Instruments Corporation

Chapter 3 Software Overview

In addition to the four basic types of Word Serial transfers, there are
two special cases: the Word Sefaéar andTrigger commands. The
Word SerialClear command must ignore the ERR* bit. One of the
functions of theClear command is to clear a pending protocol error
condition. If the ERR* bit was polled during the transfer,@ear

would not succeed. The Word Seffaigger command requires polling
the DIR bit as well as the WR bit (similar to the buffer write) before
writing theTrigger to the Data Low register. The VXIbus specification
requires polling the DIR bit for the Word Serigger to keep the
write and trigger model consistent with IEEE 488.2.

The Longword Serial and Extended Longword Serial Protocols are
similar to the Word Serial Protocol, but involve 32-bit and 48-bit
command transfers, respectively, instead of the 16-bit transfers of the
Word Serial Protocol. The VXIbus specification, however, provides no
common command usages for these protocols. The commands are
either VXI Reserved or User-Defined. The NI-VXI interface gives you
the ability to send any one of these commands.

Programming Considerations

The Commander Word Serial functions provide a flexible, easy-to-use
interface. Depending upon the hardware and software platforms
involved in your system, however, certain issues need to be taken into
account. In particular, the behavior of these functions will vary when
called from different processes depending on how your operating
system performs multitasking.

Interrupt Service Routine Support

If portability between operating systems is essential, the Word Serial
Protocol functions should not be called from an interrupt service
routine. Only for operating systems in which the user-installed handlers
are run at process level (most UNIX, OS/2, and Windows 95/NT
systems) is it possible to initiate Word Serial operations from a
user-installed handler. The Commander Word Serial functions require
operating system support provided only at the application (process)
level of execution. Calling these functions from the CPU interrupt level
will have undetermined results.

© National Instruments Corporation 3-7 NI-VXI User Manual

Chapter 3 Software Overview

ThewsSabort function is the only exception to this restriction.

WSabort is used to abort various Word Serial transfers in progress and
will usually be called from an interrupt service routine (although it is
not limited to interrupt service routines). The most common example of
calling this function from an interrupt service routine is with the
handling ofUnrecognized Commarelents from a device. When an
Unrecognized Commarelent is received by the NI-VXI interrupt or
Signal interrupt handlekySabort must be called to abort the current
Word Serial command transfer in progress that caused the generation
of theUnrecognized Commarelent.

Single-Tasking Operating System Support
The Word Serial Protocol functions have no asynchronous or multiple
call support for a non-multitasking operating system. Because the
Word Serial Protocol functions are polled 1/O functions that do not
return to the caller until the entire operation is complete, only one call
can be pending for the application-level code. No Word Serial Protocol
functions, other thawSabort , can be called at interrupt service
routine time. If a Word Serial operation is underway and an interrupt
service routine invokes another Word Serial operation, the polling
mechanism may become inconsistent with the state of the Servant’'s
communication registers. This could result in invalid data being
transferred, protocol errors occurring, or a timeout. Wisabort
function is used to asynchronously abort Word Serial operations in
progress and can be used at interrupt service routine time.

Cooperative Multitasking Support

NI-VXI supports multiple processes under cooperative multitasking
operating systems. The behavior is the same as in single-tasking
operating systems, described above.

Multitasking Support (Preemptive Operating System)

The Word Serial Protocol functions have extensive mutual exclusion
support when running on a preemptive multitasking operating system.
A two-level mutual exclusion algorithm is used to allow read, write,
and trigger calls to be made at the same time. Command transfers will
automatically suspend read, write, or trigger calls in progress.

NI-VXI User Manual 3-8 © National Instruments Corporation

Chapter 3 Software Overview

Figure 3-1 gives a precise description of this two-level mutual
exclusion algorithm. Notice that this mutual exclusion is on a per
logical address basis. Any number of logical addresses can have Word
Serial transfers in progress without conflict. If the application is to be
compatible with IEEE 488,2he application must perform trigger and
write calls in sequential order.

Wrt and Trg Exclusion

Write and trigger ordering for IEEE 488.2
compatible operation must be done by the

application. No attempt is made to order or Read held off if write or trigger underway. Write and trigger
perform mutual exclusion between write and held off if read underway. No mutual exclusion is done between
trigger calls. In addition, no mutual exclusion multiple reads or multiple writes and triggers. No more than

is done between multiple writes or multiple
triggers. No more than one write or trigger
call may be pending at any one time (per

logical address).

WBwr t, WBwr t f Wt rg W8r d, Wer df

Rd/Wrt/Trg Exclusion

one read call may be pending at any one time (per logical
address). No more than one write or trigger call may be
pending at any one time (per logical address).

WScnd, Wael 1, »
WSLcnd, WSEcd =

5 Command Priority Override

All Word Serial command functions have priority over the read

-
| 1

and write functions. If a command call is underway, all read
and write calls will be suspended until the command transfer
\4 is complete. If a read or write call is already underway when
. a command call is made, the command call will cause the read
| Local CPU VXI A16 Window| o write call to suspend before the next individual read or write
command/query is sent (Byte Available for Wewr t , Wewr t f , or
Byte Request for Wer d, W6r df). When the command transfer is
VXIbus complete, the read or write call will continue exactly from where
it was suspended. No mutual exclusion is done between multiple
A4 command calls. The application must guarantee that only one
command call is pending at one time.

|Remote Word Serial Hardware|

Figure 3-1. Preemptive Word Serial Mutual Exclusion (Per Logical Address)

The Commander Word Serial functions are fully reentrant and
preemptive on a per logical address basis. Any number of logical
addresses can have Commander Word Serial functions in progress
without conflict.

Because Commander Word Serial is a protocol involving extensive
polling, support has been added fawoand-robineffect of

Commander Word Serial function calls. If a particular logical address
does not respond within a set number of polls to a particular Word

Serial command or query, the process is suspended and another process
(possibly with a different Commander Word Serial call in progress) can
continue to execute. The amount of time for which the process is
suspended is dependent upon the operating system. When the original
process is resumed, the polling will continue. The polling will continue

© National Instruments Corporation 3-9 NI-VXI User Manual

Chapter 3 Software Overview

until the transfer is complete or a timeout occurs. This support also
keeps a word serial device which is not responding from “hanging” on
the local CPU.

The following paragraphs describe the Commander Word Serial,
Longword Serial, and Extended Longword Serial Protocol functions.
The descriptions are grouped by functionality and are presented at a
functional level describing the operation of each of the functions.

WSabort (la, abortop)

WSclr (la)

WScmd (la, cmd,

NI-VXI User Manual

WSabort aborts the Commander Word Serial operation(s) in progress
with a particular device. This function does not perform any Word
Serial transfers. Instead, it aborts any Word Serial operation already in
progress. Thabortop parameter specifies the type of abort to perform.
TheForcedAbort operation aborts read, write, and trigger operations
with the specified device. ThénSupComoperation performs an
Unsupported Command abort of the current Word Serial, Longword
Serial, or Extended Longword Serial command in progress. The
UnSupComoperation is called when &mnrecognized Commarigvent

is received byefaultSignalHandler

WSclr sends the Word Seri@llear command to a message-based
Servant. The&lear command clears any pending protocol error on the
receiving device. The ERR* bit is ignored during the transfer. The WR
bit is polled until asserted after tdear command is sent to verify that
the command executed properly.

respflag, response)

WScmasends a Word Serial command or query to a message-based
Servant. It polls the WR bit before sending the command, and polls the
RR bit before reading the response (if applicable) from the Data Low
register WScmdpolls the WR bit after either sending the command (for
a command) or reading the response (for a query), to guarantee that no
protocol errors occurred during the transfer. Under the VXIbus
specification, the ERR* bit can be asserted at any time prior to
reasserting the WR bit. Do not use this function to send the Word
Serial commandByte AvailablgBAV), Byte RequeSBREQ),

Trigger, or Clear. All of these Word Serial commands require different
Response register polling techniques.

3-10 © National Instruments Corporation

Chapter 3 Software Overview

WSEcmd (la, cmdExt, cmd, respflag, response)

WSEcmdsends an Extended Word Serial command or query to a
message-based Servant. It polls the WR bit before sending the 48-bit
commandWSEcmdsends the command by writing the Data Extended
register first with the upper 16 bits of the commarddExt),

followed by the Data High register with the middle 16 bits of the
command (upper 16 bits ofnd), and concluding with the Data Low
register with the lower 16 bits of the command (lower 16 bitsaf).

It then polls the RR bit before reading the 32-bit response from the
Data Low and Data High registers (there are no 48-bit responses for
Extended Longword SerialvSEcmdolls the WR bit after either
sending the command (for a command) or reading the response (for a
guery), to guarantee that no protocol errors occurred during the
transfer.

WSgetTmo (actualtimo)

WSgetTmoretrieves the current timeout period for all of the
Commander Word Serial Protocol functions. It retrieves the current
timeout value in milliseconds to the nearest resolution of the host CPU.

WSLcmd (la, cmd, respflag, response)

WSLcmdsends a Longword Serial command or query to a
message-based Servant. It polls the WR bit before sending the
commandWSLcmdsends the command by writing the Data High
register first with the upper 16 bits of the 32-bit command, and then
writing the Data Low register with the lower 16 bits of the 32-bit
command. It then polls the RR bit before reading the 32-bit response
from the Data Low and Data High registansSLcmdpolls the WR bit
after either sending the command (for a command) or reading the
response (for a query), to guarantee that no protocol errors occurred
during the transfer.

WSLresp (la, response)
WSLresp retrieves a response to a previously sent Longword Serial

Protocol query from a VXI message-based Servant.

% Note: This function is intended only for debugging purposes.

© National Instruments Corporation 3-11 NI-VXI User Manual

Chapter 3

Software Overview

Normally, you would use th&/SLcmdfunction to send Longword

Serial queries with the response automatically read (specified with
respflag). In cases when you need to inspect the Longword Serial
transfer at a lower level, however, you can break up the query sending
and query response retrieval by using\W cmdfunction to send the
qguery as a command, and using W&l resp function to retrieve the
responseWsSLresp polls the RR bit before reading the response from
the Data High and Data Low registers to form the 32-bit response.
After reading the response, it polls the Response register until the WR
bit is asserted to guarantee that no protocol errors occurred during the
transfer.

WSrd (la, buf, count, modevalue, retcount)

WsSrd is the word serial buffer read functionSrd reads a specified
number of bytes from a Servant device into a local memory buffer,
using the VXlbus Byte Transfer Protocol. The process involves
sending a series &yte RequedBREQ) Word Serial queries and
reading the responses. Each response contains a data byte in the lower
8 bits and the END bit in bit 8. Before sending the BREQ command,
WSrd polls both Response register bits—Data Out Ready (DOR) and
Write Ready (WR). It polls the Response register Read Ready (RR) bit
before reading the response from the Data Low register. The read
terminates when it receives a maximum number of bytes or if it
encounters an END bit, a carriage return (CR), a line feed (LF), or a
user-specified termination character.

WSrdf (la, filename, count, modevalue, retcount)

WSrdf is an extension of th&/'Srd function.wSrdf reads a specified
number of bytes from a Servant device into the specified file, using the
VXIbus Byte Transfer Protocol. The process involves calling the
functionwsrd (possibly many times) to read in a block of data and
writing the data to the specified file. The read terminates when it
receives a maximum number of bytes or if it encounters an END bit, a
carriage return (CR), a line feed (LF), or a user-specified termination
character.

WSresp (la, response)

1= Note:

NI-VXI User Manual

WSresp retrieves a response to a previously sent Word Serial Protocol
qguery from a VXI message-based Servant.

This function is intended only for debugging purposes.

3-12 © National Instruments Corporation

Chapter 3 Software Overview

Normally, you would use the&/Scmdunction to send Word Serial
gueries with the response automatically read (specifiedresihflag).

In cases when you need to inspect the Word Serial transfer at a lower
level, however, you can break up the query sending and query response
retrieval by using thevScmdunction to send the query as a command
and using th&vSresp function to retrieve the response. During the
interim period between sending thscmdandwSresp functions, you

can check register values and other hardware conditie®iesp polls

the RR bit before reading the response from the Data Low register.
After reading the response, it polls the Response register until the
WR bit is asserted.

WSsetTmo (timo, actualtimo)

WSsetTmo sets the timeout period for all of the Commander Word

Serial Protocol functions. It sets the timeout value in milliseconds to

the nearest resolution of the host CPU. When a timeout occurs during a
Commander Word Serial Protocol function, the function terminates

with a corresponding error code.

WStrg (la)

WStrg sends the Word Seri@itigger command to a message-based
Servant. Before sending tieigger command (by writing to the Data
Low register)WStrg polls both Response register bits—Data In Ready
(DIR) and Write Ready (WR)—until asserted. You cannot use the
WsScmdunction to send the Word Serieligger command WScmd

polls only for WR before sending the commaniBtrg polls the

WR bit until asserted again after sending Thigger command to
guarantee that no protocol errors occurred during the transfer.

WSwrt (la, buf, count, modevalue, retcount)

This function is the buffer write functiomvSwrt writes a specified
number of bytes from a memory buffer to a message-based Servant
using the VXlbus Byte Transfer Protocol. The process involves
sending a series @yte AvailablgBAV) Word Serial commands with

a single byte in the lower 8 bits of the command. Before sending the
BAV commandwswrt polls both Response register bits—Data In
Ready (DIR) and Write Ready (WR)—until asserted. uglevalue
parameter in the call specifies whether to send BAV only or BAV with
END for the last byte of the transfer.

© National Instruments Corporation 3-13 NI-VXI User Manual

Chapter 3 Software Overview

WSwrtf (la, filename, count, modevalue, retcount)

WSwrtf is an extension of th&/Swrt function.wSwrtf writes a

specified number of bytes from the specified file to a message-based
Servant using the VXIbus Byte Transfer Protocol. The process involves
calling thewsSwrt function (possibly many times) to write out a block

of data read from the specified file. Tm®devalueparameter in the

call specifies whether to send BAV only or BAV with END for the last
byte of the transfer.

Servant Word Serial Protocol Functions

NI-VXI User Manual

Word Serial communication is the minimal mode of communication
between VXI message-based devices within the VXI
Commander/Servant hierarchy. The local CPU (the CPU on which the
NI-VXI functions are running) uses the Servant Word Serial functions
to perform VXI message-based Servant Word Serial communication
with its Commander. These functions are needed only in the case
where the local CPU is not a top-level Commander (probably not the
Resource Manager), such as in a multiple CPU situation. In a multiple
CPU situation, the local CPU must allow the Resource Manager device
to configure the local CPU and can optionally implement some basic
message-transfer Word Serial communication with its Commander.
The four basic types of Servant Word Serial functions are as follows:

+ Receiving commands

« Receiving and responding to queries

« Responding to requests to send buffers
- Receiving buffers

The Word Serial Protocol is a 16-bit transfer protocol between a
Commander and its Servants. The Commander polls specific bits in the
Servant’'s VXI Response register to determine when it can write a
command or read a response from the Data Low register. It also
determines when a Word Serial protocol error occurs. Before a
Commander can send a Word Serial command to a Servant, it must
first poll the Write Ready (WR) bit until it is asserted (set to 1). The
Commander can then write the command to the Data Low register. If
the Commander is sending a query, it first sends the query in the same
manner as sending a command, but then continues by polling the Read
Ready (RR) bit until it is asserted. It then reads the response from the
Data Low register.

3-14 © National Instruments Corporation

Chapter 3 Software Overview

A buffer write is a series @yte AvailabléNord Serial commands sent
to the Servant, with the additional constraint that the Data In Ready
(DIR) bit as well as the WR bit must be asserted before sending the
Byte Availablecommand. The lower 8 bits (bits 0 to 7) of the 16-bit
command contain a single byte of data (bit 8 is the END bit).
Therefore, on®yte Availablds sent for each data byte in the buffer
written.

A buffer read is a series Bfyte Requedtord Serial queries sent to the
Servant, with the additional constraint that the Data Out Ready (DOR)
bit as well as the WR bit must be asserted before sendiidytae
RequestThe lower 8 bits (bits 0 to 7) of the 16-bit response contain a
single byte of data (bit 8 is the END bit). Therefore, Byte Request

is sent for each data byte in the buffer read.

In addition to polling the WR, RR, DIR, and DOR bits during various
Word Serial transfers, the functions also check the ERR* bit. The
ERR* bit indicates when a Word Serial Protocol error occurs. The
Word Serial Protocol errors are: Unsupported Command, Multiple
Query Error (MQE), DIR Violation, DOR Violation, RR Violation, or
WR Violation. The Servant Word Serial Protocol functions let the local
CPU generate any of the Word Serial Protocol errors and respond to
theRead Protocol ErroiWord Serial query with the corresponding
protocol error. The functions automatically handle asserting and
deasserting of the ERR* bit.

The Longword Serial and Extended Longword Serial Protocols are
similar to the Word Serial Protocol, but involve 32-bit and 48-bit
command transfers, respectively, instead of the 16-bit transfers of the
Word Serial Protocol. The VXI specification, however, provides no
common command usages for these protocols. The commands are
either VXI Reserved or User-Defined. The NI-VXI interface gives you
the ability to receive and process any one of these commands.

Programming Considerations

Most of the Servant Word Serial functions require an interrupt handler.
The word serial commands must be parsed (and responded to) within
the appropriate interrupt handler. Word Serial comm&ytis

Available (BAV) andByte RequedBREQ) are handled as a special

case for reads and writes. For reads and writes, a user-supplied handler
is notified only that the transfer is complete and not for each byte
processed. Asserting and unasserting of all Response register bits

© National Instruments Corporation 3-15 NI-VXI User Manual

Chapter 3 Software Overview

(DIR, DOR, WR, RR, and ERR*) are done automatically within the
functions as required.

Figure 3-2 provides a graphical overview of the Servant Word Serial

functions.
Local VXI Communication Registers
Write Data Read Data Response
Hardware Low | High | Ext Low High WR RR | ERR*
NI-VXI base Interrupt Service Routine (ISR) Read Command ﬂl A A
WSSenabl e
VBSdi sabl 88 WSS?lWSSL?l WSSE?
S' RespProt Error ()
= W5SnoResp()
&) WsSLnoResp()|| [ERROR |
Wor rial Y
Pr%cdessseora % GenProt Error ()
NI-VXI A4
Sof if wite pending and cnd is
oftware BREQ respond with next byte
if done
call WsSwrtHandler with
WBSwr t () status set WR and exit
else if read pending and cnd
is BAV store byte in buffer
if done
VBSTdO) | "call wesrdHandi er with
status set WR and exit
el se cal | WSScndHandl er
—_ —_ o
Sz 22 \%
27 =2z 2
ge g \g
< n = =4
o~ o ~ [s)
e °g ES
S C 3 C
i -o
A\ \ 4
User
ISR WSSwrtHandler WSSrdHandler WSScmdHandler WSSLcmdHandler | WSSEcmdHandler
S
Set WeSwr t Handl er () Set WeSr dHandl er () Set WsScndHandl er () Set WsSLcmdHandl er () Set WsSLcndHand| er ()
Get WsSwr t Handl er () Get WSSr dHandl er () Get WsScdHandl er () Get WsSLcrmdHandl er () Get WsSLcndHandl er ()
Def aul t WeSwr t Handl er () Def aul t W8Sr dHand| er () Def aul t WeScndHandl er () Def aul t WsSLcndHandl er () Def aul t WsSLcndHandl er ()
User
Application

Figure 3-2. NI-VXI Servant Word Serial Model

The following paragraphs describe the Servant Word Serial, Longword
Serial, and Extended Longword Serial Protocol functions. The
descriptions are grouped by functionality and are presented at a
functional level describing the operation of each of the functions.

NI-VXI User Manual © National Instruments Corporation

Chapter 3 Software Overview

DefaultWSScmdHandler (cmd)

DefaultWSScmdHandler is the default handler for thigSSwrt

interrupt, whichinitvVXllibrary automatically installs when it
initializes the NI-VXI software. The curremSScmdHandler is called
whenever the local CPU Commander sends any Word Serial Protocol
command or query (other than BAV or BREQ). While Word Serial
operations are enabled, thesScmdnterrupt handler is called every

time a Word Serial command is received (other than BAV if a
WSSrdcall is pending, or BREQ if @/SSwrt call is pending).
DefaultWSScmdHandler parses the commands and takes appropriate
action. If it is a query, it returns a response usingl8SsendResp
function. If it is a command, it calls tWgSSnoRespfunction to
acknowledge it. If either a BREQ or BAV command is received via this
handler, it call$senProtError with the corresponding protocol error
code (DOR violation or DIR violation). For unsupported commands,
the protocol error code sent@nProtError is UnSupCom

DefaultWSSEcmdHandler (cmdExt, cmd)

DefaultWSSEcmdHandler is the default handler for the@SSwrt
interrupt, whichinitvXllibrary automatically installs when it
initializes the NI-VXI software. The curremSSEcmdHandler is
called whenever the local CPU Commander sends any Extended
Longword Serial Protocol command or query. While Word Serial
operations are enabled, thsSEcmdHandler is called whenever a
Longword Serial command is receiv@dSSEcmdHandler must parse
the commands and take the appropriate action. Because the VXI
specification does not define any Extended Longword Serial
commandspefaultWSSEcmdHandler callsGenProtError with a
protocol error code dinSupComfor every Extended Longword Serial
command received.

DefaultWSSLcmdHandler (cmd)

DefaultWSSLcmdHandler is the default handler for theSSwrt

interrupt, whichinitvVXllibrary automatically installs when it

initializes the NI-VXI software. The curremSSLcmdHandler is

called whenever the local CPU Commander sends any Longword Serial
Protocol command or query. While Word Serial operations are

enabled, th&/SSLcmdHandler is called whenever a Longword Serial
command is received. TWMgSSLcmdHandler must parse the

commands and take the appropriate action. Because the VXI
specification does not define any Longword Serial commands,

© National Instruments Corporation 3-17 NI-VXI User Manual

Chapter 3 Software Overview

DefaultWSSLcmdHandler callsGenProtError with a protocol error
code ofunSupComfor every Longword Serial command received.

DefaultWSSrdHandler (status, count)

DefaultwSSrdHandler is the default handler for thgSSrdinterrupt,
which InitvXllibrary automatically installs when it initializes the
NI-VXI software. WherwSSrdreaches the specified count or an END
bit, or an error occurs, it calls theSSrdinterrupt handler with the
status of the call. The default handler sets the global variables
WSSrdDone, WSSrdDoneStatus , andwSSrdDoneCount. You can

use the variabl&/SSrdDone to poll until the operation is complete.
Afterwards, you can inspe@{SSrdDoneStatus and

WSSrdDoneCount to see the outcome of the call. If you want, you can
use theSetwSSrdHandler function to install an alternate handler.

DefaultWSSwrtHandler (status, count)

DefaultWSSwrtHandler is the default handler for thigSSwrt
interrupt, whichinitvVXllibrary automatically installs when it
initializes the NI-VXI software. WhewSSwrt reaches the specified
count or an error occurs, it calls twsSwrt interrupt handler with the
status of the call. The default handler sets the global variables
WSSwrtDone, WSSwrtDoneStatus , andwSSwrtDoneCount . You can
use the variabl&vSSwrtDone to poll until the operation is complete.
Afterwards, you can inspe@tSSwrtDoneStatus and
WSSwrtDoneCount to see the outcome of the call. If you want, you
can use th&etwSSwrtHandler ~ function to install an alternate
handler.

GenProtError (proterr)

In response to a Word Serial Protocol Error, the application should call
GenProtError to generate the error. Generating the error consists of
preparing the response to a fut®ead Protocol Erroquery (saving

the value in a global variable) and setting the ERR* bit in the local
Response register. TikespProtError function actually generates

the response when tiiRead Protocol Erroiquery is received later.

