 Margins: T/B=2.2 cm, L/R=2.2 cm; Grid=0.1 cm ATLAS DCS report: 23.02.1999

 Gutter=0, Header,Footer=1.25 cm, CourNew-B10 Last revision : 29.07.2001

SCT-DCS GENERAL DATA TAKING ORGANISATION

S.G.Basiladze (MSU), R.Brenner (Uppsala)

1. Introduction

===============

1.1. Software design aims

To make “scalable” software that allows to create a simple local test stations (1-2 Fieldbus boxes and several tens of channels) and from other hand to build the complex geographical distributed slow control systems that contain 5-6 hierarchical levels and thousands of the channels (Fieldbuses are on the second level of that systems, on the down level there are sensors and actuators).

The treating (access) organization should be oriented on a User, it means that

- the identificators of all the Detector parts (including sensors and actuators) should be represented