GetWSScmdHandler ()
GetWSScmdHandler returns the address of the curréargScmd
interrupt handler function. While Word Serial operations are enabled,
thewsSScmdnterrupt handler is called whenever a Word Serial
command (other than BREQ and BAV) is received.

NI-VXI User Manual 3-18 © National Instruments Corporation

Chapter 3 Software Overview

GetWSSEcmdHandler ()

GetWSSEcmdHandler returns the address of the curréar8SEcmd
interrupt handler function. While Word Serial operations are enabled,
theWSSEcmdnterrupt handler will be called every time an Extended
Longword Serial command is received.

GetWSSLcmdHandler ()

GetWSSLcmdHandler returns the address of the currer@SLemd
interrupt handler function. While Word Serial operations are enabled,
thewsSLcmdnterrupt handler is called whenever a Longword Serial
command is received.

GetWSSrdHandler ()

GetWSSrdHandler returns the address of the currér@Srdinterrupt
handler function. WhewSSrdreaches the specified count or an END
bit, or an error occurs, it calls theSSrdinterrupt handler with the
status of the call.

GetWSSwrtHandler ()

GetwSSwrtHandler returns the address of the currérgSwrt
interrupt handler function. WhansSwrt reaches the specified count
or an error occurs, it calls thieSSwrt interrupt handler with the status
of the call.

RespProtError ()

When the Word Seridkead Protocol Erroiquery is received,
RespProtError places the saved error response in the Data Low
register, sets the saved error response to ffffh (no error), unasserts
ERR*, and sets RR. If no previous error is pending, the value ffffh
(no error) is returned.

SetWSScmdHandler (func)

SetwSScmdHandler replaces the currem{SScmdnterrupt handler

with an alternate handler. While Word Serial operations are enabled,
thewsSScmdnterrupt handler is called whenever a Word Serial
command is received (other than BAV ¥\wsSrd call is pending,

or BREQ if awsSwrt call is pending). A default handler,
DefaultWSScmdHandler , is supplied in source code as an example,
and is automatically installed whéritvXilibrary is called. The

© National Instruments Corporation 3-19 NI-VXI User Manual

Chapter 3 Software Overview

default handler provides examples of how to parse commands, respond
to queries, and generate protocol errors.

SetWSSEcmdHandler (func)

SetWSSEcmdHandler replaces the currei{SSEcmdnterrupt handler
with an alternate handler. While Word Serial operations are enabled,
theWSSEcmdnterrupt handler is called whenever an Extended
Longword Serial command is received. A default handler,
DefaultWSSEcmdHandler , is supplied in source code as an example,
and is automatically installed whéritvXilibrary is called.

SetWSSLcmdHandler (func)

SetWSSrdHandler

SetWSSLcmdHandler replaces the curre{SSLcmdnterrupt handler

with an alternate handler. While Word Serial operations are enabled,
thewsSSLcmdnterrupt handler is called whenever a Longword Serial
command is received. A default handBefaultwSSLcmdHandler

is supplied in source code as an example, and is automatically installed
whenlinitVXllibrary initializes the NI-VXI software.

(func)

SetWSSrdHandler replaces the curreméSSrdinterrupt handler with

an alternate handler. WhevsSrdreaches the specified count or an

END bit, or an error occurs, it calls tiésSrdinterrupt handler with

the status of the call. A default handleefaultwSSrdHandler , is
automatically installed whelnitvXilibrary is called. The default
handler puts the status and read count in a global variable and flags the
operation complete.

SetWSSwrtHandler (func)

NI-VXI User Manual

SetWSSwrtHandler replaces the currem{SSwrt interrupt handler

with an alternate handler. WhgvsSSwrt reaches the specified count or
an error occurs, it calls th@SSwrt interrupt handler with the status of
the call. The DOR bit will be cleared before WR is set on the last byte
of transfer.InitvXllibrary automatically installs a default handler,
DefaultWSSwrtHandler , when it initializes the NI-VXI software.

The default handler puts the status and read count in a global variable
and flags the operation complete.

3-20 © National Instruments Corporation

Chapter 3 Software Overview

WSSabort (abortop)

WSSabort aborts the Servant Word Serial operation(s) in progress. It
returns an error code BbrcedAbort to thewSSrd or WSSwirt

interrupt handlers in response to the corresponding pending functions.
This may be necessary if the application needs to abort for some
application-specific reason, or if the Commander of this device sends a
Word SerialClear, End Normal Operationor Abortcommand.

WSSdisable ()

WSSdisable disables all Servant Word Serial functions from being
used. More precisely, this function desensitizes the local CPU to
interrupts generated when writing a Word Serial command to the Data
Low register or reading a response from the Data Low register.

WSSenable ()

WSSenable enables all Servant Word Serial functions. More precisely,
this function sensitizes the local CPU to interrupts generated when
writing a Word Serial command to the Data Low register or reading a
response from the Data Low register. By default, the Servant Word
Serial functions are disabled. At any time aftétvXllibrary

initializes the NI-VXI software, you can callSSenable to set up
processing of Servant Word Serial commands and queries.

WSSLnoResp ()

WSSLnoRespsets the WR bit so that it is ready to accept any further
Longword Serial commands. TR¢SSLcmdnterrupt handler should
call wsSLnoRespafter processing a Longword Serial command (it
callswsSLsendResp for Longword Serial queries).

WSSLsendResp (response)

WSSLsendResp responds to a Longword Serial Protocol query from a
VXI message-based Commander device. WisSLcmdnterrupt

handler calls this function to respond to a Longword Serial query. If a
previous response has not been read y&S8LsendResp call

generates a Multiple Query Error (MQE). Otherwise, it writes a
response value to the Data High and Data Low registers and sets the
RR bit. It also sets the WR bit so that it is ready to accept any further
Word Serial commands.

© National Instruments Corporation 3-21 NI-VXI User Manual

Chapter 3 Software Overview

WSSnoResp ()

WSSnoRespsets the WR bit so that it is ready to accept any further
Word Serial commands. ThgSScmdnterrupt handler should call
WSSnoRespafter processing a Word Serial command (it calls
WSSsendRespfor a Word Serial query, which requires a response).

WSSrd (buf, count, modevalue)

WSSrdis the buffer read functionvSSrdreceives a specified number

of bytes from a VXI message-based Commander device and places the
bytes into a memory buffer, using the VXIbus Byte Transfer Protocol.
The process involves setting the DIR and WR bits on the local CPU
Response register and building a buffer out of data bytes received via a
series oByte AvailablgBAV) Word Serial commands. WhexSSrd
reaches the specified count or an END bit, or an error occurs, it calls
thewssSrdinterrupt handler with the status of the call. It clears the DIR
bit before setting the WR on the last byte of transfer.

WSSsendResp (response)

WSSsendRespresponds to a Word Serial Protocol query from a VXI
message-based Commander device.\WB&cmdnterrupt handler calls
this function to respond to a Word Serial query. If a previous response
has not been read yet\wsSsendResp call generates a Multiple Query
Error (MQE). Otherwise, it writes a response value to the Data Low
register and sets the RR bit is. It also sets the WR bit so that it is ready
to accept any further Word Serial commands.

WSSwrt (buf, count, modevalue)

WSSwrt sends a specified number of bytes to a VXI message-based
Commander device, using the VXlbus Byte Transfer Protocol. The
process involves setting the DOR and WR bits in the local Response
register and responding to a serie8ypfe RequedBREQ) Word

Serial commands. When the data output completes or an error occurs,
WSSwrt calls its interrupt handler with the status of the call. Before
responding to the last byte of the write, it clears DOR to prevent
another BREQ from being sent before the application is able to handle
the BREQ properly.

NI-VXI User Manual 3-22 © National Instruments Corporation

Chapter 3 Software Overview

High-Level VXI/VMEbus Access Functions

You can use both low-level and high-level VXI/VMEbus access
functions to read or write to VXI/VMEbus addresses. These are
required in many situations, including the following:

+ Register-based device/instrument drivers
« Non-VXI/VME device/instrument drivers

« Accessing device-dependent registers on any type of VXI/VME
device

« Implementing shared memory protocols

Low-level and high-level access to the VXI/VMEbus, as the NI-VXI
interface defines them, are very similar. Both sets of functions can
perform direct reads of and writes to any VXI/VMEbus address space
with any privilege state or byte order. However, the two interfaces have
different emphases with respect to user protection, error checking, and
access speed. For example, your application must check error
conditions such as Bus Error (BERR*) separately when using low-level
accesses.

High-level VXI/VMEbus access functions need not take into account
any of the considerations that are required by the low-level VXIbus
access functions. The high-level VXI/VMEbus access functions have
all necessary information for accessing a particular VXI/VMEbus
address wholly contained within the function parameters. The
parameters prescribe the address space, privilege state, byte order, and
offset within the address space. High-level VXI/VMEbus access
functions automatically trap bus errors and return an appropriate error
status. Using the high-level VXI/VMEbus access functions involves
more overhead, but if overall throughput of a particular access (for
example, configuration or small number of accesses) is not the primary
concern, the high-level VXI/VMEbus access functions act as an
easy-to-use interface for VXI/VMEbus accesses.

Programming Considerations

All accesses to the VXI/VMEbus address spaces performed by use of
the high-level VXI/VMEbus access functions are fully protected. The
hardware interface settingsopntexj for the applicable window are
saved on entry to the function and restored upon exit. No other
functions in the NI-VXI interface, including the low-level

VXI/VMEbus access functions, will conflict with the high-level

© National Instruments Corporation 3-23 NI-VXI User Manual

Chapter 3 Software Overview

VXI/VMEbus access functions. You can use both high-level and
low-level VXI/VMEbus access functions at the same time.

The following paragraphs describe the high-level VXI/VMEbus access
functions.

VXlin (accessparms, address, width, value)

VXlin reads a single byte, word, or longword from a particular
VXI/VME address in one of the VXI address spaces. The parameter
accessparmspecifies the VXI/VME address space, the VXI privilege
access, and the byte order to use with the accessdbiness

parameter specifies the offset within the particular VXI/VME address
space. Thavidth parameter selects either byte, word, or longword
transfers. The value read from the VXI/VMEDbus returns in the output
parametewalue. If the VXI/VME address selected has no device
residing at the address and a bus error oceXts) traps the bus error
condition and indicates the error through the return status.

VXlinReg (la, reg, value)

Note:

VXIlinReg reads a single 16-bit value from a particular VXI device’s
VXI registers within the logical address space (the upper 16 KB of VXI
A16 address space). The function sets the VXI access privilege to
Nonprivileged Data and the byte order to Motorola. If the VXI address
selected has no device residing at the address and a bus error occurs,
VXIlinReg traps the bus error condition and indicates the error through
the return status. This function is mainly for convenience and is a layer
on top ofvXIlinLR andvXlin . If thela specified is the local CPU

logical address, it calls thexlinLR function. Otherwise, it calculates

the A16 address of the VXI device's register and aaflsn .

VXIlinReg is designed to access a VXlbus device configuration register
and therefore is not applicable to VME devices.

VXImove (srcparms, srcaddr, destparms, destaddr, length, width)

NI-VXI User Manual

VXImove moves a block of bytes, words, or longwords from a
particular address in one of the available address spaces (local, A16,
A24, A32) to any other address in any one of the address spaces. The
parametersrcparms anddestparmsspecify the address space, the
privilege access, and the byte order used to perform the access for the
source address and the destination address, respectivelsrcader
anddestaddr parameters specify the offset within the particular

3-24 © National Instruments Corporation

Chapter 3 Software Overview

address space for the source and destination, respectivelwidthe
parameter selects either byte, word, or longword transfers. If one of the
addresses selected has no device residing at the address and a bus error
occurs VXimove traps the bus error condition and indicates the error
through the return status.

VXlout (accessparms, address, width, value)

VXlout writes a single byte, word, or longword to a particular
VXI/VME address in one of the VXI/VME address spaces. The
parameteaccessparmspecifies the VXI address space, the VXI
privilege access, and the byte order to use with the accesaddiress
parameter specifies the offset within the particular VXI/VME address
space. Thevidth parameter selects either byte, word, or longword
transfers. If the VXI/VME address selected has no device residing at
the address and a bus error occurbput traps the bus error

condition and indicates the error through the return status.

VXloutReg (la, reg, value)

VXloutReg writes a single word to a particular VXI device’s VXI
registers within the logical address space (the upper 16 KB of VXI

A16 address space). The function sets the VXI access privilege to
Nonprivileged Data and the byte order to Motorola. If the VXI address
selected has no device residing at the address and a bus error occurs,
VXlinReg traps the bus error condition and indicates the error through
the return status. This function is mainly for convenience and is a layer
on top ofvXloutLR andVXlout . If thela specified is the local CPU
logical address, it calls the&XloutLR function. Otherwise, it calculates
the A16 address of the VXI device’s register and aslisut .

1+ Note: VXloutReg is designed to access a VXlbus device configuration register
and therefore is not applicable to VME devices.

© National Instruments Corporation 3-25 NI-VXI User Manual

Chapter 3 Software Overview

Low-Level VXI/VMEbus Access Functions

NI-VXI User Manual

This section describes the use of the low-level VXI/VMEbus access
functions. You can use both low-level and high-level VXI/VMEbus
access functions to directly read or write to VXI/VMEbus addresses.
Some of the situations that require direct reads and writes to the
different VXI/VMEbus address spaces include the following:

« Register-based device/instrument drivers
+ Non-VXI device/instrument drivers

« Accessing device-dependent registers on any type of VXI/VME
device

« Implementing shared memory protocols

Low-level and high-level access to the VXI/VMEbus, as the NI-VXI
interface defines them, are very similar in nature. Both sets of functions
can perform direct reads of and writes to any VXI/VMEbus address
space with any privilege state or byte order. However, the two
interfaces have different emphases with respect to user protection, error
checking, and access speed.

Low-level VXI/VMEbus access is the fastest access method (in terms
of overall throughput to the device) for directly reading or writing
to/from any of the VXI/VMEbus address spaces with random memory
accesses. Under many platforms, the high-level operdkonove

provides the fastest access in terms of block moves. As such, however,
it is more detailed and leaves more issues for the application to resolve.
You can use these functions to obtain pointers that are directly mapped
to a particular VXI/VMEbus address with a particular VXI/VME

access privilege and byte ordering. You need to consider a number of
issues when using the direct pointers:

« You need to determine bounds for the pointers.

- Based on the methods in which a particular hardware platform sets
up access to VXI/VME address spaces, using more than one pointer
can result in conflicts.

« Your application must check error conditions such as Bus Error
(BERR*) separately.

3-26 © National Instruments Corporation

Chapter 3 Software Overview

Programming Considerations

All accesses to the VXI/VMEbus address spaces are performed by
reads and writes to particular offsets within the local CPU address
space, which are made to correspond to addresses on the VXI/VMEbus
(using a hardware interface). The areas where the address space of the
local CPU is mapped onto the VXI/VMEbus are referred to as

windows The sizes and numbers of windows present vary depending
on the hardware being used. The size of the window is always a power
of two, where a multiple of the size of the window would encompass

an entire VXI/VMEbus address space. The multiple for which a

window currently can access is determined by modifyingnaow
baseregister.

The constraints of a particular hardware platform lead to restrictions on
the area of address space reserved for windows into VXI/VMEbus
address spaces. Be sure to take into account the number and size of the
windows provided by a particular platform. If a mapped pointer is to be
incremented or decremented, the bounds for accessing within a
particular address space must be tested before accessing within the
space.

NI-VXI uses a term within this chapter called the hardware

(or window)context The hardware context for window to VXI/VME
consists of the VXI/VME address space being accessed, the base offset
into the address space, the access privilege, and the byte order for the
accesses through the window. Before accessing a particular address,
you must set up the window with the appropriate hardware context.

You can use thlapVXIAddress function for this purpose. This

function returns a pointer that you can use for subsequent accesses to
the window with the/Xlpeek andVXIpoke functions.

On most system§Xipeek andVXIpoke are really C macros

(#defines) that dereference the pointer. It is highly recommended to
use these functions instead of performing the direct dereference within
the application. If your application does not ifs@peek and

VXIpoke , it might not be portable between different platforms. In
addition,vXlpeek andvXIpoke allow for compatibility between the

C language and other languages such as BASIC.

© National Instruments Corporation 3-27 NI-VXI User Manual

Chapter 3 Software Overview

Multiple-Pointer Access for a Window

NI-VXI User Manual

Application programmers can encounter a potential problem when the
application requires different privilege states, byte orders, and/or base
addresses within the same window. If the hardware context changes
due to a subsequent callNtapVXIAddress or other calls such as
SetPrivilege or SetByteOrder , previously mapped pointers would
not have their intended access parameters. This problem is greater in a
multitasking system, where independent and conflicting processes can
change the hardware context. Two types of access privileges to a
window are available to aid in solving this problédwner Privilege
andAccess-Only PrivilegeThese two privileges define which caller of
theMapVXIAddress function can change the settings of the
corresponding window.

Owner Privilege

A caller can obtain Owner Privilege to a window by requesting owner
privilege in theMapVXIAddress call (via theaccessparmgparameter).
This call will not succeed if another process already has either Owner
Privilege or Access-Only Privilege to that window. If the call succeeds,
the function returns a valid pointer and a non-negative return value.
The 32-bitwindowld output parameter returned from the
MapVXIAddress call associates the C pointer returned from the
function with a particular window and also signifies Owner Privilege to
that window. Owner Privilege access is complete and exclusive. The
caller can us&etPrivilege , SetByteOrder , andSetContext with
thiswindowld to dynamically change the access privileges.

Notice that if the call ttMapVvXIAddress succeeds for either Owner
Privilege or Access-Only Privilege, the pointer remains valid in both
cases until an expliciinMapVXIAddress call is made for the
corresponding window. The pointer is guaranteed to be a valid pointer
in either multitasking systems or nonmultitasking systems. The
advantage with Owner Privilege is that it gives complete and exclusive
access for that window to the caller, so you can dynamically change the
access privileges. Because no other callers can succeed, there is no
problem with either destroying another caller’'s access state or having
an inconsistent pointer environment.

Access-Only Privilege

A process can obtain Access-Only Privilege by requesting access-only
privileges in theMapVXIAddress call. With this privilege mode, you

3-28 © National Instruments Corporation

1= Note:

Chapter 3 Software Overview

can have multiple pointers in the same process or over multiple
processes to access a particular window simultaneously, while still
guaranteeing that the hardware context does not change between
accesses. The call succeeds under either of the following conditions:

« No processes are mapped for the window (first caller for
Access-Only Privilege for this window). The hardware context is

set as requested in the call. The call returns a successful status and a

valid C pointer andvindowld for Access-Only Privilege.

« No process currently has Owner Privilege to the required window.
Thereare processes with Access-Only Privilege, but they are using
the same hardware context (privilege state, byte order, address
range) for their accesses to the window. Because the hardware
context is compatible, it does not need to be changed. The call
returns a successful status and a valid C pointenémibwlId for
Access-Only Privilege.

The successful call returns a valid pointer and a non-negative return
value. The 32-bit window number signifies that the access privileges to
the window are Access-Only Privilege.

With Access-Only Privilege, you cannot use SetPrivilege
SetByteOrder , andSetContext calls in your application to
dynamically change the hardware context. No Access-Only accessor
can change the state of the window. The initial Access-Only call sets
the hardware context for the window, which cannot be changed until
all Access-Only accessors have callediapVXIAddress to free the
window. The functionsetPrivilege , GetByteOrder , and

GetContext will succeed regardless of whether the caller has Owner
Privilege or Access-Only Privilege.

The following paragraphs describe the low-level VXIbus access
functions. The descriptions are presented at a functional level
describing the operation of each of the functions. The functions are
grouped by area of functionality.

On MITE-based platformsMapVXIAddress cannot be called while the
CPU is in interrupt context. For this reason, it is recommended that you
not use theSaveContext andRestoreContext functions. Due to the
multiple window support of the MITE, you should not need these
functions.

© National Instruments Corporation 3-29 NI-VXI User Manual

Chapter 3 Software Overview

GetByteOrder (window, ordermode)

GetByteOrder retrieves the byte/word order of data transferred into
or out of the specified window. The two possible settings are Motorola
(most significant byte/word first) or Intel (least significant byte/word
first). The application can have either Owner-Access Privilege or
Access-Only Privilege to the applicable window for this function to
execute successfully.

GetContext (window, context)

GetContext retrieves all of the hardware interface settings (context)
for a particular VXI/VME window. The application can have either
Owner Access Privilege or Access-Only Privilege to the applicable
window for this function to execute successfully. Any application can
useGetContext along withSetContext to save and restore the
VXI/VME interface hardware state (context) for a particular window.

GetPrivilege (window, priv)

GetVXlbusStatus (

NI-VXI User Manual

GetPrivilege retrieves the current windowing hardware
VXI/VMEbus access privileges for the specified window. The possible
privileges include Nonprivileged Data, Supervisory Data,
Nonprivileged Program, Supervisory Program, Nonprivileged Block,
and Supervisory Block access. The application can have either
Owner-Access Privilege or Access-Only Privilege to the applicable
window for this function to execute successfully.

controller, status)

GetVXIbusStatus retrieves information about the current state of the
VXI/VMEDbus.

The information that is returned includes the state of the Sysfalil,
ACfail, VXI/VME interrupt, TTL trigger, and ECL trigger lines as

well as the number of VXI signals on the global signal queue. This
information returns in a C structure containing all of the known
information. An individual hardware platform might not support all

of the different hardware signals polled. In this case, a value of -1 is
returned for the corresponding field in the structure. Interrupt service
routines can automatically handle all of the conditions retrieved from
this function, if enabled to do so. You can use this function for simple
polled operations.

3-30 © National Instruments Corporation

Chapter 3 Software Overview

GetVXlbusStatusind (controller, field, status)

GetVXlbusStatusind retrieves information about the current state of
the VXI/VMEbus.

The information that can be returned includes the state of the Sysfalil,
ACfail, VXI interrupt, TTL trigger, or ECL trigger lines as well as the
number of VXI signals on the global signal queue. The specified
information returns in a single integer value. Tie&d parameter

specifies the particular VXI/VMEbus information to be returned. An
individual hardware platform might not support the specified hardware
signals polled. In this case, a value of -1 is returnefatus Interrupt
service routines can automatically handle all of the conditions retrieved
from this function, if enabled to do so. You can use this function for
simple polled operations.

GetWindowRange (window, windowbase, windowend)

GetWindowRange retrieves the range of addresses that a particular
VXI/VMEbus window can currently access within a particular
VXI/VMEbus address space. Thendowbaseandwindowend output
parameters are based on VXI/VME addresses (not local CPU
addresses). Theindow parameter value should be the value returned
from aMapVXIAddress call. The VXI/VME address space being
accessed is inherent in ttndow parameter.

MapVXIAddress (accessparms, address, timo, window, ret)

MapVXIAddress sets up a window into one of the VXI/VME address
spaces and returns a pointer to a local address that will access the
specified VXI/VME address. Thaeccessparmgarameter specifies
Owner Privilege/Access-Only Privilege, the VXI/VME address space,
the VXI/VME access privilege, and the byte ordering. The value of the
timo parameter gives the time (in milliseconds) that the process

will wait checking for window availability. The function returns
immediately if the window is already available, or if thmo value

is 0. Thetimo field is ignored in a uniprocess (nonmultitasking)
system. The return value Wwindow gives a unique window identifier
that various calls such @&etwindowRange or GetContext use to get
window settings. When a request for Owner Privilege is granted, you
can also use this window identifier with calls suclset€ontext or
SetPrivilege to change the hardware context for that window.

© National Instruments Corporation 3-31 NI-VXI User Manual

Chapter 3 Software Overview

MapVXIAddressSize (size)

MapVXIAddressSize sets the size for mapping user windows. The
subsequent calls tdapVXIAddress will attempt to map a window of
the size passed MapVXIAddressSize . MapVXIAddressSize only
provides a preferred size to thlapVXIAddress . If it is not possible to
map a window to the given sizdapVXIAddress can use a different
size. To determine the exact size of window mapped, use the
GetWindowRange function.

1+ Note: Not all platforms supporMapVXIAddressSize

SetByteOrder (window, ordermode)

SetByteOrder sets the byte/word order of data transferred into or out
of the specified window. The two possible settings are Motorola (most
significant byte/word first) or Intel (least significant byte/word first).
The application must have Owner-Access Privilege to the applicable
window for this function to execute successfully. Notice that some
hardware platforms do not allow you to change the byte order of a
window, which is reflected in the return code of the call to
SetByteOrder . Most Intel processor-based hardware platforms
support both byte order modes. Most Motorola processor-based
hardware platforms support only the Motorola byte order mode,
because the VXI/VMEbus is based on Motorola byte order.

SetContext (window, context)

SetContext sets all of the hardware interface settings (context)

for a particular VXI/VME window. The application must have
Owner-Access Privilege to the applicable window for this function to
execute successfully. Any application can @Gs&Context along with
SetContext to save and restore the VXI/VME interface hardware
state (context) for a particular window. As a result, the application can
set the hardware context associated with a particular pointer into
VXI/VME address spaces (obtained framapVXIAddress). After
making aMapVXIAddress call for Owner Access to a particular
window (and possibly calls tBetPrivilege andSetByteOrder),

you can callGetContext to save this context for later restoration by
SetContext

NI-VXI User Manual 3-32 © National Instruments Corporation

Chapter 3 Software Overview

SetPrivilege (window, priv)
SetPrivilege sets the VXI/VMEbus windowing hardware to access
the specified window with the specified VXI/VMEbus access privilege.
The possible privileges include Nonprivileged Data, Supervisory Data,
Nonprivileged Program, Supervisory Program, Nonprivileged
Block, and Supervisory Block access. The application must have
Owner-Access Privilege to the applicable window for this function to
execute successfully. Notice that some platforms may not support all of
the privilege states. This is reflected in the return code of the call to

SetPriviege . Nonprivileged Data transfers must be supported
within the VXI/VME environment, and are supported on all hardware
platforms.

UnMapVXIAddress (window)

UnMapVXIAddress reallocates the window mapped using the
MapVXIAddress function. If the caller is an Owner-Privilege accessor
(only one is permitted), the window is free to be remapped. If the caller
is an Access-Only Privilege accessor, the window can be remapped
only if the caller is the last Access-Only accessor. After a call is made
to UnMapVXIAddress , the pointer obtained froiMapVXIAddress is

no longer valid. You should no longer use the pointer because a
subsequent call may have changed the settings for the particular
window, or the window may no longer be accessible at all.

VXlpeek (addressptr, width, value)

VXlpeek reads a single byte, word, or longword from a particular
address obtained apVXIAddress . On most platforms using

C language interfacegXlIpeek is a macro. It is recommended,
however, that you uséXipeek instead of a direct dereference of the
pointer, as it supports portability between different platforms and
programming languages.

VXlpoke (addressptr, width, value)

VXIpoke writes a single byte, word, or longword to a particular
address obtained byapVXIAddress . On most platforms using

C language interfacegXIpoke is a macro. It is recommended,
however, that you uséXipoke instead of a direct dereference of the
pointer, as it supports portability between different platforms and
programming languages.

© National Instruments Corporation 3-33 NI-VXI User Manual

Chapter 3 Software Overview

Local Resource Access Functions

GetMyLA

Local resources are hardware and/or software capabilities that are
reserved for the local CPU (the CPU on which the NI-VXI interface
resides). You can use these functions to gain access to miscellaneous
local resources such as the local CPU register set and the local CPU
Shared RAM. These functions are useful for shared memory type
communication, non-Resource Manager operation, and debugging
purposes.

The following paragraphs describe the local resource access functions.
The descriptions are presented at a functional level describing the
operation of each of the functions. The functions are grouped by area
of functionality.

GetMyLA retrieves the logical address of the local VXI/VME device.
The local CPU VXI/VME logical address is required for retrieving
configuration information with one of thgetDevinfo functions. The
local CPU VXI/VME logical address is also required for creating
correct VXI signal values to send to other devices.

ReadMODID (modid)

ReadMODIDsenses the MODID line drivers of the local CPU when
configured as a VXI Slot 0 device. Theodid output parameter returns
the polarity of each of the slot's MODID lines.

SetMODID (enable, modid)

Note:

NI-VXI User Manual

SetMODID controls the MODID line drivers of the local CPU when
configured as a VXI Slot 0 device. Thaableparameter enables the
MODID drivers for all the slots. Thmodid parameter specifies which
slots should have their corresponding MODID lines asserted.

The MODIDIines are unique to the VXIbus and has no meaning on a
VMEDbus.

3-34 © National Instruments Corporation

Chapter 3 Software Overview

VXIIinLR (reg, width, value)

VXIinLR reads a single byte, word, or longword from the local CPU
VXI/VME registers. On many CPUs, the local CPU VXI/VME
registers cannot be accessed from the local CPU in the A16 address
space window (due to hardware limitations). Another area in the local
CPU address space is reserved for accessing the local CPU VXI
registersvXIinLR is designed to read these local registers. The
VXI/VME access privilege is not applicable but can be assumed to be
Nonprivileged Data. The byte order is Motorola. Unless otherwise
specified, reads should always be performed as words. This function
can be used to read configuration information (manufacturer, model
code, and so on) for the local CPU.

VXImemAlloc (size, useraddr, vxiaddr)

VXIimemAlloc allocates physical RAM from the operating system’s
dynamic memory pool. This RAM will reside in the VXI/VME Shared
RAM region of the local CPU/XImemAlloc returns not only the user
address that the application uses, but also the VXI/VME address that a
remote device would use to access this RAM. This function is very
helpful on virtual memory systems, which require contiguous,
locked-down blocks of virtual-to-physical RAM. On non-virtual
memory systems, this function isralloc (standard C dynamic
allocation routine) and an address translation. When the application is
finished using the memory, it should make a callxtmemFree to

return the memory to the operating system’s dynamic memory pool.

VXImemCopy (useraddr, bufaddr, size, dir)

VXImemCopy copies blocks of memory to or from the local user’'s

address space into the local shared memory region. On some interfaces,
your application cannot directly access local shared memory.
VXImemCopy gives you fast access to this local shared memory.

VXImemFree (useraddr)

VXImemFree reallocates physical RAM from the operating system’s
dynamic memory pool allocated usisgimemAlloc . VXimemAlloc

returns not only the user address that the application uses, but also the
VXI address that a remote device would use to access this RAM. When
the application is through using the memory, it should make a call to
VXImemFree (with the user address) to return the memory to the
operating system’s dynamic memory pool.

© National Instruments Corporation 3-35 NI-VXI User Manual

Chapter 3 Software Overview

VXIoutLR (reg, width, value)

VXIloutLR writes a single byte, word, or longword to the local CPU
VXI/VME registers. On many CPUSs, the local CPU VXI/VME

registers cannot be accessed from the local CPU in the A16 address
space window (due to hardware limitations). Another area in the local
CPU address space is reserved for accessing the local CPU VXI
registersVXloutLR is designed to write to these local VXI/VME
registers. The VXI/VME access privilege is not applicable but can be
assumed to be Nonprivileged Data. The byte order is Motorola. Unless
otherwise specified, writes should always be performed as words. This
function can be used to write application specific registers (A24 pointer
register, A32 pointer register, and so on) for the local CPU.

VXI Signal Functions

1 &= Note:

NI-VXI User Manual

With these functions, VXI/VME bus master devices can interrupt
another device. VXI signal functions can specify the signal routing,
manipulate the global signal queue, and wait for a particular signal
value (or set of values) to be received.

VXI signals are a basic form of asynchronous communication used by
VXI/VME bus master devices. A VXI signal is a 16-bit value written to
the Signal register of a VXI message-based device. Normally, the write
to the Signal register generates a local CPU interrupt, and the local
CPU then acquires the signal value in some device-specific manner. All
National Instruments hardware platforms have a hardware FIFO to
accumulate signal values while waiting for the local CPU to retrieve
them. The format of the 16-bit signal value is defined by the VXlbus
specification and is the same as the format used for the VXI interrupt
status/ID word that is returned during a VXI interrupt acknowledge
cycle. All VXI signals and status/ID values contain the VXI logical
address of the sending device in the lower 8 bits of the VXI signal or
status/ID value. The upper 8 bits of the 16-bit value depends on the
VXI device type.

For VME bus master devices, the VXI signal register can be considered a
general purpose notification register. Although thé&lbus specification
defines the use for this register, you can program the application on the
controller to respond to write to this register in any manner you require.

3-36 © National Instruments Corporation

Chapter 3 Software Overview

VXI signals from message-based devices can be one of two types:
Responssignals andeventsignals (bit 15 distinguishes between the
two). Responssignals are used to report changes in Word Serial
communication status between a Servant and its Commahaiatt
signals are used to inform another device of other asynchronous
changes. The folEventsignals currently defined by the VXIbus
specification (other thaBhared Memorfvents) ardNo Cause Given
Request for Service Tr§{BREQT),Request for Service Fal$BEQF),
andUnrecognized Comman&EQT and REQF are used to manipulate
the SRQ condition (RSV bit assertion in the IEEE 488/488.2 status
byte) whileUnrecognized Commarid used to report unsupported
Word Serial commands (only in VXIbus specification, Revision 1.2).
If the sender of a signal (or VXI interrupt status/ID) value is a
register-based device, the upper 8 bits are device dependent. Consult
your device manual for definitions of these values.

Two methods are available to handle VXI signals under the NI-VXI
software interface. Signals can be handled either by calling a handler or
by queuing on a global signal queue. RoaiteSignal function

specifies which types of signals are handled by the handlers, and which
are queued onto the global signal queue for each VXI logical address.
A separate handler can be installed for each VXI logical address
present (see the descriptionSatSignalHandler). The

InitVXllibrary function automatically installs a default handler,
DefaultSignalHandler , for every VXI logical address. If signals

are queued, the application can useSigealDeq function to

selectively retrieve a signal off a global signal queue by VXI logical
address and/or type of signal.

In another method for handling signals (and VXI/VME interrupts
routed to signals) other than the two previous methods, you can use
the functionwaitForSignal . This function can suspend a
process/function until a particular signal (or one of a set of signals)
arrives. A multitasking operating system lets you have any number of
WaitForSignal calls pending. A non-multitasking operating system
permits only one pendingyaitForSignal call. Notice that even on a
multitasking operating system, there is only one signal queue for the
entire system. Therefore, if two applications both wait on the same
logical address, it will be a racendition as to which process will
receive the signal.

© National Instruments Corporation 3-37 NI-VXI User Manual

Chapter 3 Software Overview

Programming Con

NI-VXI User Manual

siderations

The global signal queue used to hold signal values is of a finite length.
If the application is not handling signals fast enough, it is theoretically
possible to fill the global signal queue. If the global signal queue
becomes fullDisableSignalint is called to inhibit more signals

from being received. Under the VXIlbus specification, if the local CPU
signal FIFO becomes full (in which case a signal be lost if another
signal is written), the local CPU must return a bus error on any
subsequent writes to its Signal register. This bus error condition
notifies the sending CPU that the signal transfer needs to be retried.
This guarantees the application that, even if the global signal queue
becomes full, no signals will be lost.

In addition toDisableSignalint , theDisableVXItoSignalint

function is also called to disable VXI/VME interrupts from occurring
on levels that are routed to the signal Processor. \BlyaalDeq is
called to remove a signal from the global signal queue, the interrupts
for the Signal register and the VXI/VME interrupt levels routed to the
signal handler are automatically re-enabled.

If signals received never get dequeued, the global signal queue
eventually becomes full and the interrupts will be disabled forever. If
the signals were routed to tbefaultSignalHandler , all except
Unrecognized Commarteivents from message-based devices perform
no operationUnrecognized Commarievents call the function

WSabort to abort the current Word Serial operation in progress.

3-38 © National Instruments Corporation

Chapter 3 Software Overview

Figure 3-3 provides a graphical overview of the NI-VXI interrupt and
signal functions.

Hardware VXI/VME Interrupts 1-7 Local VXI Signals
| Get Status/Id | NI-VXI base Interrupt Service Routines (ISR) Get Signal
X VXl i nt Acknow edgeMbde() . .
Enabl eVXI i nt () - Enabl eVXI t 0Si gnal I nt () Enabl eSi gnal I nt ()
Di sabl eVXI i nt () Rout e\|/X| int() Di sabl eVXI t 0Si gnal I nt () Di sabl eSi gnal I nt ()
Q,/.
2%
)
° S,
— -
2 %
= @/0 Signal Processor
NI-VXI @ Wi t For Si gnal ()
N -
™ I'f signal not on queue "
Software 2 enabl e nonitor Rout eSi gnal ()
— block till received |
2 el se
Si gnal Deq() .
- return signal, mask Si gnal Enq()
[
F Si gnal Deq() ol
=~ S5
©)
E ©le
E 5|2
= 2| <
0|3
L A
A
User VXlintHandlers SignalHandlers
ISRs (1 per VXI/VME interrupt level) (1 per logical address)
Set VXI'i nt Handl er () Set Si gnal Handl er ()
Get VXI i nt Handl er () Get Si gnal Handl er ()
User Def aul t VXI i nt Handl er () \ \ Def aul t Si gnal Handl er ()
. . Wi t For Si gnal () Si gnal Enq()
Application Si gnal Deq()
Si gnal Jan()

Figure 3-3. NI-VXI Interrupt and Signal Model

WaitForSignal Considerations

The functionwaitForSignal ~ can be used to suspend a
process/function until a particular VXI signal (or one of a set of
signals) arrives. Any signals to be waited on should be routed to the
global signal queue. If thRouteSignal function has specified

for the signal to be handled by the interrupt service routine, the
WaitForSignal call will not detect that the signal and the
process/function may block until a timeowtaitForSignal attempts

to dequeue a signal of the specified type before the process/function is
suspended. If an appropriate signal can be dequeued, the signal is

© National Instruments Corporation 3-39 NI-VXI User Manual

Chapter 3 Software Overview

returned immediately to the caller and the process/function is not
suspended.

The following paragraphs describe the VXI signal functions and
default handler. The descriptions are presented at a functional level
describing the operation of each of the functions. The functions are
grouped by area of functionality.

DefaultSignalHandler (signal)

DefaultSignalHandler is the sample handler for VXI signals that

is installed when th&itvXllibrary function is called for every
applicable VXI logical address. The default handler performs no action
on the signals except whémrecognized Commarievents are

received. For these events, it calls the functit8abort with an

abortop of UnSupComto abort the current Word Serial transfer in
progress.

DisableSignalint ()

DisableSignalint desensitizes the application to local signal
interrupts. While signal interrupts are disabled, a write to the local
CPU VXI Signal register does not cause an interrupt on the local CPU;
instead, the local CPU hardware signal FIFO begins to fill up. If the
hardware FIFO becomes full, bus errors will occur on subsequent
writes to the Signal register. This function is automatically called when
the global signal queue becomes full, and is automatically re-enabled
on a call taSignalDeq . DisableSignalint along with

EnableSignalint can be used to temporarily suspend the generation
of signal interrupts.

EnableSignalint ()

NI-VXI User Manual

EnableSignallnt sensitizes the application to local signal interrupts.
When signal interrupts are enabled, any write to the local CPU VXI
Signal register causes an interrupt on the local CPU. The internal signal
router then routes the signal value to the handler or to the global
signal queue, as specified by ®euteSignal function.
EnableSignalint must be called aftanitvXllibrary to

begin the reception of signals. CallsRouteSignal and/or
SetSignalHandler must be made before the signal interrupt is
enabled to guarantee proper signal routing of the first signals.

3-40 © National Instruments Corporation

Chapter 3 Software Overview

GetSignalHandler (la)

GetSignalHandler returns the address of the current signal handler
for the specified VXI logical address. If signal interrupts are enabled
(via EnableSignalint), the signal handler for a specific logical
address is called if tHeouteSignal function has been set up to route
signals to the handler (as opposed to the global signal queue). The
InitVXllibrary function automatically installs a default handler,
DefaultSignalHandler , for every VXI logical address.

RouteSignal (la, modemask)

RouteSignal specifies how to route VXI signals for the application.
Two methods are available to handle VXI signals. You can handle the
signals either at interrupt service routine time or by queueing on a
global signal queue. For each VXI logical addressRitweSignal

function specifies which types of signals should be handled by the
handlers, and which should be queued on the global signal queue. A
separate handler can be installed for each VXI logical address present
(see the description &etSignalHandler). ThelnitvXilibrary

function automatically installs a default handler,

DefaultSignalHandler , for every VXI logical address. If signals

are queued, the application can useSigealDeq or

WaitForSignal ~ function to selectively return a signal off a global
signal queue by VXI logical address and/or type of signal. The default
for RouteSignal is to have all signals routed to interrupt service
routines.

SetSignalHandler (la, func)

SetSignalHandler replaces the current signal handler for the
specified VXI logical address with an alternate handler. If signal
interrupts are enabled (viaableSignalint), the signal handler for

a specific logical address is called if fReuteSignal function has
been set up to route signals to the handler (as opposed to the global
signal queue). ThiitVXllibrary function automatically installs a
default handlemefaultSignalHandler , for every VXI logical
address. The logical addre$s) (value of -2 is a special case and is
provided to specify a handler to capture signals from devices not
known to the device information table. This should occur only when
the local CPU is not the Resource Manager or VME devices not listed
in the Non-VXI Device Editor ifvXledit . Support is not provided to
handle these signals via the global signal queue or the

WaitForSignal function.

© National Instruments Corporation 3-41 NI-VXI User Manual

Chapter 3 Software Overview

SignalDeq (la, sig

nalmask, signal)

SignalDeq retrieves signals from the global signal queue. Two
methods are available to handle VXI signals. You can handle the
signals either by handlers or by queueing on a global signal queue. The
RouteSignal function specifies which types of signals should be
handled by which of the two methods for each VXI logical address.

You can useignalDeq to selectively dequeue a signal off of the

global signal queue. The signal specifiedsignalmaskfor the

specified logical addrestaj is dequeued and returned in the output
parametesignal.

SignalEng (signal)

SignalJam (signal

SignalEng places signals at the end of the global signal queue. You
can useSignalEng within a signal handler to queue a signal or to
simulate the reception of a signal by placing a value on the global
signal queue that was not actually received as a signal.

)

SignalJam places signals at the front of the global signal queue.
SignalJam can be used to simulate the reception of a signal by
placing a value on the global signal queue that was not actually
received as a signal. Beca®gnalJam places signal values on the
front of the global signal queue, the signal is guaranteed to be the first
of its type to be dequeued.

Note: This function is intended only for debugging purposes.

WaitForSignal (la, signalmask, timeout, retsignal, retsignalmask)

NI-VXI User Manual

WaitForSignal waits for the specified maximum amount of time for

a particular signal (or class of signals) to be receiggghalmask

defines the type(s) of signals that the application program waits for.
Thetimeout value specifies the maximum amount of time (in
milliseconds) to wait until the signal occurs. The signal that unblocks
thewaitForSignal call returns in the output parametetsignal.

You should use thevaitForSignal ~ function only when signals are
gueued. A multitasking operating system lets you have any number of
WaitForSignal ~ calls pending. A non-multitasking operating system
permits only one pendingaitForSignal call.

3-42 © National Instruments Corporation

Chapter 3 Software Overview

VXI Interrupt Functions

VXI/VME interrupts are a basic form of asynchronous communication
used by devices with interrupter support. In VME, a device asserts

a VME interrupt line and the VME interrupt handler device
acknowledges the interrupt. During the VME interrupt acknowledge
cycle, an 8-bit status/ID value is returned. Mostx@&Bbased VME

CPUs use this 8-bit value as a local interrupt vector value routed
directly to the 6880 processor. This value specifies which interrupt
service routine to invoke.

In VXI systems, however, the VXI interrupt acknowledge cycle returns
(at a minimum) a 16-bit status/ID value. This 16-bit status/ID value is
data, not a vector base location. The definition of the 16-bit value is
specified by the VXIbus specification and is the same as for the VXI
signal. The lower 8 bits of the status/ID value form the VXI logical
address of the interrupting device, while the upper 8 bits specify the
reason for interrupting.

VXI status/ID values from message-based devices can be one of two
types:Responsstatus/IDs an&ventstatus/IDs (bit 15 distinguishes
between the two). Response status/IDs are used to report changes in
Word Serial communication status between a Servant and its
Commander. Event status/IDs are used to inform another device of
other asynchronous changes. The four Event status/IDs currently
defined by the VXIbus specification (other thahared Memory

Events) ardNo Cause GiverRequest for Service Tr§REQT),

Request for Service Fal$REQF), andJnrecognized Command

REQT and REQF are used to manipulate the SRQ condition (RSV bit
assertion in the IEEE 488/488.2 status byte), whiteecognized
Commands used to report unsupported Word Serial commands (only
in VXlIbus specification, Revision 1.2). If the VXI interrupt status/ID
value is from a register-based device, the upper 8 bits are device
dependent. Consult your device manual for definitions of these values.

Because the VXI interrupt status/ID has the same format as the VXI
signal, your application can handle VXI interrupts as VXI signals.
However, because VME interrupters may be present in a VXI system,
the VXI/VME interrupt handler functions are included with the

NI-VXI software. TheRoutevXlint function specifies whether

the status/ID value should be handled as a signal or handled by a
VXI/VME interrupt handler. Two methods are available to handle VXI
signals. Signals can be handled either by calling a signal handler, or by
gueueing on a global signal queue. RuoateSignal function

© National Instruments Corporation 3-43 NI-VXI User Manual

Chapter 3 Software Overview

NI-VXI User Manual

specifies which types of signals are handled by signal handlers, and
which are queued onto the global signal queue for each VXI logical
address. A separate handler can be installed for each VXI logical
address present (refer to the descriptiorstaSignalHandler). A
default handlemefaultSignalHandler , is automatically installed
whenlnitVXllibrary is called from the application for every VXI
logical address. If signals are queued, the application can use the
SignalDeq function to selectively return a signal off a global signal
gueue by VXI logical address and/or type of signal.

Another method for handling signals (and VXI/VME interrupts routed

to signals) can be used instead of the two previous methods, and
involves using th&vaitForSignal ~ function.WaitForSignal ~ can be

used to suspend a process/function until a particular signal (or one of a
set of signals) arrives. In a multitasking operating system, any number
of WaitForSignal calls can be pending. In a nonmultitasking

operating system, only ongaitForSignal call can be pending.

If the RoutevXlint has specified that a status/ID value should be
handled by the VXI/VME interrupt handler and not by the signal
handler, the specified callback handler is invoked. The VXI/VME
interrupt handler for a particular level is called with the VXI interrupt
level and the status/ID without any interpretation of the status/ID value.
The callback handler can do whatever is necessary with the status/ID
value. TheSetVXlintHandler function can be called to change the
current callback handler for a particular level. A default handler,
DefaultVXlintHandler is automatically installed with a call to
InitVXllibrary at the start of the applicatioBnablevXlint — and
DisableVXlint are used to sensitize and desensitize the application
to VXI/VME interrupts routed to the VXI/VME interrupt handlers.
EnableVXItoSignalint andDisableVXItoSignalint are used to
sensitize and desensitize the application to VXI/VME interrupts routed
to be processed as VXI signals.

When you are testing VXI/VME interrupt handlers or creating a
message-based interrupter, you must assert a VXI/VMEbus interrupt
line and present a valid status/ID value. BeertvXlint ~ function
asserts an interrupt on the local CPU or on the specified extended
controller.DeAssertvXlint ~ can be used to unassert a VXI/VME
interrupt that was asserted using ssertvXlint function.
AcknowledgeVXlint can be used to acknowledge VXI/VME
interrupts that the local CPU is not enabled to automatically handle
via EnablevXlint or EnableVXItoSignalint . Both

3-44 © National Instruments Corporation

Chapter 3 Software Overview

DeAssertVXlint ~ andAcknowledgeVXlint are intended only for
debugging purposes.

Programming Considerations
Figure 3-4 is a graphical overview of the NI-VXI interrupt and signal

model.
Hardware VXI/VME Interrupts 1-7 Local VXI Signals
| Get Status/Id | NI-VXI base Interrupt Service Routines (ISR) Get Signal
) VXl i nt Acknow edgeMbde() .
Enabl eVXlint () - Enabl eVXI t 0Si gnal I nt () Enabl eSi gnal | nt ()
Di sabl eVXl i nt () Rout e\|,XI int() Di sabl eVXI t 0Si gnal I nt () Di sabl eSi gnal I nt ()
f(//.
%
)
o s,
= 3
g %,
= S Signal Processor
NI-VXI 17 Wi t For Si gnal ()
N -
™ If signal not on queue "
Software = enabl e nonitor Rout eSi gnal ()
_ bl ock till received |
2 el se
Si gnal Deq()
_ return signal, mask
[
P Si gnal Deq()
= g
© (]
— >
i ©
5 g
= 2
%]
A
A\
User VXlintHandlers SignalHandlers
ISRs (1 per VXI/VME interrupt level) (1 per logical address)
Set VXI'i nt Handl er () Set Si gnal Handl er ()
Get VXI i nt Handl er () Get Si gnal Handl er ()
User Def aul t VXI i nt Handl er () \ \ Def aul t Si gnal Handl er ()
. . Wi t For Si gnal () Si gnal Enq()
Application si gnal Deq()
Si gnal Jam()

Figure 3-4. NI-VXI Interrupt and Signal Model

© National Instruments Corporation 3-45 NI-VXI User Manual

Chapter 3

Software Overview

ROAK Versus RORA VXI/VME Interrupters

There are two types of VXI/VME interrupters. The Release On
Acknowledge (ROAK) interrupter is the more common. A ROAK
interrupter automatically unasserts the VXI/VME interrupt line it is
asserting when an interrupt acknowledge cycle on the backplane occurs
on the corresponding level. The VXlbus specification requires that all
message-based devices be ROAK interrupters. It is recommended that
all other types of VXI devices also be ROAK interrupters.

The Release On Register Access (RORA) interrupt is the second type
of VXI/VME interrupter. The RORA interrupter continues to assert the
VXI/VME interrupt line after the interrupt acknowledge cycle is
complete. The RORA interrupter will unassert the interrupt only when
some device-specific interaction is performed. There is no standard
method to cause a RORA interrupter to unassert its interrupt line.
Because a RORA interrupt remains asserted on the backplane, the local
CPU interrupt generation must be inhibited until the device-dependent
acknowledgment is complete.

The functionvXlintAcknowledgeMode specifies whether a

VXI/VME interrupt level for a particular controller (embedded or
extended) is to be handled as a RORA or ROAK interrupt. If the
VXI/VME interrupt is specified to be handled as a RORA interrupt, the
local CPU automatically inhibits VXI/VME interrupt generation for the
corresponding controller and levels whenever the corresponding
VXI/VME interrupt occurs. After the application has handled and
caused the RORA interrupter to unassert the interrupt line, either
EnableVXlint or EnableVXItoSignalint must be called to
re-enable local CPU interrupt generation.

The following paragraphs describe the VXI/VME interrupt functions

and default handler. The descriptions are presented at a functional level
describing the operation of each of the functions. The functions are
grouped by area of functionality.

AcknowledgeVXlint (controller, level, statusld)

Note:

NI-VXI User Manual

AcknowledgeVXlint performs a VXI/VME interrupt acknowledge
(IACK cycle) on the backplane in the specified controller and
VXI/VME interrupt level.

This function is intended only for debugging purposes.

3-46 © National Instruments Corporation

Chapter 3 Software Overview

Normally, VXI/VME interrupts are automatically acknowledged when
enabled via the functioBnablevXlint . However, if the interrupts

are not enabled and the assertion of an interrupt is detected through
some method (such &etVXIbusStatus), you can use
AcknowledgeVXlint to acknowledge an interrupt and return the
status/ID value. If theontroller parameter specifies an extended
controller,AcknowledgeVXlint specifies hardware on the VXI/VME
frame extender (if present) to acknowledge the specified interrupt.

AssertVXlint (controller, level, statusld)

AssertvXlint asserts a particular VXI/VME interrupt level on a
specified controller (embedded or extended) and returns the specified
status/ID value when acknowledged. You canAssertvXlint to

send any status/ID value to the VXI/VME interrupt handler configured
for the specified VXI/VME interrupt leveRssertvXlint returns
immediately (that is, it does not wait for the interrupt to be
acknowledged). You can ca@ktVvXIibusStatus to detect if the

interrupt has been serviced. Us@AssertvXlint to unassert a

interrupt that had been asserted ugisgertvXlint ~ but has not yet
been acknowledged.

DeAssertVXlint (controller, level)

DeAssertVXlint unasserts the VXI/VME interrupt level on a given
controller that was previously asserted usingAeertVXlint

function. You can usassertVXlint to send any status/ID value to
the VXI/VME interrupt handler configured for the specified interrupt
level. You can calGetVXIbusStatus to detect if the interrupt has
been serviced. UdeeAssertvXlint to unassert a VXI/VME
interrupt that had been asserted ugisgertvXlint ~ but has not yet
been acknowledged.

Note: Unasserting an interrupt may violate the VME and VXlbus specifications
if the interrupt has not yet been acknowledged by the interrupt handler.

DefaultVXlintHandler (controller, level, statusid)

DefaultvXlintHandler is the sample handler for VXI/VME
interrupts, which is installed when the functiaitvXlilibrary is
called. If VXI/VME interrupts are enabled (vimablevXlint), the
VXI/VME interrupt handler for a specific logical address is called. You
must first callRoutevXlint to route VXI/VME interrupts to the
callback handler (as opposed to the signal processing routine).

© National Instruments Corporation 3-47 NI-VXI User Manual

Chapter 3 Software Overview

DefaultVXlintHandler sets the global variables

VXlintController , VXlintLevel , andVvXlintStatusld . You can
leave this default handler installed or install a completely new handler
usingSetVXlintHandler

DisableVXlint (controller, levels)

DisableVXlint desensitizes the application to specified VXI

interrupt levels being processed as VXI/VME interrupts (not as VXI
signals) EnableVvXlint enables VXI/VME interrupts to be handled as
VXI/VME interrupts (not as VXI signals). A -1 (negative one) or local
logical address in theontroller parameter specifies the local frame

(for an embedded CPU) or the first extended controller (in an external
CPU situation).

DisableVXItoSignalint (controller, levels)

DisableVXItoSignalint desensitizes the application to specified
VXI/VME interrupt levels being processed as VXI/VME signals. An
EnableVXItoSignalint call enables VXI/VME interrupt levels that
are routed to VXI signals. UsasableVXItoSignallnt to disable
these interrupts. UsgnableVXlint to enable interrupts not routed to
signals. A -1 (negative one) or local logical address ircdméroller
parameter specifies the local frame (for an embedded CPU) or the first
extended controller (in an external CPU situation).RbateVXlint

call has specified to route a particular VXI/VME interrupt level to the
VXI signal processing routine and the global signal queue becomes
full, DisableVXItoSignalint is automatically called to inhibit these
VXI/VME interrupts from being received from the appropriate levels.
EnableVXItoSignalint is automatically called to enable interrupt
reception whersignalDeq is called.

EnableVXIlint (controller, levels)

NI-VXI User Manual

EnablevXlint sensitizes the application to specified VXI/VME
interrupt levels being processed as VXI/VME interrupts (not as

VXI signals). After callingnitvXilibrary , the application can
sensitize itself to interrupt levels for which it is configured to handle.
RouteVXlint specifies whether interrupts are to be handled as
VXI/VME interrupts or as VXI signals (the default is VXI signals).
You must then cakEnablevXlint to enable interrupts to be handled
as VXI/VME interrupts (not as VXI signals). A -1 (negative one) or
local logical address in th@ntroller parameter specifies the local

3-48 © National Instruments Corporation

Chapter 3 Software Overview

frame (for an embedded CPU) or the first extended controller (in an
external CPU situation).

EnableVXItoSignalint (controller, levels)

EnableVXItoSignalint is used to sensitize the application to
specified interrupt levels being processed as VXI signals. After calling
InitVXllibrary , the application can sensitize itself to interrupt
levels for which it is configured to handRoutevXlint specifies
whether interrupts are to be handled as VXI/VME interrupts or as VXI
signals (the default is VXI signals). AmableVXItoSignalint

call enables interrupt levels that are routed to VXI signals. Use
DisableVXItoSignalint to disable these VXI interrupts. Use
EnablevXlint to enable interrupts not routed to VXI signals. A -1
(negative one) or local logical address ind¢batroller parameter
specifies the local embedded controller or the first extended controller
(in an external controller situation). IfRoutevXlint call has

specified to route a particular VXI/VME interrupt level to the VXI
signal processing routine and the global signal queue becomes full,

DisableVXItoSignalint is automatically called to inhibit these
VXI interrupts from being received from the appropriate levels.
EnableVXItoSignalint is automatically called to enable VXI/VME

interrupt reception whefignalDeq is called.

GetVXlintHandler (level)

GetVXlintHandler returns the address of the current VXI/VME
interrupt handler routine for the specified interrupt level. If interrupts
are enabled (vignablevXlint), the callback handler for a specific
logical address is called. You must first dadluteVXlint to route
VXI/VME interrupts to the callback handler (as opposed to the signal

processing routine). A default handiBgfaultVXlintHandler ,is
automatically installed for every applicable VXI interrupt level when
the InitvXllibrary function is called.

RouteVXIlint (controller, Sroute)

RouteVXlint specifies whether status/ID values returned from a
VXI/VME interrupt acknowledge cycle are routed to a VXI/VME
interrupt handler or to the VXI signal processing routine. The function
RouteVXlint specifies whether the status/ID value should be handled
as a signal or handled locally by a VXI/VME interrupt handler. Two
methods are available to handle VXI signals. Signals can be handled
either by signal handlers (as signals) or by queueing on a global signal

© National Instruments Corporation 3-49 NI-VXI User Manual

Chapter 3

Software Overview

gueue. Th&outeSignal function specifies which types of signals
should be handled by signal handlers, and which should be queued on
the global signal queue for each VXI logical address. If the VXI/VME
interrupt status/IDs are specified to be handled by a VXI/VME

interrupt handler, the level and status/ID value is sent to the appropriate
callback handler when an interrupt occurs. An individual handler

can be installed for each of the seven VXI/VME interrupt levels.
EnableVXlint andEnableVXItoSignalint must be used to

sensitize the local CPU to interrupts generated by VXI/VME interrupts.
Only the levels routed to the appropriate handlers (VXI/VME

interrupts or VXI signals) via thRouteVXlint ~ function are enabled.

SetVXlintHandler (levels, func)

SetVXlintHandler replaces the current callback handler for the
specified VXI/VME interrupt levels with an alternate callback handler.
If VXI/VME interrupts are enabled (vieinablevXlint), the

VXI/VME interrupt handler for a specific logical address is called.
TheRouteVXlint function must first be called to route VXI/VME
interrupts to the callback handler (as opposed to the signal processing
routine). A default handleBefaultvXlintHandler is automatically
installed when thénitvXilibrary function is called for every
applicable VXI/VME interrupt level. You can use

SetVXlintHandler to install a new callback handler.

VXlintAcknowledgeMode (controller, modes)

NI-VXI User Manual

VXlintAcknowledgeMode specifies whether to handle the VXI/VME
interrupt acknowledge cycle for the specified controller (embedded or
extended) for the specified levels as ROAK interrupts or as RORA
interrupts. If the VXI/VME interrupt level is handled as a RORA
interrupt, the local interrupt generation is automatically inhibited
during the interrupt acknowledgment. After device-specific interaction
has caused the deassertion of the interrupt on the backplane, your
application must calEnablevXlint to re-enable the appropriate
VXI/VME interrupt level.

3-50 © National Instruments Corporation

Chapter 3 Software Overview

VXI Trigger Functions

VXI triggers are a backplane feature that VXI added to the VME
standard. Tight timing and signaling is important between many types

of controllers and/or instruments. In the past, clumsy cables of

specified length had to be connected between controllers and/or
instruments to get the required timing. For many systems, phase
shifting and propagation delays had to be calculated precisely, based on
the instrument connection scheme. This limited the architecture of
many systems.

In VXI however, every VXI board with a P2 connector has access to
eight 10 MHz TTL trigger lines. If the VXI board has a P3 connector, it
has access to six 100 MHz ECL trigger lines. The phase shifting and
propagation delays can be held to a known maximum, based on the
VXlbus specification’s rigid requirement on backplanes. The VXIbus
specification does not currently prescribe an allocation method for TTL
or ECL trigger lines. The application must decide how to allocate
required trigger lines.

The VXlbus specification specifies several trigger protocols that can be
supported, thereby promoting compatibility among the various VXI
devices. The following is a description of the four basic protocols.

+ SYNG-SYNC protocol is the most basic protocol. SYNC protocol
is a pulse of a minimum time (30 ns on TTL, 8 ns on ECL) on any
one of the trigger lines.

« ASYNG-ASYNC is a two-device, two-line handshake protocol.
ASYNC uses two consecutive even/odd trigger lines (a
source/acceptor line and an acknowledge line, respectively). The
sourcing device sources a trigger pulse (30 ns TTL, 8 ns ECL
minimum) on the even trigger line (TTLO, TTL2, TTL4, TTLS,
ECLO, ECL2, or ECL4) and waits for the acknowledge pulse on the
next highest odd trigger line (TTL1, TTL3, TTL5, TTL7, ECL1,
ECL3, or ECL5). The acceptor waits for the source pulse on the
even trigger line. Sometime after the source pulse is sensed (no
maximum time is specified), the acceptor sends an acknowledge
pulse back on the next highest odd trigger line to complete the
handshake.

+ SEMI-SYNE-SEMI-SYNC is a one-line, open collector,
multiple-device handshake protocol. The sourcing device sources a
trigger pulse (50 ns TTL, 20 ns ECL minimum) on any one of the
trigger lines. The accepting device(s) must begin to assert the same
trigger line upon reception (within 40 ns TTL, 15 ns ECL

© National Instruments Corporation 3-51 NI-VXI User Manual

Chapter 3 Software Overview

maximum time from source assertion edge). The accepting
device(s) can later unassert the trigger line (no maximum time is
specified) to complete the handshake.

+ START/STOR-START/STOP is a one-line, multiple-device
protocol. START/STOP can be sourced only by the VXI Slot 0
device and sensed by any other devices on the VXI backplane. The
START/STOP protocol is synchronized with the backplane clock
(CLK10 for TTL, CLK100 and SYNC100 for ECL) onto any one
of the trigger lines. A START condition is generated on the
assertion edge on the trigger line, and a STOP condition is
generated on the unassertion edge of the trigger line.

+ ON/OFF—ON/OFF protocol is identical to the START/STOP
protocol. The VXIbus specification, however, defines
START/STOP such that only Slot 0 may assert START/STOP.
Therefore, ON/OFF protocols are outside the VXIbus specifications
but provide similar functionality.

You can use these protocols in any way that your application requires.
You can use them for device synchronization, for stepping through
tests, or for a command path. The NI-VXI trigger functions have been
designed to accommodate all trigger lines and the protocols for all
appropriate TTL and ECL VXI trigger lines (SYNC, ASYNC,
SEMI-SYNC, START/STOP, and ON/OFF).

The VXI trigger functions have been grouped into the following four
categories:

« Source trigger functions

« Acceptor trigger functions

« Map trigger functions

« Trigger configuration functions

The actual capabilities of specific systems are based on the triggering
capabilities of the hardware devices involved (both the sourcing and
accepting devices). All of the NI-VXI functions have appropriate error
response for unsupported capabilities.

Capabilities of the National Instruments Triggering Hardware

The NI-VXI trigger functions are a general-purpose interface designed
to accommodate most uses of VXI triggers. The actual capabilities of a
particular platform will always be a subset of these capabilities. In

NI-VXI User Manual 3-52 © National Instruments Corporation

Chapter 3 Software Overview

general, however, National Instruments hardware has two current
configurations that provide triggering functionality:

Trigger control used on a VXI-MXI-1 frame extender when used as
an extending controller (under direct control of a root-level MXI-1
controller interface, such as an AT-MXI-1). These configurations
do nothave the National Instruments Trigger Interface Chip (TIC)
on them.

% Note: VXI-MXI-1 and VXI-MXI-2 controllers that are configured for extender
only (that is, not extending controllers), as well as external MXI-1
controllers, do not have trigger functionality. See the sectibhyltiple
Mainframe Supportin Chapter 2,Introduction to the NI-VXI Functions
for more information.

An embedded controller, external MXI-2 controllers, or
VXI-MXI-2 remote controllers. These configuratiods have the
National Instruments Trigger Interface Chip (TIC) on them.

External Controller/VXI-MXI-1 Trigger
Capabilities

All National Instruments external controllers (such as the AT-MXI-1)
that are connected to VXI-MXI-1 extending controllers have the same
basic trigger capabilities:

Source a single TTL or ECL (0 and 1 only) trigger using any
protocol on any one of the backplane TTL trigger lines

Accept a single backplane TTL or ECL (0 and 1 only) trigger using
any protocol (as long as it does not source SEMI-SYNC and
ASYNC protocols at the same time)

Map a front panel In connector to a TTL or ECL (0 or 1 only)
trigger line (sourcing will be disabled)

Source a TTL or ECL (0 or 1 only) trigger out the front panel

Map a TTL or ECL (0 or 1 only) trigger line from the backplane
out the front panel Out connector (accepting disabled) (Some
platforms do not have this capability.)

The following capabilities are not supported:

© National Instruments Corporation

Multiple-line support

Crosspoint switching

Signal conditioning

External connections other than the front panel In/Out

3-53 NI-VXI User Manual

Chapter 3 Software Overview

Embedded, External MXI-2, and Remote

Controller Trigger Capabilities

National Instruments has developed a highly functional ASIC
specifically designed for use within the VXlbus triggering environment
called the Trigger Interface Chip (TIC).

Note: In MXI-2 and the latest embedded systems, the TIC has been incorporated

into

the MANTIS ASIC.

The TIC chip has access to all of the eight VXI TTL trigger lines,

two ECL trigger lines (ECLO and ECL1), and 10 external or
General-Purpose Input/Output (GPIO) connections simultaneously.

The TIC also contains a 16-bit counter and a dual 5-bit scaler tick

timer. It contains a full crosspoint switch for routing trigger lines and
GPIOs (as well as the counter and the tick timers) between one another.

If you want more information on triggering or if you plan to use any of
the advanced features of the TIC, please contact National Instruments
for the technical notériggering with NI-VXI

Acceptor Trigger Functions

NI-VXI User Manual

The NI-VXI acceptor trigger functions act as a standard interface for
sensing (accepting) TTL and ECL triggers, as well as for sending
acknowledgments back to the sourcing device. These functions can
sense any of the VXI-defined trigger protocols on the local
embedded controller or external extended controller(s). Use the
EnableTrigSense function to prepare for the sensing of any of the
trigger protocols. If the protocol requires an acknowledgment, you
should call thedcknowledgeTrig ~ function when appropriate. You
can usesetTrigHandler to install a callback handler for the
specified trigger line. A default handl@efaultTrigHandler ,is
installed for each one of the trigger lines wietyXilibrary

is called and will calacknowledgeTrig for you. You can use the
SetTrigHandler function at any time to replace the default handlers.
In addition, you can use thgaitForTrig function to accommodate
applications that do not want to install callback handlers.

3-54 © National Instruments Corporation

Chapter 3 Software Overview

AcknowledgeTrig (controller, line)

AcknowledgeTrig performs the required trigger acknowledgments
for the ASYNC or SEMI-SYNC VXI-defined protocol, as configured
via theEnableTrigSense function.

DefaultTrigHandler (controller, line, type)

DefaultTrigHandler is the sample handler for the receiving
acknowledges and sensing triggers, and is automatically installed after
a call tolnitvXllibrary . After a call toEnableTrigSense for a

particular VXI trigger line protocol, the trigger handler for a specific
trigger line is called when the sourced trigger is sensed from the
sourcing device. If the configured VXI trigger protocol requires an
acknowledgment (either ASYNC or SEMI-SYNC), you must call the
AcknowledgeTrig function to perform the acknowledgment.
DefaultTrigHandler calls theAcknowledgeTrig function if the
type parameter specifies that an acknowledge interrupt occurred.
Otherwise DefaultTrigHandler performs no operations.

DefaultTrigHandler2 (controller, line, type)

DefaultTrigHandler2 is a sample handler for receiving
trigger interrupt sources similar BefaultTrigHandler
DefaultTrigHandler2 performs no operations. Any required

acknowledgments must be performed by the application.

DisableTrigSense (controller, line)

DisableTrigSense unconfigures and desensitizes the triggering
hardware that was enabled by thebleTrigSense function to

generate interrupts when any VXI-defined trigger protocol is sensed on
the specified trigger line.

EnableTrigSense (controller, line, prot)

EnableTrigSense configures and sensitizes the triggering hardware
to generate interrupts when the specified VXI-defined trigger protocol
is sensed on the specified trigger line. WEenableTrigSense has
configured and enabled the triggering hardware to generate interrupts,
and the specified trigger protocol is sensed, a local CPU interrupt is
generated. The trigger handler installed is automatically called when a
trigger interrupt occurs.

© National Instruments Corporation 3-55 NI-VXI User Manual

Chapter 3 Software Overview

GetTrigHandler (line)

GetTrigHandler returns the address of the current trigger handler for
the specified VXI trigger line.

SetTrigHandler (lines, func)

SetTrigHandler ~ replaces the current trigger handler for the specified
VXI trigger lines with an alternate handler.

WaitForTrig (controller, line, timeout)

You can use th@/aitForTrig function to suspend operation until it
receives a trigger configured by tBeableTrigSense function.

After a call toEnableTrigSense for a particular VVXI trigger line
protocol, the trigger handler for a specific trigger line is called when
the sourced trigger is sensed from the sourcing device. You can use
WaitForTrig ~ as an alternate method for receiving sensed triggers by
having the caller wait until the trigger occurs instead of installing a
callback handler. The current handler is invoked regardless of whether
aWaitForTrig call is pending.

Map Trigger Functions

You can use the NI-VXI map trigger functions as configuration tools
for multiframe and local support for VXI triggers. You can configure
the triggering hardware to route specified source trigger locations to
destination trigger locations by using WMepTrigToTrig and
UnMapTrigToTrig functions.

MapTrigToTrig (controller, srcTrig, destTrig, mode)

MapTrigToTrig configures triggering hardware to route specified
source trigger locations to destination trigger locations with some
possible signal conditioning. The possible values for source or
destination locations are the TTL trigger lines, ECL trigger lines,
Star X lines, Star Y lines, or miscellaneous external sources.
Miscellaneous external sources include front panel trigger ins, front
panel trigger outs, local clocks, and crosspoint switch locations. The
mode parameter specifies how the line is to be routed to the
destination. You can manipulate the line in various ways, including
inverting it, synchronizing it with the CLK10, or stretching it to a
minimum time. In this wayMapTrigToTrig can be used as a simple
map from an external source to a trigger line, or as a complex

NI-VXI User Manual 3-56 © National Instruments Corporation

Chapter 3 Software Overview

crosspoint switch configurator (depending on the hardware capabilities
of the applicable device).

UnMapTrigToTrig (controller, srcTrig, destTrig)

UnMapTrigToTrig unconfigures triggering hardware that was
configured by theMapTrigToTrig function to route specified source
trigger locations to destination trigger locations.

Source Trigger Functions

The NI-VXI source trigger functions act as a standard interface for
asserting (sourcing) TTL and ECL triggers, as well as for detecting
acknowledgments from accepting devices. These functions can source
any of the VXI-defined trigger protocols from the local embedded
controller or external extended controller(s). You can us&rtiig
function to initiate any of the trigger protocols. If the protocol requires
an acknowledgment and your application is required to know when the
acknowledgment occurs, you must useShfirigHandler function

to install a callback handler for the specified trigger line. A default
handler DefaultTrigHandler , is installed for each one of the

trigger lines whernitVXllibrary is called. You can use the
SetTrigHandler ~ function at any time to replace the default handlers.

SrcTrig (controller, line, prot, timeout)

UseSrcTrig to source any one of the VXI-defined trigger protocols
from the local CPU or from any remote frame extender device

that supports trigger assertion. For protocols that require an
acknowledgment from the accepting device (ASYNC or SEMI-SYNC),
you need to specify whether to wait for an acknowledgment (with a
timeout) or return immediately and let the trigger handler get called
when the acknowledgment is received. Another option is available in
which you can assert or unassert any of the trigger lines continuously,
or have an external trigger (possibly from the front panel) routed to the
VXIbus backplane.

© National Instruments Corporation 3-57 NI-VXI User Manual

Chapter 3 Software Overview

Trigger Configuration Functions

You can use the NI-VXI trigger configuration functions to configure
not only the general settings of the trigger inputs and outputs, but also
the TIC counter and tick timers.

TrigAssertConfig (controller, trigline, mode)

TrigAssertConfig configures the local triggering generation method
for the TTL/ECL triggers. You can decide on an individual basis
whether to synchronize the triggers to CLK10. You can globally select
the synchronization to be the rising or falling edge of CLK10. In
addition, you can specify the trigger line to partake in automatic
external SEMI-SYNC acknowledgment. In this mode, when a trigger is
sensed on the line, the line is asserted until an external (GPIO) trigger
line which is mapped to the corresponding trigger line is pulsed. You
can also usacknowledgeTrig to manually acknowledge a pending
SEMI-SYNC trigger configured in this fashion.

TrigCntrConfig (controller, mode, source, count)

TrigCntrConfig configures the TIC chip’s 16-bit counter. You can
use this function to initialize, reload, or disable the current counter
settings. If the counter is initialized, you must call eithefTrig or
EnableTrigSense to actually start the counter. You can use any
trigger line, CLK10, or EXTCLK as the source of the counter. The
count range is 1 to 65535. You can use the counter to source multiple
sync or multiple semi-sync triggers to one or more trigger lines. You
can also use it to accept multiple sync or multiple semi-sync triggers
from one trigger line. The counter has two outputs: TCNTR and
GCNTR. The TCNTR signal pulses for 100 ns every time a source
pulse occurs. You can ustapTrigToTrig to map the TCNTR signal

to one or more trigger lines. The GCNTR signal stays unasserted until
the counter goes from 1 to 0. It then becomes asserted until the counter
is disabled. You can use tMapTrigToTrig function to directly map

the GCNTR signal to one or more GPIO lines.

TrigExtConfig (controller, extline, mode)

TrigExtConfig configures the way the external trigger sources
(General-Purpose Inputs and OutputsG&Og are configured. The

TIC chip has 10 GPIO lines. Typically, GPIO 0 is connected to the
front panel In connector. GPIO 1 is connected to the front panel Out
connector. GPIO 2 is connected to a direct ECL bypass from the front

NI-VXI User Manual 3-58 © National Instruments Corporation

Chapter 3 Software Overview

panel. GPIO 3 is fed back in as the EXTCLK signal used for signal
conditioning modes witMapTrigToTrig . The six remaining GPIOs

are dependent upon the hardware platform. Regardless of the sources
connected to the GPIOBigExtConfig configures several aspects

of the connection. You can disconnect and feed back the connection for
use as a crosspoint switch. You can also choose whether to invert the
external input. In addition, you can configure the GPIO to be asserted
high or low continuously. In this configuration, no input mapping is
possible (that is, no trigger line can be mapped to the GPIO).

TrigTickConfig (controller, mode, source, tcountl, tcount2)

TrigTickConfig configures the TIC chip’s dual 5-bit tick timers.

This function can initialize with auto reload, initialize with manual
reload, do a manual reload, or disable the current tick timer settings. If
the tick timer is initialized, you must call eithemableTrigSense or
SrcTrig to start the tick timer. You can use any GPIO line, CLK10, or
EXTCLK as the source of the tick timer. Both tick timers—TICK1 and
TICK2—count independently from the same internal counter. The
range for each tick timer is specified as a power of two from 0 to 31. If
you did not select auto reload, the timer stops when TICK1 has counted
to zero. You can usdapTrigToTrig to map the TICK1 output signal

to one or more trigger lines, or to map the TICK2 output signal to one
or more trigger lines or GPIO lines. Both TICK1 and TICK2 outputs
are square wave outputs. The signal is asserted for the duration of the
corresponding tick count and then unasserted for the duration of the
count.

System Interrupt Handler Functions

With these functions, you can handle miscellaneous system conditions
that can occur in the VXI/VME environment, such as Sysfail, ACfail,
Sysreset, Bus Error, and/or Soft Reset interrupts. The NI-VXI software
interface can handle all of these system conditions for the application
through the use of callback routines. The NI-VXI software handles all
system interrupt handlers in the same manner. Each type of interrupt
has its own specified default handler, which is installed when
InitVXllibrary initializes the NI-VXI software. If your application
program requires a different interrupt handling algorithm, it can call the
appropriateSetHandler ~ function to install a new callback handler. All
system interrupt handlers are initially disabled (except for Bus Error).
The corresponding enable function for each handler must be called in
order to invoke the default or user-installed handler.

© National Instruments Corporation 3-59 NI-VXI User Manual

Chapter 3 Software Overview

The following paragraphs describe the system interrupt handler
functions and default handlers. The descriptions are presented at a
functional level describing the operation of each of the functions. The
functions are grouped by area of functionality.

AssertSysreset (controller, mode)

AssertSysreset asserts the SYSRESET* signal on the specified
controller. You can use this function to reset the local CPU, individual
mainframes, all mainframes, or the entire system. If you reset the
system but not the local CPU, you will need to re-execute all device
configuration programs.

% Note: Due to the operation of some operating systems, not all platforms support
resetting the local CPU.

DefaultACfailHandler (controller)

DefaultACfailHandler is the sample handler for the ACfail

interrupt, and is installed as a default handler whiviXilibrary

initializes the NI-VXI software. It increments the global variable
ACfailRecv . The VXI/VMEbus specification allows for a minimum
amount of time after a power failure condition occurs for the system to
remain operational. The detection of a power failure in a VXI/VME
system asserts the backplane signal ACFAIL*. An ACfail condition
detected on the local CPU generates an interrupt that calls the current
ACfail interrupt handler. Your application can take any appropriate
action within the allotted time period before complete power failure.
Your application must then cadthableACfail to enable ACfail
interrupts after thanitvXllibrary call.

DefaultBusErrorHandler ()

NI-VXI User Manual

DefaultBusErrorHandler is the sample handler for the bus error
exception, and is installed as a default handler vitierXilibrary

initializes the NI-VXI software. During an access to the VXI/VMEDbus,
the BERR* signal (bus error) is asserted to end the bus cycle if the
address or mode of access is determined to be invalid. The bus error
exception condition generates an exception on the local CPU, which
can be trapped by the bus error handler. Your application should
include a retry mechanism if it is possible for a particular access to
generate bus errors at times and valid results at other times. Because
bus errors can occur at any time, a corresponding enable and disable
function is not possible. Notice that only BERRs occurring via

3-60 © National Instruments Corporation

Chapter 3 Software Overview

low-level VXI/VMEbus access functions will be reported to this
handler. See also the descriptionsefBusErrorHandler and
GetBusErrorHandler

DefaultSoftResetHandler ()

DefaultSoftResetHandler is the sample handler for the Soft Reset
interrupt, and is installed as a default handler whigviXilibrary

initializes the NI-VXI software. It increments the global variable
SoftResetRecv . When the Reset bit in the VXI Control register of

the local CPU is written, the VXI interface (if an embedded CPU) and
the VXI register sets are reset (VXI logical address and address base
are retained). The write to the Reset bit causes an interrupt on the local
CPU, which can be handled in any appropriate manner. The CPU
cannot restart operation until the Reset bit is cleared. After the Reset bit
is cleared, the local CPU can go through a reinitialization process or
reboot altogether. If the local CPU is the Resource Manager (and
top-level Commander), the Reset bit should never be written. Writing
the Reset bit of any device should be reserved for the Commander of
the deviceEnableSoftReset ~ must be called to enable writes to the
Reset bit to generate interrupts to the local CPU after the

InitVXllibrary call.

Note: The Soft Reset interrupt does not apply to VME.

DefaultSysfailHandler (controller)

DefaultSysfailHandler is the sample handler for the Sysfail
interrupt, and is installed as a default handler whiviXilibrary

initializes the NI-VXI software. The VXIbus specification requires that
all VXI Commanders monitor the PASSed or FAILed state of their

VXI Servants. When a VXIbus device is in the FAILed state, the

failed device clears its PASS bit (in its Status register) and asserts the
SYSFAIL* signal on the VXIlbus backplane. A Sysfail condition
detected on the local CPU generates an interrupt that calls the current
Sysfail interrupt handler. The failed Servant device must be

forced offline or brought back online in an orderly fashion.
DefaultSysfailHandler scans the local CPU Servants and if a
Servant is detected to have failed, the Servant’s Sysfail Inhibit bit in its
Control register is set. In addition, the global variedysfailRecv is
incremented.

© National Instruments Corporation 3-61 NI-VXI User Manual

Chapter 3 Software Overview

DefaultSysresetHandler (controller)

DefaultSysresetHandler is the sample handler for the Sysreset
interrupt, and is installed as a default handler whiviXilibrary
initializes the NI-VXI software. It increments the global variable
SysresetRecv

DisableACfail (controller)

DisableSoftReset

DisableACfail desensitizes the application to ACfail interrupts from
embedded controller or extended controller(s) ACfail conditions
(dependent on the hardware platform). The VXI/VMEbus specification
allows for a minimum amount of time after a power failure condition
occurs for the system to remain operational. The detection of the power
failure asserts the VXI/VMEbus backplane signal ACFAIL*. An

ACfail condition detected on the local CPU generates an interrupt that
calls the current ACfail interrupt handler. Your application can take

any appropriate action within the allotted time period before complete
power failure.

0

DisableSoftReset desensitizes the application to Soft Reset
conditions on the local CPU. When the Reset bit in the VXI Control
register of the local CPU is written, the VXI interface (if an embedded
CPU) and the VXI register sets are reset (VXI logical address and
address base are retained). The write to the Reset bit causes an interrupt
on the local CPU, which can be handled in any appropriate manner.
The CPU cannot restart operation until the Reset bit is cleared. After
the Reset bit is cleared, the local CPU can go through a reinitialization
process or reboot altogether. If the local CPU is the Resource Manager
(and top-level Commander), the Reset bit should never be written.
Writing the Reset bit of any device should be reserved for the
Commander of the device.

1+ Note: The Soft Reset interrupt does not apply to VME.

DisableSysfail (controller)

NI-VXI User Manual

DisableSysfail desensitizes the application to Sysfail interrupts
from embedded controller or extended controller(s) Sysfail conditions
(dependent on the hardware platform). The VXIbus specification
requires that all VXI Commanders monitor the PASSed or FAILed
state of their VXI Servants. When a VXlbus device is in the FAILed

3-62 © National Instruments Corporation

Chapter 3 Software Overview

state, the failed device clears its PASS bit (in its Status register) and
asserts the SYSFAIL* signal on the VXIbus backplane.

DisableSysreset (controller)

DisableSysreset desensitizes the application to Sysreset interrupts
from embedded or extended controller(s) (dependent on the hardware
platform).

EnableACfail (controller)

EnableACfail sensitizes the application to ACfail interrupts from
embedded controller or extended controller(s) ACfail conditions
(dependent on the hardware platform). The VXI/VMEbus specification
allows for a minimum amount of time after a power failure condition
occurs for the system to remain operational. The detection of the power
failure asserts the VXI/VMEbus backplane signal ACFAIL*. An

ACfail condition detected on the local CPU generates an interrupt that
calls the current ACfail interrupt handler. Your application can take

any appropriate action within the allotted time period before complete
power failure.

EnableSoftReset ()

EnableSoftReset sensitizes the application to Soft Reset conditions
on the local CPU. When the Reset bit in the VXI Control register of the
local CPU is written, the VXI interface (if an embedded CPU) and the
VXI register sets are reset (VXI logical address and address base are
retained). The write to the Reset bit causes an interrupt on the local
CPU, which can be handled in any appropriate manner. The CPU
cannot restart operation until the Reset bit is cleared. After the Reset bit
is cleared, the local CPU can go through a reinitialization process or
reboot altogether. If the local CPU is the Resource Manager (and
top-level Commander), the Reset bit should never be written. Writing
the Reset bit of any device should be reserved for the Commander of
the device.

Note: The Soft Reset interrupt does not apply to VME.

EnableSysfail (controller)

EnableSysfail sensitizes the application to Sysfail interrupts from
embedded controller or extended controller(s) Sysfail conditions
(dependent on the hardware platform and configuration). The VXlbus

© National Instruments Corporation 3-63 NI-VXI User Manual

Chapter 3 Software Overview

specification requires that all VXI Commanders monitor the PASSed or
FAIlLed state of their VXI Servants. When a VXIbus device is in the
FAlLed state, the failed device clears its PASS bit (in its Status
register) and asserts the SYSFAIL* signal on the VXIbus backplane.
When a Sysfail condition is detected on the local CPU, an interrupt is
generated, and the current Sysfail interrupt handler is called. The failed
Servant device must be forced offline or brought back online in an
orderly fashion.

EnableSysreset (controller)

EnableSysreset sensitizes the application to Sysreset interrupts from
embedded or extended controller(s) (dependent on the hardware
platform). Notice that if the local CPU is configured to be reset by
Sysreset conditions on the backplane, the interrupt handler will not get
invoked (the CPU will reboot).

GetACfailHandler ()

GetACfailHandler returns the address of the current ACfail interrupt
handler. An ACfail condition detected on the local CPU generates

an interrupt that calls the current ACfail interrupt handler. Your
application can take any appropriate action within the allotted time
period before complete power failure. TlhiVXllibrary function
automatically installs a default handlBgfaultACfailHandler ,

when it initializes the NI-VXI software.

GetBusErrorHandler ()

NI-VXI User Manual

GetBusErrorHandler returns the address of the current bus error
interrupt handler. During an access to the VXI/VMEbus, the BERR*
signal (bus error) is asserted to end the bus cycle if the address or mode
of access is determined to be invalid. The bus error exception condition
generates an exception on the local CPU, which can be trapped by the
bus error handler. Your application should include a retry mechanism if
it is possible for a particular access to generate bus errors at times

and valid results at other times. ThavXllibrary function
automatically installs a default handlBgfaultBusErrorHandler ,

when it initializes the NI-VXI software. It increments the global
variableBusErrorRecv . Because bus errors can occur at any time, a
corresponding enable and disable function is not possible.

3-64 © National Instruments Corporation

Chapter 3 Software Overview

GetSoftResetHandler ()

GetSoftResetHandler returns the address of the current Soft Reset

interrupt handler. A default handl@efaultSoftResetHandler ,is
automatically installed whelnitVXllibrary initializes the NI-VXI
software.

1+ Note: The Soft Reset interrupt does not apply to VME.

GetSysfailHandler ()

GetSysfailHandler returns the address of the current Sysfail
interrupt handler. A Sysfail condition detected on the local CPU
generates an interrupt that calls the current Sysfail interrupt handler. A
default handleefaultSysfailHandler , is automatically installed
whenlinitvXllibrary initializes the NI-VXI software.

GetSysresetHandler ()

GetSysresetHandler returns the address of the current Sysreset
interrupt handler. TheitVXllibrary function automatically
installs a default handlebefaultSysresetHandler , when it
initializes the NI-VXI software.

SetACfailHandler (func)

SetACfailHandler replaces the current ACfail interrupt handler with
an alternate handler. An ACfail condition detected on the local CPU
generates an interrupt that calls the current ACfail interrupt handler.
Your application can take any appropriate action within the allotted
time period before complete power failure. ThievXllibrary

function automatically installs a default handler,

DefaultACfailHandler , When it initializes the NI-VXI software.
Your application must then cathableACfail to enable ACfail
interrupts.

SetBusErrorHandler (func)

SetBusErrorHandler replaces the current bus error interrupt handler
with an alternate handler. During an access to the VXI/VMEbus, the
BERR?* signal (bus error) is asserted to end the bus cycle if the address
or mode of access is determined to be invalid. The bus error exception
condition generates an exception on the local CPU, which can be
trapped by the bus error handler. Your application should include a
retry mechanism if it is possible for a particular access to generate bus

© National Instruments Corporation 3-65 NI-VXI User Manual

Chapter 3 Software Overview

errors at times and valid results at other times. iitXllibrary

function automatically installs a default handler,

DefaultBusErrorHandler , When it initializes the NI-VXI software.
Because bus errors can occur at any time, a corresponding enable and
disable function is not possible.

SetSoftResetHandler (func)

SetSoftResetHandler replaces the current Soft Reset
interrupt handler with an alternate handler. A default handler,

DefaultSoftResetHandler , is automatically installed when

InitvXllibrary initializes the NI-VXI software.

EnableSoftReset must be called to enable writes to the Reset bit to

generate interrupts to the local CPU afteritte Xllibrary call.
Note: The Soft Reset interrupt does not apply to VME.

SetSysfailHandler (func)

SetSysfailHandler replaces the current Sysfail interrupt handler
with an alternate handler. A Sysfail condition detected on the local
CPU generates an interrupt that calls the current Sysfail interrupt
handler. A default handlebefaultSysfailHandler NS
automatically installed whelnitVXllibrary initializes the NI-VXI
software EnableSysfail must be called to enable Sysfail interrupts
after thelnitvXllibrary call.

SetSysresetHandler (func)

SetSysresetHandler replaces the current SYSRESET* interrupt
handler with an alternate handler. ThigvXlilibrary function
automatically installs a default handlBgfaultSysresetHandler ,
when it initializes the NI-VXI software. Your application must then
call EnableSysreset to enable writes to the Reset bit to generate
interrupts to the local CPU.

NI-VXI User Manual 3-66 © National Instruments Corporation

Chapter 3 Software Overview

VXI/VMEbus Extender Functions

The NI-VXI software interface fully supports the standard VXlbus
extension method presented in ¥Wélbus Mainframe Extender
Specification When the National Instruments Resource Manager (RM)
completes its configuration, all default transparent extensions are
complete. The transparent extensions include extensions of VXI/VME
interrupt, TTL trigger, ECL trigger, Sysfail, ACfail, and Sysreset
signals. The VXI/VMEbus extender functions are used to dynamically
change the default RM settings if the application has such a
requirement. Usually, the application never needs to change the default
settings. Consult your utilities manual on how to use the NI-VXI
resource editor utility, eitharXiedit orVvXltedit , to change the
default extender settings.

Note: The MXlbus, which is used as the transparent mainframe extender bus,
extends both VXI and VME chassis and even allows a system consisting
of both VXI and VME chassis.

The following paragraphs describe the VXI/VMEbus extender
functions. The descriptions are presented at a functional level
describing the operation of each of the functions.

MapECLtrig

MapECLtrig configures mainframe extender triggering hardware to

map the specified ECL triggers for the specified mainframe in the
specified direction (into or out of the mainframe). If the specified

frame extender can extend VXI ECL triggers between the mainframes,
you can us@apECLtrig to configure the mainframe-to-mainframe
mapping. The NI-VXI Resource Manager automatically configures a
default mapping based on the user-modifiable configuration files. The
MapECLtrig function can dynamically reconfigure the ECL trigger
mapping. Only special circumstances should require any changes to the
default configuration.

MapTTLtrig

MapTTLtrig configures mainframe extender triggering hardware to
map the specified TTL triggers for the specified mainframe in the
specified direction (into or out of the mainframe). If the specified
frame extender can extend VXI TTL triggers between the mainframes,

© National Instruments Corporation 3-67 NI-VXI User Manual

Chapter 3 Software Overview

you can us#apTTLtrig to configure the mainframe-to-mainframe
mapping. The NI-VXI Resource Manager automatically configures a
default mapping based on the user-modifiable configuration files. The
MapTTLtrig function can dynamically reconfigure the TTL trigger
mapping. Only special circumstances should require any changes to the
default configuration.

MapUtilBus (extender, modes)

MapUtilBus configures mainframe extender utility bus hardware to
map Sysfail, ACfail, and/or Sysreset for the specified mainframe into
and/or out of the mainframe. If the specified frame extender can extend
the VXI/VME utility signals between mainframes, you can use
MapUtilBus to configure the mainframe-to-mainframe mapping. The
NI-VXI Resource Manager automatically configures a default mapping
based on user-modifiable configuration files. MepUtilBus

function can dynamically reconfigure the utility bus mapping. Only
special circumstances should require any changes to the default
configuration.

MapVXlint (extender, levels, directions)

MapVXlint changes the VXI/VME interrupt extension configuration

in multiple mainframe configurations. If the specified frame extender
can extend the VXI/VME interrupts between mainframes, you can use
MapVXlint to configure the mainframe-to-mainframe mapping. The
NI-VXI Resource Manager automatically configures a default mapping
based on user-modifiable configuration files. MepVXlint function

can dynamically reconfigure the utility bus mapping. Only special
circumstances should require any changes to the default configuration.

NI-VXI User Manual 3-68 © National Instruments Corporation

Function Classification

Reference

Appendix

This appendix contains two tables you can use as a quick reference.

Table A-1,Function Listing by Grouglists the NI-VXI functions by

their group association. This arrangement can help you determine
easily which functions are available within each group. Table A-2,
Function Listing by Namdists each function alphabetically. You can
refer to this table if you don’t remember the group association of a

particular function. Both tables use checkmarks to denote whether a

VXI function also applies to VME and also whether it is associated

with C/C++ and/or BASIC.

Table A-1. Function Listing by Group

Group

Function

VXI

<
<
m

C/C++ |BASIC

System

Configuration

CloseVXllibrary

O
O

CreateDevlinfo

FindDevLA

GetDevinfo

GetDevinfoLong

GetDeviInfoShort

GetDevInfoStr

InitVXllibrary

ool o] o

SetDevinfo

SetDevinfoLong

SetDeviInfoShort

SetDevInfoStr

go|lojlo|lo|lo|golo|lo|lo|) ol ol o

g|lojlo|lo|lo|glo|lo|lo|) ol ol o

o|lo|lo|lo|lo|lgo|lo|yo|lo|l gl O

© National Instruments Corporationl A-1

NI-VXI User Manual

Appendix A Function Classification Reference

Table A-1. Function Listing by Group

Group Function VXl [VME |C/C++ |BASIC

O
O

Commander WSabort

Word Serial WSclr

Protocol WScmd / WSEcmd/ WSLcmd

WSgetTmo

WSrd / WSrdi / WSrdl

WSrdf

WSresp/WSLresp

WSsetTmo

WStrg

WSwrt / WSwrti / WSwrtl

o|lgo|ofo|jloa|ofola)gof o

WSwrtf

Servant Word DefaultWSScmdHandler

Serial Protocol DefaultWSSEcmdHandler

DefaultWSSLcmdHandler

DefaultWSSrdHandler

DefaultWSSwrtHandler

GenProtError

GetWSScmdHandler

GetWSSEcmdHandler

GetWSSLcmdHandler

GetWSSrdHandler

GetWSSwrtHandler

RespProtError

SetWSScmdHandler

SetWSSEcmdHandler

SetWSSLcmdHandler

o|lo|lgololo|lgololoyjglolo|jogolglo|jgolgoglo|lo|lgloylo|lgfo)yo]gf ol a
o|lo|lololo|lgololojglolo|jolgloyjgolgolololglolo|lgfo)lo)l gof o

SetWSSrdHandler

NI-VXI User Manual A-2 © National Instruments Corporation

Appendix A

Table A-1. Function Listing by Group

Function Classification Reference

Group

Function

VXI

VME |C/C++ [BASIC

Servant Word

Serial Protocol

(continued)

SetWSSwrtHandler

O

WSSabort

WSSdisable

WSSenable

WSSnoResp /WSSLnoResp

WSSrd/WSSrdi / WSSrdl

WSSsendResp / WSSLsendResp

WSSwrt/ WSSwrti / WSSwrtl

High-Level
VXI/VMEbus
Access

VXIin

VXlinReg

VXImove

VXlout

VXloutReg

Low-Level
VXI/VMEbus

Access

GetByteOrder

GetContext

GetPrivilege

Oo|lo|lo|logo|lo)ol o) O

GetVXlbusStatus

GetVXlbusStatusind

GetWindowRange

MapVXIAddress

MapVXIAddressSize

SetByteOrder

SetContext

SetPrivilege

UnMapVXIAddress

VXIpeek

VXIpoke

o|lo|lo|lgolo|lo|g(fo|jlo|lgolo|glo|o|lo|o|logolo|lololo|jlogololo)ofl ol o

o|lo|lo|glo|jlo|golo|jlo|lgolo|jglo|o|lo|o|logolo|lololo|)ogol ool ogol o

o|lo|lo|lglo|jlo|lgolo|o|logofl ool o) o

o|lo|lo|olo|lo|logolo|) ol O

© National Instruments Corporation A-3

NI-VXI User Manual

Appendix A Function Classification Reference

Table A-1. Function Listing by Group

Group

Function

VXI

VME |C/C++ [BASIC

Local Resource

Access

GetMyLa

O
O
O

ReadMODID

SetMODID

VXIIinLR

VXImemAlloc

VXImemCopy

VXImemFree

VXIoutLR

VXI Signal

DefaultSignalHandler

ol golo|l o)l ogf o

DisableSignalint

EnableSignalint

o|lgo|lo|ola)o|lofa] o o

GetSignalHandler

RouteSignal

O

SetSignalHandler

SignalDeq

SignalEnq

SignalJam

WaitForSignal

VXI/VME
Interrupt

AcknowledgeVXlint

AssertVXlint

DeAssertVXlint

DefaultvVXlintHandler

DisableVXlint

DisableVXItoSignallnt

EnableVXlint

EnableVXItoSignalint

o|lojlo|jo|loloyjogoyloaolo|logofa)] o

GetVXlintHandler

o|lolo|jo|lolo|jg|logolojg|lolo|lglo|lglo|jlolgololo|lglo|lo|lgf ool o

Oo|lgolo|jo|lolojg|logolo|jglolo|jlglo|lgloylo|logloloylgfo)po)pgfl o) a

o|lolo|jogo|logoloyjg|logoloylgloaolo|logof olgfl o

NI-VXI User Manual

A4

© National Instruments Corporation

Appendix A

Table A-1. Function Listing by Group

Function Classification Reference

Group

Function

VXI

VME |C/C++ [BASIC

VXIIVME
Interrupt

(continued)

RouteVXlint

O
O

SetVXlintHandler

VXlintAcknowledgeMode

Triggers

AcknowledgeTrig

DefaultTrigHandler

DefaultTrigHandler2

DisableTrigSense

EnableTrigSense

Oo|lo|lo|lolo|] O

GetTrigHandler

MapTrigToTrig

O

SetTrigHandler

SrcTrig

TrigAssertConfig

TrigCntrConfig

TrigExtConfig

TrigTickConfig

UnMapTrigToTrig

WaitForTrig

System Interrupt

Handler

AssertSysreset

DefaultACfailHandler

DefaultBusErrorHandler

DefaultSoftResetHandler

DefaultSysfailHandler

DefaultSysresetHandler

DisableACfail

DisableSoftReset

DisableSysfail

o|lo|lgolo|jlo|lo|lo|glo|jlglo|lo|lgolo|lo|jlglo|lo|glo|loyjglolo)logol o) O

o|lo|lglo|jlo|o|lo|glo|jlglo|lo|lgolo|jlo|j|glo|lo|glo|loyogol ool gl o

Oo|lo|lolgo|lo|go|lo|jglo|ololo|)ogo|l ol o) O

© National Instruments Corporation A-5

NI-VXI User Manual

Appendix A Function Classification Reference

Table A-1. Function Listing by Group

Group Function VXl [VME |C/C++ |BASIC
System Interrupt | DisableSysreset g g g g
Handler EnableACfall U o 0 0
(continued) EnableSoftReset O O O

EnableSysfall O O O 0
EnableSysreset O O 0 O
GetACfailHandler U 0 O
GetBusErrorHandler U 0 O
GetSoftResetHandler o O
GetSysfailHandler o O O
GetSysresetHandler o O O
SetACfailHandler o 0 O
SetBusErrorHandler U 0 O
SetSoftResetHandler u U
SetSysfailHandler o O O
SetSysresetHandler o O O
VXI/VMEbus MapECLtrig g 0 0
Extender MapTTLtrig 0 O 0
MapUtilBus O O O O
MapVXlint O O O O

NI-VXI User Manual A-6 © National Instruments Corporation

Appendix A

Table A-2. Function Listing by Name

Function Classification Reference

Function Group VXl | VME |C/C++ |BASIC
AcknowledgeTrig Triggers O
AcknowledgeVXlint VXI/VME Interrupt]
AssertSysreset System Interrupt O 0 O O

Handler
AssertVXlint VXI/VME Interrupt O 0 O O
CloseVXllibrary System Configuration| [0 O O
CreateDevInfo System Configuration| 0 O O
DeAssertVXlint VXI/VME Interrupt O 0 O O
DefaultACfailHandler System Interrupt O 0 O O
Handler
DefaultBusErrorHandler System Interrupt O 0 O O
Handler
DefaultSignalHandler VXI Signal 0
DefaultSoftResetHandler System Interrupt
Handler
DefaultSysfailHandler System Interrupt O 0 O O
Handler
DefaultSysresetHandler System Interrupt O 0 O O
Handler
DefaultTrigHandler Triggers]]
DefaultTrigHandler2 Triggers]]
DefaultvVXlintHandler VXI/VME Interrupt O 0 O
DefaultWSScmdHandler Servant Word Serial O O
Protocol
DefaultWSSEcmdHandler Servant Word Serial O O
Protocol
DefaultWSSLcmdHandler Servant Word Serial O O
Protocol
DefaultWSSrdHandler Servant Word Serial O O
Protocol
DefaultWSSwrtHandler Servant Word Serial O O
Protocol

© National Instruments Corporation

A-7

NI-VXI User Manual

Appendix A

Function Classification Reference

Table A-2. Function Listing by Name

Function Group VXl | VME |C/C++ |BASIC
DisableACfail System Interrupt O 0 O O
Handler
DisableSignalint VXI Signal
DisableSoftReset System Interrupt
Handler
DisableSysfail System Interrupt O 0 O O
Handler
DisableSysreset System Interrupt O 0 O O
Handler
DisableTrigSense Triggers]]]
DisableVXlint VXI/VME Interrupt O O O
DisableVXItoSignallnt VXI/VME Interrupt O O O
EnableACfail System Interrupt O O O
Handler
EnableSignalint VXI Signal O O O
EnableSoftReset System Interrupt
Handler
EnableSysfail System Interrupt O 0 O O
Handler
EnableSysreset System Interrupt O 0 O O
Handler
EnableTrigSense Triggers O O O
EnableVXlint VXI/VME Interrupt O O O
EnableVXItoSignalint VXI/VME Interrupt O O O
FindDevLA System Configuration| O O
GenProtError Servant Word Serial O O
Protocol
GetACfailHandler System Interrupt O 0 O
Handler
GetBusErrorHandler System Interrupt O 0 O
Handler
GetByteOrder Low-Level O 0 O O
VXI/VMEbus Access
NI-VXI User Manual A-8 © National Instruments Corporation

Appendix A

Table A-2. Function Listing by Name

Function Classification Reference

Function Group VXl | VME |C/C++ |BASIC
GetContext Low-Level O 0 O O
VXI/VMEbus Access
GetDevinfo System Configuration| 0 O
GetDevInfoLong System Configuration| 0 O O
GetDevInfoShort System Configuration| 0 O O
GetDevInfoStr System Configuration| [0 O O
GetMyLa Local Resource O 0 O O
Access
GetPrivilege Low-Level O 0 O O
VXI/VMEbus Access
GetSignalHandler VXI Signal]
GetSoftResetHandler System Interrupt
Handler
GetSysfailHandler System Interrupt O 0 O
Handler
GetSysresetHandler System Interrupt O 0 O
Handler
GetTrigHandler Triggers
GetVXlbusStatus Low-Level 0
VXI/VMEbus Access
GetVXlbusStatusind Low-Level O 0 O O
VXI/VMEbus Access
GetVXlintHandler VXI/VME Interrupt
GetWindowRange Low-Level O
VXI/VMEbus Access
GetWSScmdHandler Servant Word Serial O O
Protocol
GetWSSEcmdHandler Servant Word Serial O O
Protocol
GetWSSLcmdHandler Servant Word Serial O O
Protocol
GetWSSrdHandler Servant Word Serial O O
Protocol
GetWSSwrtHandler Servant Word Serial O O

Protocol

© National Instruments Corporation

A-9

NI-VXI User Manual

Appendix A Function Classification Reference

Table A-2. Function Listing by Name

Function Group VXl | VME |C/C++ |BASIC
InitVXllibrary System Configuration| [0 O O
MapECLtrig VXI/VMEbus O O
Extender

MapTrigToTrig Triggers

MapTTLtrig VXI/VMEbus
Extender

MapUtilBus VXI/VMEbus O 0 O O
Extender

MapVXIAddress Low-Level O 0 O O
VXI/VMEbus Access

MapVXIAddressSize Low-Level O 0 O O
VXI/VMEbus Access

MapVXlint VXI/VMEbus O 0 O O
Extender

ReadMODID Local Resource O O O
Access

RespProtError Servant Word Serial O O
Protocol

RouteSignal VXI Signal

RouteVXlint VXI/VME Interrupt

SetACfailHandler System Interrupt
Handler

SetBusErrorHandler System Interrupt O 0 O
Handler

SetByteOrder Low-Level O 0 O O
VXI/VMEbus Access

SetContext Low-Level O 0 O O
VXI/VMEbus Access

SetDevinfo System Configuration| [0 O

SetDevinfoLong System Configuration| [0 O O

SetDevinfoShort System Configuration| [0 O O

SetDevInfoStr System Configuration| [0 O O

SetMODID Local Resource O O O
Access

SetPrivilege Low-Level O 0 O O
VXI/VMEbus Access

NI-VXI User Manual

© National Instruments Corporation

Appendix A

Table A-2. Function Listing by Name

Function Classification Reference

Function Group VXl | VME |C/C++ |BASIC
SetSignalHandler VXI Signal O 0
SetSoftResetHandler System Interrupt]

Handler
SetSysfailHandler System Interrupt O 0 O
Handler
SetSysresetHandler System Interrupt O 0 O
Handler
SetTrigHandler Triggers
SetVXlintHandler VXI/VME Interrupt 0
SetWSScmdHandler Servant Word Serial
Protocol
SetWSSEcmdHandler Servant Word Serial O O
Protocol
SetWSSLcmdHandler Servant Word Serial O O
Protocol
SetWSSrdHandler Servant Word Serial O O
Protocol
SetWSSwrtHandler Servant Word Serial O O
Protocol
SignalDeq VXI Signal O O O
SignalEng VXI Signal O O O
SignalJam VXI Signal O O O
SrcTrig Triggers 0 0 O
TrigAssertConfig Triggers]]]
TrigCntrConfig Triggers]]]
TrigExtConfig Triggers]]]
TrigTickConfig Triggers]]]
UnMapTrigToTrig Triggers]]]
UnMapVXIAddress Low-Level O 0 O O
VXI/VMEbus Access
VXIlin High-Level O 0 O O
VXI/VMEbus Access
VXIinLR Local Resource O 0 O O

© National Instruments Corporation

A-11

NI-VXI User Manual

Appendix A

Function Classification Reference

Table A-2. Function Listing by Name

Function Group VXl | VME |[C/C++ |BASIC

Access

VXIlinReg High-Level O O O
VXI/VMEbus Access

VXlintAcknowledgeMode VXI/VME Interrupt

VXImemAlloc Local Resource
Access

VXImemCopy Local Resource 0 0 0 0
Access

VXImemFree Local Resource 0 0 0 0
Access

VXImove High-Level O 0 O O
VXI/VMEbus Access

VXlout High-Level O 0 O O
VXI/VMEbus Access

VXloutLR Local Resource O 0 O O
Access

VXloutReg High-Level O O O
VXI/VMEbus Access

VXIpeek Low-Level O 0 O O
VXI/VMEbus Access

VXIpoke Low-Level O 0 O O
VXI/VMEbus Access

WaitForSignal VXI Signal O

WaitForTrig Triggers

WSabort Commander Word
Serial Protocol

WSclr Commander Word O O O
Serial Protocol

WScmd/ WSEcmd/ WSLcmd Commander Word O O O
Serial Protocol

WSgetTmo Commander Word O O O
Serial Protocol

WSresp/ WSLresp Commander Word O O O
Serial Protocol

WSrd/WSrdi /WSrdl Commander Word O O O
Serial Protocol

NI-VXI User Manual

A-12

© National Instruments Corporation

Appendix A

Table A-2. Function Listing by Name

Function Classification Reference

Function Group VXl | VME |C/C++ |BASIC

WSrdf Commander Word O O O
Serial Protocol

WSSabort Servant Word Serial O O
Protocol

WSSdisable Servant Word Serial O O
Protocol

WSSenable Servant Word Serial O O
Protocol

WSsetTmo Word Serial Protocol O

WSSnoResp/ WSSLnoResp Servant Word Serial
Protocol

WSSrd/WSSrdi / WSSrdl Servant Word Serial O O
Protocol

WSSsendResp/ WSSLsendResp | Servant Word Serial O O
Protocol

WSSwrt / WSSwrti / WSSwrtl Servant Word Serial O O
Protocol

WStrg Commander Word O O O
Serial Protocol

WSwrt / WSwrti / WSwrtl Commander Word O O O
Serial Protocol

WSwrtf Commander Word O O O
Serial Protocol

© National Instruments Corporation

A-13

NI-VXI User Manual

Appendix

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of Tleehnical Support Forrhefore contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to

6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
guestions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded instructions
on how to use the bulletin board and FTP services and for BBS automated information, call

(512) 795-6990. You can access these services at:

United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 148 65 1559
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet lipstatinst.com , @s anonymous and use
your Internet address, suchjeessmith@anywhere.com , as your password. The support files
and documents are located in thgpport directories.

© National Instruments Corporation B-1 NI-VXI User Manual

El FaxBack Support

FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at
(512) 418-1111.

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address, and
phone number so we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com LabVIEW: Iv.support@natinst.com
DAQ: dag.support@natinst.com HiQ: hig.support@natinst.com

VXI: vxi.support@natinst.com VISA: visa.support@natinst.com
LabWindows: lw.support@natinst.com Lookout: lookout.support@natinst.com

Telephone and Fax Support

National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact
the source from which you purchased your software to obtain support.

Telephone I'E‘l Fax

Australia 039 8799422 0398799179
Austria 0662 4579900 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310

Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 4576 26 02
Finland 90 527 2321 90 502 2930
France 148142424 1481424 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 413091 02 41309215
Japan 035472 2970 035472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5520 3282
Netherlands 0348 433466 0348 430673
Norway 32848400 328486 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 7304970 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and
use the completed copy of this form as a reference for your current configuration. Completing this
form accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name

Title

Company

Address

Fax () Phone ()

Computer brand Model Processor

Operating system (include version number)

RAM MB Display adapter
Mouse yes no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision
Configuration

National Instruments software product Version
Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: NI-VXI™ User Manual
Edition Date: July 1996
Part Number: 321228A-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678

Austin, TX 78730-5039

Glossary

Prefix Meaning Value
n- nano- 160
m- milli- 10-3
K- kilo- 103
M- mega- 16
G- giga- 1@

A

Al6 space One of the VXIbus address spaces. Equivalent to the VME 64 KB
short address space. In VXI, the upper 16 KB of A16 space is
allocated for use by VXI devices configuration registers. This 16 KB
region is referred to as VXI configuration space.

A24 space One of the VXIbus address spaces. Equivalent to the VME 16 MB
standard address space.

A32 space One of the VXIbus address spaces. Equivalent to the VME 4 GB
extended address space.

ACFAIL* A VMEDbus backplane signal that is asserted when a power failure has
occurred (either AC line source or power supply malfunction), or if it is
necessary to disable the power supply (such as for a high temperature
condition).

address Character code that identifies a specific location (or series of locations)

in memory.

© National Instruments Corporation G-1 NI-VXI User Manual

Glossary

address modifier

address space

address window

ANSI

ASCII

ASIC
asserted

asynchronous

ASYNC Protocol

B

backplane

base address

NI-VXI User Manual

One of six signals in the VMEDbus specification used by
VMEbus masters to indicate the address space and mode
(supervisory/nonprivileged, data/program/block) in which a data
transfer is to take place.

A set df lemory locations differentiated from other such sets in
VXI/VMEbus systems by six signal lines known as address modifiers.
n is the number of address lines required to uniquely specify a byte
location in a given space. Valid numbersrare 16, 24, and 32.

A range of address space that can be accessed from the application
program.

American National Standards Institute

American Standard Code for Information Interchange. A 7-bit
standard code adopted to facilitate the interchange of data among
various types of data processing and data communications equipment.

Application-Specific Integrated Circuit (a custom chip)
A signal in its active true state.

Not synchronized; not controlled by periodic time signals, and
therefore unpredictable with regard to the timing of execution of
commands.

A two-device, two-line handshake trigger protocol using two
consecutive even/odd trigger lines (a source/acceptor line and an
acknowledge line).

An assembly, typically a PCB, with 96-pin connectors and signal paths
that bus the connector pins. A C-size VXIbus system will have two
sets of bused connectors called the J1 and J2 backplanes. A D-size
VXIbus system will have three sets of bused connectors called the J1,
J2, and J3 backplane.

A specified address that is combined wéthtave address (or offset)
to determine thabsoluteaddress of a data location. All VXI address
windows have an associated base address for their assigned VXI
address spaces.

G-2 © National Instruments Corporation

BAV

BERR*

binary
bit

bit vector

BREQ

BTO

buffer

bus master

bus timeout unit

byte

byte order

© National Instruments Corporation G-3

Glossary

Word Serial Byte Available command. Used to transfer 8 bits of data
from a Commander to its Servant under the Word Serial Protocol.

Bus error signal. This signal is asserted by either a slave device or the
bus time out (BTO) unit when an incorrect transfer is made on the Data
Transfer Bus (DTB). The BERR* signal is also used in VXI for certain
protocol implementations such as writes to a full Signal register and
synchronization under the Fast Handshake Word Serial Protocol.

A numbering system with a base of 2.

Binary digit. The smallest possible unit of data: a two-state, yes/no,
0/1 alternative. The building block of binary coding and numbering
systems. Several bits make upyde

A string of related bits in which each bit has a specific meaning.

Word Serial Byte Request query. Used to transfer 8 bits of data from a
Servant to its Commander under the Word Serial Protocol.

Seebus timeout unit

Temporary memory/storage location for holding data before it can be
transmitted elsewhere.

A device that is capable of requesting the Data Transfer Bus (DTB) for
the purpose of accessing a slave device.

A VMEDbus functional module that times the duration of each data
transfer on the Data Transfer Bus (DTB) and terminates the DTB cycle
if the duration is excessive. Without the termination capability of this
module, a bus master could attempt to access a nonexistent slave,
resulting in an indefinitely long wait for a slave response.

A grouping of adjacent binary digits operated on by the computer as a
single unit. A byte consists of 8 bits.

How bytes are arranged within a word or how words are arranged
within a longword. Motorola ordering stores the most significant byte
(MSB) or word first, followed by the least significant byte (LSB) or
word. Intel ordering stores the LSB or word first, followed by the
MSB or word.

NI-VXI User Manual

Glossary

C

clearing

CLK10

command

Commander

communications
registers

configuration registers

controller

CR

NI-VXI User Manual

Replacing the information in a register, storage location, or storage unit
with zeros or blanks.

A 10 MHz, = 100 ppm, individually buffered (to each module slot),
differential ECL system clock that is sourced from Slot 0 and
distributed to Slots 1 through 12 on P2. It is distributed to each slot
as a single-source, single-destination signal with a matched delay of
under 8 ns.

A directive to a device. In VXI, three types of commands are as
follows:

« In Word Serial Protocol, a 16-bit imperative to a servant from its
Commander (written to the Data Low register);

« In Shared Memory Protocol, a 16-bit imperative from a client to a
server, or vice versa (written to the Signal register);

« In Instrument devices, an ASCII-coded, multi-byte directive.

A message-based device which is also a bus master and can control one
or more Servants.

In message-based devices, a set of registers that are accessible to the
device’'s Commander and are used for performing Word Serial Protocol
communications.

A set of registers through which the system can identify a module
device type, model, manufacturer, address space, and memory
requirements. In order to support automatic system and memory
configuration, the VXlbus specification requires that all VXlbus
devices have a set of such registers.

A device that is capable of controlling other devices. A desktop
computer with a MXI interface board, an embedded computer in a
VXI chassis, a VXI-MXI, and a VME-MXI may all be controllers
depending on the configuration of the VXI system.

Carriage Return; the ASCII character ODh.

G4 © National Instruments Corporation

D

Data Transfer Bus

decimal

de-referencing

default handler

DIR

DIRviol

DOR

DORviol

DRAM

DTB

E
ECL

embedded controller

END

Glossary

One of four buses on the VMEbus backplane. The DTB is used by a
bus master to transfer binary data between itself and a slave device.

Numbering system based upon the 10 digits 0 to 9. Also known as
base 10.

Accessing the contents of the address location pointed to by a pointer.

Automatically installed at startup to handle associated interrupt
conditions; the software can then replace it with a specified handler.

Data In Ready. This is a bit in the Response register of a message-
based device that indicates that the device is ready to accept data from
its Commander.

Data In Ready violation. A type of word serial protocol error that
occurs when the Commander attempts to write data to the device when
the device is not ready.

Data Out Ready. This is a bit in the Response register of a
message-based device that indicates that the device is ready to output
data to its Commander.

Data Out Ready violation. A type of word serial protocol error that
occurs when the Commander attempts to read data from the device
when the device is not ready.

Dynamic RAM (Random Access Memory); storage that the computer
must refresh at frequent intervals.

SeeData Transfer Bus

Emitter-Coupled Logic

A computer plugged directly into the VXI backplane. An example is
the National Instruments VXlpc-850.

Signals the end of a data string.

© National Instruments Corporation G-5 NI-VXI User Manual

Glossary

EOS

ERR

Event signal

Extended Class device

extended controller

Extended Longword
Serial Protocol

extending controller

external controller

FHS

FIFO

GPIB

NI-VXI User Manual

End Of String; a character sent to designate the last byte of a data
message.

Protocol error

A 16-bit value written to a message-based device’s Signal register in
which the most significant bit (bit 15) is a 1, designating an Event (as
opposed to a Response signal). The VXI specification reserves half of
the Event values for definition by the VXI Consortium. The other half
are user defined.

A class of VXlbus device defined for future expansion of the VXlbus
specification. These devices have a subclass register within their
configuration space that defines the type of extended device.

The external controller plus all of the extending controllers to which it
is directly connected. An example is an AT-MXI connected to a
VXI-MXI.

A form of Word Serial communication in which Commanders and
Servants communicate with 48-bit data transfers.

A mainframe extender that has additional VXIbus controller
capabilities. An example is the VXI-MXI.

A desktop computer or workstation connected to the VXI system via a
MXI interface board. An example is a standard personal computer with
a PCI-MXI-2 installed.

Fast Handshake; a mode of the Word Serial Protocol which uses the
VXIbus signals DTACK* and BERR* for synchronization instead of
the Response register bits.

First In-First Out; a method of data storage in which the first element
stored is the first one retrieved.

General-Purpose Interface Bus; the industry-standard IEEE 488 bus.

G-6 © National Instruments Corporation

GPIO

H

handshaking

hardware context

hex

high-level

Hz

I/O

IACK
IEEE

IEEE 1014

IEEE 1155

IEEE 488

Glossary

General-Purpose Input Output, a module within the National
Instruments TIC chip which is used for two purposes. First, GPIOs
are used for connecting external signals to the TIC chip for
routing/conditioning to the VXIbus trigger lines. Second, GPIOs
are used as part of a crosspoint switch matrix.

A type of protocol that makes it possible for two devices to
synchronize operations.

The hardware setting for address space, access privilege, and byte
ordering.

Hexadecimal; the numbering system with base 16, using the digits O to
9 and letters A to F.

Programming with instructions in a notation more familiar to the user
than machine code. Each high-level statement corresponds to several
low-level machine code instructions and is machine-independent,
meaning that it is portable across many platforms.

Hertz; a measure of cycles per second.

Input/output; the techniques, media, or devices used to achieve
communication between entities.

Interrupt Acknowledge
Institute of Electrical and Electronics Engineers

The VME specification. Its full title ANSI/IEEE 1014-1987, IEEE
Standard for a Versatile Backplane Bus: VMEbus

The VXI specification. Its full title KNSI/IEEE 1155-1992, VMEbus
Extensions for Instrumentation: VXlbus

Standard 488-1978, which defines the GPIB. Its full tilleEE
Standard Digital Interface for Programmable Instrumentatidxiso
referred to as IEEE 488.1 since the adoption of IEEE 488.2.

© National Instruments Corporation G-7 NI-VXI User Manual

Glossary

IEEE 488.2

INT16
INT32
INT8
interrupt

interrupt handler

interrupter

INTX

K
KB

kilobyte

L
LF

logical address

longword
Longword Serial
Protocol

low-level

NI-VXI User Manual

A supplemental standard for GPIB. Its full titt€a&les, Formats,
Protocols and Common Commands

A 16-bit signed integer; may also be callezhart integeror word.

A 32-bit signed integer; may also be callddray or longword

An 8-hit signed integer; may also be callechar.

A means for a device to notify another device that an event occurred.

A functional module that detects interrupt requests generated by
interrupters and performs appropriate actions.

A device capable of asserting interrupts and responding to an interrupt
acknowledge cycle.

Interrupt and Timing Extension; a daughter card option for MXI
mainframe extenders that extends interrupt lines and reset signals on
VME boards. On VXI boards it also extends trigger lines and the
VXlbus CLK10 signal.

1,024 or 2

A thousand bytes.

Linefeed; the ASCI| character OAh.

An 8-bit number that uniquely identifies the location of each VXlbus
device’s configuration registers in a system. The A16 register address
of a device is CO00h + Logical Address * 40h.

Data type of 32-bit integers.

A form of Word Serial communication in which Commanders and
Servants communicate with 32-bit data transfers instead of 16-bit data
transfers as in the normal Word Serial Protocol.

Programming at the system level with machine-dependent commands.

G-8 © National Instruments Corporation

M
MB

mapping

master

megabyte

Memory Class device

message-based device

MODID

MQE

multitasking

MXIbus

ms

Glossary

1,048,576 or 2

Establishing a range of address space for a one-to-one correspondence
between each address in the window and an address in VXlbus
memory.

A functional part of a MXI/VME/VXIbus device that initiates data
transfers on the backplane. A transfer can be either a read or a write.

A million bytes.

A VXlbus device that, in addition to configuration registers, has
memory in VME A24 or A32 space that is accessible through addresses
on the VME/VXI data transfer bus.

An intelligent device that implements the defined VXlbus registers and
communication protocols. These devices are able to use Word Serial
Protocol to communicate with one another through communication
registers.

A set of 13 signal lines on the VXI backplane that VXI systems use to
identify which modules are located in which slots in the mainframe.

Multiple Query Error; a type of Word Serial Protocol error. If a
Commander sends two Word Serial queries to a Servant without
reading the response to the first query before sending the second query,
a MQE is generated.

The ability of a computer to perform two or more functions
simultaneously without interference from one another. In operating
system terms, it is the ability of the operating system to execute
multiple applications/processes by time-sharing the available CPU
resources.

Multisystem eXtension Interface Bus; a high-performance
communication link that interconnects devices using round, flexible
cables.

Milliseconds

© National Instruments Corporation G-9 NI-VXI User Manual

Glossary

N

NI-VXI

nonprivileged access

NULL

octal

P

parse

peek

pointer

poke

ppm

privileged access
propagation

protocol

query

NI-VXI User Manual

The National Instruments bus interface software for VME/VXIbus
systems.

One of the defined types of VMEbus data transfers; indicated by
certain address modifier codes. Each of the defined VMEbus address
spaces has a defined nonprivileged access mode.

A special value to denote that the contents (usually of a pointer) are
invalid or zero.

Numbering system with base 8, using numerals 0 to 7.

The act of interpreting a string of data elements as a command to
perform a device-specific action.

To read the contents.

A data structure that contains an address or other indication of storage
location.

To write a value
Parts per million
S&pervisory Access
Passing of signal through a computer system.

Set of rules or conventions governing the exchange of information
between computer systems.

Like command, causes a device to take some action, but requires a
response containing data or other information. A command does not
require a response.

G-10 © National Instruments Corporation

queue

R

read

register

register-based device

remote controller

REQF

REQT

resman

Resource Manager

Response signal

ret

RM

© National Instruments Corporation

Glossary

A group of items waiting to be acted upon by the computer. The
arrangement of the items determines their processing priority. Queues
are usually accessed in a FIFO fashion.

To get information from any input device or file storage media.

A high-speed device used in a CPU for temporary storage of small
amounts of data or intermediate results during processing.

A Servant-only device that supports only the four basic VXlbus
configuration registers. Register-based devices are typically controlled
by message-based devices via device-dependent register reads and
writes.

A device in the VXI system that has the capability to control the
VXlbus, but has no intelligent CPU installed. An example is the
VXI-MXI-2.

Request False; a VXI Event condition transferred using either VXI
signals or VXI interrupts, indicating that a Servant no longer has a need
for service.

Request True; a VXI Event condition transferred using either VXI
signals or VXI interrupts, indicating that a Servant has a need for
service.

The name of the National Instruments Resource Manager application in
the NI-VXI bus interface software. SBesource Manager

A message-based Commander located at Logical Address 0, which
provides configuration management services such as address map
configuration, Commander and Servant mappings, and self-test and
diagnostic management.

Used to report changes in Word Serial communication status between a
Servant and its Commander.

Return value.

SeeResource Manager

G-11 NI-VXI User Manual

Glossary

ROAK

ROR

RORA

RR

RRuviol

rsv

S

s

SEMI-SYNC Protocol
Servant

setting

Release On Acknowledge; a type of VXI interrupter which always
deasserts its interrupt line in response to an IACK cycle on the VXlbus.
All message-based VXI interrupters must be ROAK interrupters.

Release On Request; a type of VME bus arbitration where the current
VMEbus master relinquishes control of the bus only when another bus
master requests the VMEbus.

Release On Register Access; a type of VXI/VME interrupter which
does not deassert its interrupt line in response to an IACK cycle on the
VXIbus. A device-specific register access is required to remove the
interrupt condition from the VXlbus. The VXI specification
recommends that VXI interrupters be only ROAK interrupters.

Read Ready; a bit in the Response register of a message-based device
used in Word Serial Protocol indicating that a response to a previously
sent query is pending.

Read Ready protocol violation; a type of Word Serial Protocol error. If

a Commander attempts to read a response from the Data Low register
when the device is not Read Ready (does not have a response pending),
a Read Ready violation may be generated.

Request Service; a bit in the status byte of an IEEE 488.1 and 488.2
device indicating a need for service. In VXI, whenever a new need for
service arises, the rsv bit should be set and the REQT signal sent to the
Commander. The rsv bit should be automatically deasserted when the
Word Serial Read Status Byte query is sent.

Seconds
A one-line, open collector, multiple-device handshake trigger protocol.
A device controlled by a Commander.

To place a binary cell into the 1 (non-zero) state.

Shared Memory Protocol A communications protocol for message-based devices that uses a

short integer

NI-VXI User Manual

block of memory that is accessible to both a client and a server. The
memory block acts as the medium for the protocol transmission.

Data type of 16 bits, samevasd.

G-12 © National Instruments Corporation

signal

signed integer

slave

SMP
SRQ

status/ID

STST

supervisory access

synchronous

communications

SYNC Protocol

SYSFAIL*

SYSRESET*

system clock driver

© National Instruments Corporation G-13

Glossary

Any communication between message-based devices consisting of a
write to a Signal register. Sending a signal requires that the sending
device have VMEbus master capability.

n bit pattern, interpreted such that the range is frdftlbto
+2(n-1) 1.

A functional part of a MXI/VME/VXIbus device that detects data
transfer cycles initiated by a VMEbus master and responds to the
transfers when the address specifies one of the device’s registers.

SeeShared Memory Protocol
Service Request

A value returned during an IACK cycle. In VME, usually an 8-bit

value which is either a status/data value or a vector/ID value used by
the processor to determine the source. In VXI, a 16-bit value used as a
data; the lower 8 bits form the VXI logical address of the interrupting
device and the upper 8 bits specify the reason for interrupting.

START/STOP trigger protocol; a one-line, multiple-device protocol
that can be sourced only by the VXI Slot 0 device and sensed by any
other device on the VXI backplane.

One of the defined types of VMEbus data transfers; indicated by
certain address modifier codes.

A communications system that follows the command/response cycle
model. In this model, a device issues a command to another device;
the second device executes the command and then returns a response.

Synchronous commands are executed in the order they are received.

The most basic trigger protocol, simply a pulse of a minimum duration
on any one of the trigger lines.

A VMEDbus signal that is used by a device to indicate an internal
failure. A failed device asserts this line. In VXI, a device that fails
also clears its PASSed bit in its Status register.

A VMEDbus signal that is used by a device to indicate a system reset or
power-up condition.

A VMEDbus functional module that provides a 16 MHz timing signal on
the utility bus.

NI-VXI User Manual

Glossary

System Controller

system hierarchy

TIC

tick
trigger

tristated

TTL

U

unasserted
UINTS8

UINT16

UINT32

unsigned integer

UnSupCom

NI-VXI User Manual

A functional module that has arbiter, daisy-chain driver, and MXIbus
cycle timeout responsibility. Always the first device in the MXlbus
daisy-chain.

The tree structure of the Commander/Servant relationships of all
devices in the system at a given time. In the VXlbus structure, each
Servant has a Commander. A Commander can in turn be a Servant to
another Commander.

Trigger Interface Chip; a proprietary National Instruments ASIC used
for direct access to the VXI trigger lines. The TIC contains a 16-bit
counter, a dual 5-bit tick timer, and a full crosspoint switch.

The smallest unit of time as measured by an operating system.
Either TTL or ECL lines used for intermodule communication.

Defines logic that can have one of three states: low, high, and
high-impedance.

Transistor-Transistor Logic

A signal in its inactive false state.
An 8-bit unsigned integer; may also be callediasigned char

A 16-bit unsigned integer; may also be callediasignedshortor
word.

A 32-bit unsigned integer; may also be callediasigned longr
longword

n bit pattern interpreted such that the range is from ®td 2

Unsupported Command; a type of Word Serial Protocol error. If a
Commander sends a command or query to a Servant which the Servant
does not know how to interpret, an Unsupported Command protocol
error is generated.

G-14 © National Instruments Corporation

VIC

VME

VMEbus Class device

void

VXlbus

VXledit

VXltedit

W

Word Serial Protocol

word
write

WR

Glossary

VXI Interactive Control program, a part of the NI-VXI bus interface
software package. Used to program VXI devices, and develop and
debug VXI application programs. CallgdiCtextwhen used on text-
based platforms.

Versa Module Eurocard or IEEE 1014

Also called non-VXlbus or foreign devices when found in VXlbus
systems. They lack the configuration registers required to make them
VXIlbus devices.

In the C language, a generic data type that can be cast to any specific
data type.

VMEDbus Extensions for Instrumentation

VXI Resource Editor program, a part of the NI-VXI bus interface
software package. Used to configure the system, edit the manufacturer
name and ID numbers, edit the model names of VXI and non-VXI
devices in the system, as well as the system interrupt configuration
information, and display the system configuration information
generated by the Resource Manager. Catd@eéditwhen used on
text-based platforms.

Text based version afXledit

The simplest required communication protocol supported by
message-based devices in the VXIbus system. It utilizes the A16
communication registers to perform 16-bit data transfers using a simple
polling handshake method.

A data quantity consisting of 16 bits.
Copying data to a storage device.

Write Ready; a bit in the Response register of a message-based device
used in Word Serial Protocol indicating the ability for a Servant to
receive a single command/query written to its Data Low register.

© National Instruments Corporation G-15 NI-VXI User Manual

Glossary

WRuviol Write Ready protocol violation; a type of Word Serial Protocol error.
If a Commander attempts to write a command or query to a Servant
that is not Write Ready (already has a command or query pending), a
Write Ready protocol violation may be generated.

WSP SeaNord Serial Protocol

NI-VXI User Manual G-16 © National Instruments Corporation

I ndex

A

acceptor trigger functions
AcknowledgeTrig, 3-55
DefaultTrigHandler, 3-55
DefaultTrigHandler2, 3-55
DisableTrigSense, 3-55
EnableTrigSense, 3-55
GetTrigHandler, 3-56
overview, 3-54
SetTrigHandler, 3-56
WaitForTrig, 3-56
access function&eehigh-level
VXI/VMEbus access functions; local
resource access functions; low-level
VXI/VMEbus access functions.
Access-Only Privilege, 3-28 to 3-29
AcknowledgeTrig function, 3-55
AcknowledgeVXlint function, 3-46 to 3-47
AssertSysreset function, 3-60
AssertVXlint function, 3-47
ASYNC trigger protocol, 3-51
asynchronous events, 1-4 to 1-5

B

bulletin board support, B-1

busacc.h file, 2-10

Byte Available (BAV) Word Serial
commands, 3-6, 3-15

Byte Request (BREQ) Word Serial
queries, 3-6, 3-15

© National Instruments Corporation I-1

C

callback handlers
handling signals or interrupts, 2-18
system-dependent behavior (note), 2-19
CloseVXllibrary function
description, 3-2
requirements for NI-VXI programs,
2-10to 2-11
Commander/Servant hierarchies, 1-4
Commander Word Serial communication
Extended Longword Serial Protocol, 3-7
Longword Serial Protocol, 3-7
overview, 2-13, 3-5 to 3-7
polling operations, 3-6
special cases, 3-7
types of transfers, 3-5 to 3-6
Word Serial Protocol, 3-6
Commander Word Serial Protocol functions
alphabetical list (table), A-2
cooperative multitasking support,
3-7 to 3-8
interrupt service routine support,
3-7 to 3-8
multitasking support (preemptive
operating system), 3-8 to 3-10
overview, 2-3
programming considerations, 3-7
single-tasking operating system support,
3-7 to 3-8
WSabort, 3-8, 3-10
WSclr, 3-10

NI-VXI User Manual

Index

WScmd, 3-10
WSEcmd, 3-11
WSgetTmo, 3-11
WSLcmd, 3-11
WSLresp, 3-11 to 3-12
WSrd, 3-12
WSrdf, 3-12
WSresp, 3-12 to 3-13
WSsetTmo, 3-13
WStrg, 3-13
WSwrt, 3-13
WSwrtf, 3-14
configuration functionsSeesystem
configuration functions; trigger
configuration functions.
controller parameters, 2-7 to 2-8
controllers, 2-5 to 2-7
definition, 2-5
embedded controller, 2-5
external controller, 2-6 to 2-7
remote controller, 2-5 to 2-6
cooperative multitasking support,
Commander Word Serial Protocol
functions, 3-7 to 3-8
CreateDevInfo function, 3-2
customer communicationy, B-1 to B-2

D

Data in Ready (DIR) bit, 3-6, 3-15

Data Out Ready (DOR) bit, 3-6, 3-15
datasize.h file, 2-9

DeAssertVXlint function, 3-47
DefaultACfailHandler function, 3-60
DefaultBusErrorHandler, 3-60 to 3-61
DefaultSignalHandler function, 3-40
DefaultSoftResetHandler function, 3-61
DefaultSysfailHandler function, 3-61 to 3-63
DefaultTrigHandler function, 3-55
DefaultTrigHandler2 function, 3-55
DefaultVXIntHandler function, 3-47 to 3-48

NI-VXI User Manual -2

DefaultWSScmdHandler function, 3-17
DefaultWSSEcmdHandler function, 3-17
DefaultWSSLcmdHandler function,
3-17 to 3-18

DefaultwWSSrdHandler function, 3-18
DefaultWSSwrtHandler function, 3-18
devinfo.h file, 2-10
DisableSignalint function

description, 3-40

signal queuing considerations, 3-38
DisableSysreset function, 3-63
DisableTrigSense function, 3-55
DisableVXlint function, 3-48
DisableVXItoSignallnt function

description, 3-48

signal queuing considerations, 3-38
documentation

conventions used in manualy

organization of manuakjii-xiv

related documentatiory

E

e-mail support, B-2

electronic support services, B-1 to B-2

embedded controller, 2-5

EnableACfail function, 3-63

EnableSignalint function, 3-40

EnableSoftReset function, 3-63

EnableSysfail function, 3-63 to 3-64

EnableSysreset function, 3-64

EnableTrigSense function, 3-55

EnableVXlint function, 3-48 to 3-49

EnableVXItoSignalint function, 3-49

ERR* bit, 3-6, 3-15

Event signals, 3-37

Event status/IDs, 3-43

Extended Longword Serial Protocaol,
3-7, 3-15

extender parameters, 2-7 to 2-8

© National Instruments Corporation

external controllers, 2-6 to 2-7
definition, 2-6
embeddded controller connected to other
frames (figure), 2-6
embeddded controller connected using
MXI-2 (figure), 2-7

F

fax and telephone support, B-2

FaxBack support, B-2

FindDevLA function, 3-2

FTP support, B-1

functions.SeeNI-VXI functions; specific
groups of functions.

G

GenProtError function, 3-18
GetAcCfailHandler function, 3-64
GetBusErrorHandler function, 3-64
GetByteOrder function, 3-30
GetContext function, 3-30
GetDevlInfo function, 3-3
GetDevinfoLong function, 3-3
GetDevInfoShort function, 3-3
GetDevInfoStr function, 3-3
GetMyLA function, 3-34
GetPrivilege function, 3-30
GetSignalHandler function, 3-41
GetSoftResetHandler function, 3-65
GetSysfailHandler function, 3-65
GetSysresetHandler function, 3-65
GetTrigHandler function, 3-56
GetVXlbusStatus function, 3-30
GetVXlbusStatusind function, 3-31
GetVXlintHandler function, 3-49
GetWindowRange function, 3-31
GetWSScmdHandler function, 3-18
GetWSSEcmdHandler function, 3-19
GetWSSLcmdHandler function, 3-19

© National Instruments Corporation 1-3

Index

GetWSSrdHandler function, 3-19
GetWSSwrtHandler function, 3-19
global signal queue, 3-38

H

hardware context
high-level VXI/VMEbus access
functions, 3-23
low-level VXI/VMEbus access
functions, 3-27
header files, 2-9 to 2-10
busacc.h file, 2-10
datasize.h file, 2-9
devinfo.h file, 2-10
high-level VXI/VMEbus access functions
alphabetical list (table), A-3
overview, 2-1, 3-23
programming considerations,
3-23 10 3-24
VXlin, 3-24
VXIlinReg, 3-24
VXImove, 3-24 to 3-25
VXlout, 3-25
VXloutReg, 3-25

InitVXllibrary function
description, 3-4
requirements for NI-VXI programs,
2-10to 2-11
interrupt functionsSeesystem interrupt
handler functions; VXI interrupt
functions.
interrupt handling
C/C++ example, 2-18
overview, 2-17 to 2-18

NI-VXI User Manual

Index

interrupts
interrupt service routine support,
Commander Word Serial Protocol
functions, 3-7 to 3-8
interrupts and asynchronous
events, 1-4 to 1-5

L
LabWindows/CVI software, 2-4 to 2-5
C/C++ example, 2-4
input versus output parameters,
2-4t0 2-5
return values and system errors,
2-4t0 2-5
type definitions, 2-4
local resource access functions
alphabetical list (table), A-4
GetMyLA, 3-34
overview, 2-2, 3-34
ReadMODID, 3-34
SetMODID, 3-34
VXIinLR, 3-35
VXImemAlloc, 3-35
VXImemCopy, 3-35
VXImemFree, 3-35
VXIoutLR, 3-36
Longword Serial Protocol, 3-7, 3-15
low-level VXI/VMEbus access functions
alphabetical list (table), A-3 to A-4
GetByteOrder, 3-30
GetContext, 3-30
GetPrivilege, 3-30
GetVXlbusStatus, 3-30
GetVXlbusStatusind, 3-31
GetWindowRange, 3-31
MapVXIAddress, 3-28, 3-29, 3-31
MapVXIAddressSize, 3-32
multiple-pointer access for window,
3-28 to 3-29
Access-Only Privilege, 3-28 to 3-29

NI-VXI User Manual 1-4

Owner Privilege, 3-28
overview, 2-2, 3-26 to 3-27
programming considerations, 3-27
SetByteOrder, 3-32
SetContext, 3-32
SetPrivilege, 3-33
UnMapVXIAddress, 3-33
VXlpeek, 3-28, 3-33
VXlpoke, 3-28, 3-33

M

manual.Seedocumentation.
map trigger functions
MapTrigToTrig, 3-56 to 3-57
overview, 3-56
UnMapTrigToTrig, 3-57
MapECLtrig function, 3-67
MapTrigToTrig function, 3-56 to 3-57
MapTTLtrig function, 3-67 to 3-68
MapUtilBus function, 3-68
MapVXIAddress function
description, 3-31
MITE-based platforms (note), 3-29
obtaining Access-Only privilege, 3-28
requesting owner privilege, 3-28
MapVXIAddressSize function, 3-32
MapVXIlint function, 3-68
master memory access
C/C++ example, 2-14 to 2-15
functions versus macros (note), 2-16
overview, 2-14
memory acces$Seemaster memory access;
slave memory access.
message-based devices, 1-3
MITE-based platforms (note), 3-29
multiple mainframe support, 2-5 to 2-8
controllers, 2-5to 2-7
extender and controller parameters,
2-7to0 2-8

© National Instruments Corporation

multiple-pointer access for window,
3-28 to 3-29
Access-Only Privilege, 3-28 to 3-29
Owner Privilege, 3-28
multitasking support, Commander Word
Serial Protocol functions
cooperative, 3-7 to 3-8
preemptive operating system, 3-8 to 3-10
MXI-2 overview, 1-5 to 1-6
MXIlbus overview, 1-5

N

NI-VXI
Commander/Servant hierarchies, 1-4
interrupts and asynchronous events,
1-4t01-5
message-based devices, 1-3
MXI-2 overview, 1-5 to 1-6
MXIlbus overview, 1-5
register-based devices, 1-2
VXIbus overview, 1-1 to 1-2
Word Serial Protocol, 1-3 to 1-4
NI-VXI driver software, 2-9 to 2-19
beginning and end of programs,
2-10to 2-11
header files, 2-9 to 2-10
interrupts and signals, 2-17 to 2-19
master memory access, 2-14 to 2-16
slave memory access, 2-16 to 2-17
system configuration tools, 2-11 to 2-12
triggers, 2-19
Word Serial communication, 2-13
NI-VXI functions. See als®pecific groups of
functions.
alphabetical list, A-9 to A-14
calling syntax, 2-3
classification reference, A-1to A-7
multiple mainframe support, 2-5 to 2-8
controllers, 2-5to 2-7

© National Instruments Corporation -5

Index

extender and controller parameters,
2-7 1o 2-8
using NI-VXI, 2-9 to 2-19
beginning and end of programs,
2-10to 2-11
header files, 2-9 to 2-10
interrupts and signals, 2-17 to 2-19
master memory access, 2-14 to 2-16
slave memory access, 2-16 to 2-17
system configuration tools,
2-11to 2-12
triggers, 2-19
Word Serial communication, 2-13
using with LabWindows/CVI, 2-4 to 2-5
C/C++ example, 2-4
input versus output parameters,
2-4 10 2-5
return values and system errors,
2-4 10 2-5
type definitions, 2-4
VXI-only function groups, 2-3
VXI/VME function groups, 2-1 to 2-3
No Cause Given event, 3-37
No Cause Given status/ID, 3-37

0
ON/OFF trigger protocol, 3-52
Owner Privilege, 3-28

R

Read Protocol Error query, 3-6, 3-15

Read Ready (RR) bit, 3-6, 3-14

ReadMODID function, 3-34

register-based devices, 1-2

Release On Acknowledge (ROAK)
interrupter, 3-46

Release On Register Access (RORA)
interrupter, 3-46

remote controller, 2-5 to 2-6

NI-VXI User Manual

Index

Request for Service False (REQF)
event, 3-37
Request for Service False (REQF)
status/ID, 3-37
Request for Service True (REQT) event, 3-37
Request for Service True (REQT)
status/ID, 3-37
Response signals, 3-37
Response status/IDs, 3-43
RespProtError function, 3-19
return values and system errors, 2-5
ROAK (Release On Acknowledge)
interrupter, 3-46
RORA (Release On Register Access)
interrupter, 3-46
round-robin effect of Commander Word
Serial function calls, 3-9
RouteSignal function
description, 3-41
VXI signal handling, 3-37, 3-44
RouteVXlint function
description, 3-49 to 3-50
VXI signal handling, 3-43, 3-44

S

ScrTrig function, 3-57

SEMI-SYNC trigger protocol, 3-51 to 3-52

Servant Word Serial communication
Extended Longword Serial

Protocol, 3-15

Longword Serial Protocol, 3-15
polling operations, 3-14 to 3-15
types of functions, 3-14
Word Serial Protocol, 3-14

Servant Word Serial Protocol functions
alphabetical list (table), A-2 to A-3
DefaultWSScmdHandler, 3-17
DefaultWSSEcmdHandler, 3-17
DefaultWSSLcmdHandler, 3-17 to 3-18
DefaultWSSrdHandler, 3-18

NI-VXI User Manual 1-6

DefaultWSSwrtHandler, 3-18
GenProtError, 3-18
GetWSScmdHandler, 3-18
GetWSSEcmdHandler, 3-19
GetWSSLcmdHandler, 3-19
GetWSSrdHandler, 3-19
GetWSSwrtHandler, 3-19
overview, 2-3, 3-14 to 3-15
programming considerations,
3-15to 3-16
RespProtError, 3-19
SetWSScmdHandler, 3-19 to 3-20
SetWSSEcmdHandler, 3-20
SetWSSLcmdHandler, 3-20
SetWSSrdHandler, 3-20
SetWSSwrtHandler, 3-20
WSSabort, 3-21
WSSdisable, 3-21
WSSenable, 3-21
WSSLnoResp, 3-21, 3-22
WSSLsendResp, 3-21
WSSrd, 3-22
WSSsendResp, 3-22
WSSwirt, 3-22
SetACfailHandler function, 3-65
SetBusErrorHandler function, 3-65 to 3-66
SetByteOrder function, 3-32
SetContext function, 3-32
SetDevInfo function, 3-4
SetDevInfoLong function, 3-4
SetDevlInfoShort function, 3-5
SetDevInfoStr function, 3-5
SetMODID function, 3-34
SetPrivilege function, 3-33
SetSignalHandler function, 3-41
SetSoftResetHandler function, 3-66
SetSysfailHandler function, 3-66
SetSysresetHandler function, 3-66
SetTrigHandler function, 3-56
SetVXlintHandler function, 3-50
SetWSScmdHandler function, 3-19 to 3-20

© National Instruments Corporation

SetWSSEcmdHandler function, 3-20
SetWSSLcmdHandler function, 3-20
SetWSSrdHandler function, 3-20
SetWSSwrtHandler function, 3-20
Shared Memory events, 3-37, 3-43
signal handling
C/C++ example, 2-18
overview, 2-17 to 2-18
signal queuing considerations, 3-38 to 3-39
SignalDeq function, 3-42
SignalEng function, 3-42
Signaldam function, 3-42
single-tasking operating system support,
Commander Word Serial Protocol
functions, 3-7 to 3-8
slave memory access
C/C++ example, 2-16 to 2-17
overview, 2-16
source trigger functions
overview, 3-57
ScrTrig, 3-57
START/STOP trigger protocol, 3-52
SYNC trigger protocol, 3-51
system configuration functions
alphabetical list (table), A-1
CloseVXllibrary, 2-10 to 2-11, 3-2
CreateDevinfo, 3-2
FindDevLA, 3-2
GetDevInfo, 3-3
GetDevinfoLong, 3-3
GetDevInfoShort, 3-3
GetDevlInfoStr, 3-3
InitVXllibrary, 3-4
obtaining system information,
2-11to 2-12
C/C++ example, 2-12
overview, 2-1, 3-1
SetDevInfo, 3-4
SetDevinfoLong, 3-4
SetDevInfoShort, 3-5
SetDevInfoStr, 3-5

© National Instruments Corporation -7

Index

system interrupt handler functions
alphabetical list (table), A-6
AssertSysreset, 3-60
DefaultACfailHandler, 3-60
DefaultBusErrorHandler, 3-60 to 3-61
DefaultSoftResetHandler, 3-61
DefaultSysfailHandler, 3-61 to 3-63
DisableSysreset, 3-63
EnableACfail, 3-63
EnableSoftReset, 3-63
EnableSysfail, 3-63 to 3-64
EnableSysreset, 3-64
GetACfailHandler, 3-64
GetBusErrorHandler, 3-64
GetSoftResetHandler, 3-65
GetSysfailHandler, 3-65
GetSysresetHandler, 3-65
overview, 2-2, 3-59 to 3-60
SetACfailHandler, 3-65
SetBusErrorHandler, 3-65 to 3-66
SetSoftResetHandler, 3-66
SetSysfailHandler, 3-66
SetSysresetHandler, 3-66

T

technical support, B-1 to B-2
trigger configuration functions
overview, 3-58
TrigAssertConfig, 3-58
TrigCntrConfig, 3-58
TrigExtConfig, 3-58 to 3-59
TrigTickConfig, 3-59
trigger functionsSeeVXI trigger functions.
trigger lines
ECL, 3-51
TTL, 3-51
trigger protocols
ASYNC, 3-51
ON/OFF, 3-52
SEMI-SYNC, 3-51 to 3-52

NI-VXI User Manual

Index

START/STOP, 3-52

SYNC, 3-51
triggering hardware capabilities, 3-52 to 3-54

embedded, external MXI-2, and remote

controller, 3-54

external controller/VXI-MXI-1, 3-53
triggers

definition, 3-51

overview, 2-19

U

UnMapTrigToTrig function, 3-57
UnMapVXIAddress function, 3-33
Unrecognized Command event

interrupt service routine support, 3-8

signal queuing, 3-38

VXI interrupts, 3-43

VXI signals, 3-37

\%

VXI configuration registers (figure), 1-2
VXI devices, 1-1 to 1-2
VXI interrupt functions
AcknowledgeVXlint, 3-46 to 3-47
alphabetical list (table), A-5
AssertVXlint, 3-47
DeAssertVXlint, 3-47
DefaultVXIntHandler, 3-47 to 3-48
DisableVXlint, 3-48
DisableVXItoSignalint, 3-38, 3-48
EnableVXlint, 3-48 to 3-49
EnableVXItoSignallnt, 3-49
GetVXlintHandler, 3-49
overview, 2-2, 3-43 to 3-44
programming considerations, 3-45
ROAK versus RORA VXI/VME
interrupts, 3-46
RouteVXlint, 3-43, 3-44, 3-49 to 3-50
SetVXlintHandler, 3-50

NI-VXI User Manual -8

VXlintAcknowledgeMode, 3-46, 3-50
VXI-only function groups, 2-3
VXI signal functions
alphabetical list (table), A-4
DefaultSignalHandler, 3-40
DisableSignalint, 3-38, 3-40
EnableSignalint, 3-40
GetSignalHandler, 3-41
overview, 2-2, 3-36 to 3-37
programming considerations,
3-38 to 3-39
RouteSignal, 3-37, 3-41, 3-44
SetSignalHandler, 3-41
SignalDeq, 3-42
SignalEng, 3-42
Signaldam, 3-42
WaitForSignal, 3-37, 3-39 to 3-40,
3-42, 3-44
VXI signal register, 3-36
VXI signals
definition, 3-36
Event signals, 3-37
Response signals, 3-37
VXI trigger functions
acceptor trigger functions
AcknowledgeTrig, 3-55
DefaultTrigHandler, 3-55
DefaultTrigHandler2, 3-55
DisableTrigSense, 3-55
EnableTrigSense, 3-55
GetTrigHandler, 3-56
overview, 3-54
SetTrigHandler, 3-56
WaitForTrig, 3-56
alphabetical list (table), A-5
capabilities of NI triggering hardware,
3-52 to 3-54
embedded, external MXI-2, and
remote controller trigger, 3-54
external controller/VXI-MXI-1
trigger, 3-53

© National Instruments Corporation

map trigger functions
MapTrigToTrig, 3-56 to 3-57
overview, 3-56
UnMapTrigToTrig, 3-57
overview, 2-3, 3-51 to 3-52
source trigger functions
overview, 3-57
ScrTrig, 3-57
trigger configuration functions
overview, 3-58
TrigAssertConfig, 3-58
TrigCntrConfig, 3-58
TrigExtConfig, 3-58 to 3-59
TrigTickConfig, 3-59
VXI/VME function groups, 2-1 to 2-3
VXI/VMEbus extender functions
alphabetical list (table), A-7
MapEClLtrig, 3-67
MapTTLtrig, 3-67 to 3-68
MapUtilBus, 3-68
MapVXlint, 3-68
overview, 2-2 to 2-3, 3-67
VXIbus overview
VXI configuration registers (figure), 1-2
VXI devices, 1-1 to 1-2
VXIlin function, 3-24
VXIinLR function, 3-35
VXlinReg function, 3-24
VXlintAcknowledgeMode function
description, 3-50
ROAK versus RORA interrupters, 3-46
VXImemAlloc function, 3-35
VXImemCopy function, 3-35
VXImemFree function, 3-35
VXImove function, 3-24 to 3-25
VXlout function, 3-25
VXIoutLR function, 3-36
VXloutReg function, 3-25
VXlpeek function
de-referencing pointers, 3-28
description, 3-33

© National Instruments Corporation 1-9

Index

VXlpoke function
de-referencing pointers, 3-28
description, 3-33

W

WaitForSignal function
description, 3-42
programming considerations,
3-39 to 3-40
VXI signal handling, 3-37, 3-44
WaitForTrig function, 3-56
window-base register, 3-27
windows, definition, 3-27
Word Serial Clear command, 3-7
Word Serial ProtocolSee alsdCommander
Word Serial communication.
Commander Word Serial Protocol
functions, 3-6
overview, 1-3to 1-4
Servant Word Serial Protocol
functions, 3-14
Word Serial Protocol errors, 3-6, 3-15
Word Serial Trigger command, 3-7
Write Ready (WR) bit, 3-6, 3-14
WSabort function
description, 3-10
interrupt service, 3-8
WSclr, 3-10
WScmd function, 3-10
WSEcmd, 3-11
WSgetTmo function, 3-11
WSLcmd, 3-11
WSLresp function, 3-11 to 3-12
WSrd function, 3-12
WSrdf function, 3-12
WSresp function, 3-12 to 3-13
WSSabort function, 3-21
WSSdisable function, 3-21
WSSenable function, 3-21
WSsetTmo function, 3-13

NI-VXI User Manual

Index

WSSLnoResp function, 3-21, 3-22
WSSLsendResp function, 3-21
WSSrd function, 3-22
WSSsendResp function, 3-22
WSSwrt function, 3-22

WStrg function, 3-13

WSwrt function, 3-13

WSwrtf, 3-14

NI-VXI User Manual

I-10

© National Instruments Corporation

	NI-VXI ™User Manual
	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Table of Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Overview of NI-VXI
	VXIbus Overview
	VXI Devices
	Register-Based Devices
	Message-Based Devices
	Word Serial Protocol
	Commander/Servant Hierarchies
	Interrupts and Asynchronous Events
	MXIbus Overview
	MXI-2 Overview

	Chapter 2 Introduction to the NI-VXI Functions
	Function Groups
	VXI/VME Function Groups
	VXI-Only Function Groups
	Calling Syntax
	LabWindows/CVI
	Type Definitions
	Input Versus Output Parameters
	Return Values and System Errors
	Multiple Mainframe Support
	Controllers
	The extender and controller Parameters
	Using NI-VXI
	Header Files
	The datasize.h File
	The busacc.h File
	The devinfo.h File
	The Beginning and End of an NI-VXI Program
	System Configuration Tools
	Word Serial Communication
	Master Memory Access
	Slave Memory Access
	Interrupts and Signals
	Triggers

	Chapter 3 Software Overview
	System Configuration Functions
	CloseVXIlibrary ()
	CreateDevInfo (la)
	FindDevLA (namepat, manid, modelcode, devclass, slot, mainframe, cmdrla, la)
	GetDevInfo (la, field, fieldvalue)
	GetDevInfoLong (la, field, longvalue)
	GetDevInfoShort (la, field, shortvalue)
	GetDevInfoStr (la, field, stringvalue)
	InitVXIlibrary ()
	SetDevInfo (la, field, fieldvalue)
	SetDevInfoLong (la, field, longvalue)
	SetDevInfoShort (la, field, shortvalue)
	SetDevInfoStr (la, field, stringvalue)
	Commander Word Serial Protocol Functions
	Programming Considerations
	Interrupt Service Routine Support
	Single-Tasking Operating System Support
	Cooperative Multitasking Support
	Multitasking Support (Preemptive Operating System)
	WSabort (la, abortop)
	WSclr (la)
	WScmd (la, cmd, respflag, response)
	WSEcmd (la, cmdExt, cmd, respflag, response)
	WSgetTmo (actualtimo)
	WSLcmd (la, cmd, respflag, response)
	WSLresp (la, response)
	WSrd (la, buf, count, modevalue, retcount)
	WSrdf (la, filename, count, modevalue, retcount)
	WSresp (la, response)
	WSsetTmo (timo, actualtimo)
	WStrg (la)
	WSwrt (la, buf, count, modevalue, retcount)
	WSwrtf (la, filename, count, modevalue, retcount)
	Servant Word Serial Protocol Functions
	Programming Considerations
	DefaultWSScmdHandler (cmd)
	DefaultWSSEcmdHandler (cmdExt, cmd)
	DefaultWSSLcmdHandler (cmd)
	DefaultWSSrdHandler (status, count)
	DefaultWSSwrtHandler (status, count)
	GenProtError (proterr)
	GetWSScmdHandler ()
	GetWSSEcmdHandler ()
	GetWSSLcmdHandler ()
	GetWSSrdHandler ()
	GetWSSwrtHandler ()
	RespProtError ()
	SetWSScmdHandler (func)
	SetWSSEcmdHandler (func)
	SetWSSLcmdHandler (func)
	SetWSSrdHandler (func)
	SetWSSwrtHandler (func)
	WSSabort (abortop)
	WSSdisable ()
	WSSenable ()
	WSSLnoResp ()
	WSSLsendResp (response)
	WSSnoResp ()
	WSSrd (buf, count, modevalue)
	WSSsendResp (response)
	WSSwrt (buf, count, modevalue)
	High-Level VXI/VMEbus Access Functions
	Programming Considerations
	VXIin (accessparms, address, width, value)
	VXIinReg (la, reg, value)
	VXImove (srcparms, srcaddr, destparms, destaddr, length, width)
	VXIout (accessparms, address, width, value)
	VXIoutReg (la, reg, value)
	Low-Level VXI/VMEbus Access Functions
	Programming Considerations
	Multiple-Pointer Access for a Window
	Owner Privilege
	Access-Only Privilege
	GetByteOrder (window, ordermode)
	GetContext (window, context)
	GetPrivilege (window, priv)
	GetVXIbusStatus (controller, status)
	GetVXIbusStatusInd (controller, field, status)
	GetWindowRange (window, windowbase, windowend)
	MapVXIAddress (accessparms, address, timo, window, ret)
	MapVXIAddressSize (size)
	SetByteOrder (window, ordermode)
	SetContext (window, context)
	SetPrivilege (window, priv)
	UnMapVXIAddress (window)
	VXIpeek (addressptr, width, value)
	VXIpoke (addressptr, width, value)
	Local Resource Access Functions
	GetMyLA
	ReadMODID (modid)
	SetMODID (enable, modid)
	VXIinLR (reg, width, value)
	VXImemAlloc (size, useraddr, vxiaddr)
	VXImemCopy (useraddr, bufaddr, size, dir)
	VXImemFree (useraddr)
	VXIoutLR (reg, width, value)
	VXI Signal Functions
	Programming Considerations
	WaitForSignal Considerations
	DefaultSignalHandler (signal)
	DisableSignalInt ()
	EnableSignalInt ()
	GetSignalHandler (la)
	RouteSignal (la, modemask)
	SetSignalHandler (la, func)
	SignalDeq (la, signalmask, signal)
	SignalEnq (signal)
	SignalJam (signal)
	WaitForSignal (la, signalmask, timeout, retsignal, retsignalmask)
	VXI Interrupt Functions
	Programming Considerations
	ROAK Versus RORA VXI/VME Interrupters
	AcknowledgeVXIint (controller, level, statusId)
	AssertVXIint (controller, level, statusId)
	DeAssertVXIint (controller, level)
	DefaultVXIintHandler (controller, level, statusId)
	DisableVXIint (controller, levels)
	DisableVXItoSignalInt (controller, levels)
	EnableVXIint (controller, levels)
	EnableVXItoSignalInt (controller, levels)
	GetVXIintHandler (level)
	RouteVXIint (controller, Sroute)
	SetVXIintHandler (levels, func)
	VXIintAcknowledgeMode (controller, modes)
	VXI Trigger Functions
	Capabilities of the National Instruments Triggering Hardware
	External Controller/VXI-MXI-1 Trigger Capabilities
	Embedded, External MXI-2, and Remote Controller Trigger Capabilities
	Acceptor Trigger Functions
	AcknowledgeTrig (controller, line)
	DefaultTrigHandler (controller, line, type)
	DefaultTrigHandler2 (controller, line, type)
	DisableTrigSense (controller, line)
	EnableTrigSense (controller, line, prot)
	GetTrigHandler (line)
	SetTrigHandler (lines, func)
	WaitForTrig (controller, line, timeout)
	Map Trigger Functions
	MapTrigToTrig (controller, srcTrig, destTrig, mode)
	UnMapTrigToTrig (controller, srcTrig, destTrig)
	Source Trigger Functions
	SrcTrig (controller, line, prot, timeout)
	Trigger Configuration Functions
	TrigAssertConfig (controller, trigline, mode)
	TrigCntrConfig (controller, mode, source, count)
	TrigExtConfig (controller, extline, mode)
	TrigTickConfig (controller, mode, source, tcount1, tcount2)
	System Interrupt Handler Functions
	AssertSysreset (controller, mode)
	DefaultACfailHandler (controller)
	DefaultBusErrorHandler ()
	DefaultSoftResetHandler ()
	DefaultSysfailHandler (controller)
	DefaultSysresetHandler (controller)
	DisableACfail (controller)
	DisableSoftReset ()
	DisableSysfail (controller)
	DisableSysreset (controller)
	EnableACfail (controller)
	EnableSoftReset ()
	EnableSysfail (controller)
	EnableSysreset (controller)
	GetACfailHandler ()
	GetBusErrorHandler ()
	GetSoftResetHandler ()
	GetSysfailHandler ()
	GetSysresetHandler ()
	SetACfailHandler (func)
	SetBusErrorHandler (func)
	SetSoftResetHandler (func)
	SetSysfailHandler (func)
	SetSysresetHandler (func)
	VXI/VMEbus Extender Functions
	MapECLtrig
	MapTTLtrig
	MapUtilBus (extender, modes)
	MapVXIint (extender, levels, directions)

	Appendix A Function Classification Reference
	Appendix B Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. VXI Configuration Registers
	Figure 1-2. VXI Software Protocols
	Figure 2-1. An Embedded Controller Connected to Other Frames via Mainframe Extenders Using MXI-2
	Figure 2-2. An External Controller Connected Using MXI-2 to a Number of Remote Controllers
	Figure 3-1. Preemptive Word Serial Mutual Exclusion (Per Logical Address)
	Figure 3-2. NI-VXI Servant Word Serial Model
	Figure 3-3. NI-VXI Interrupt and Signal Model
	Figure 3-4. NI-VXI Interrupt and Signal Model

	Tables
	Table A-1. Function Listing by Group
	Table A-2. Function Listing by Name

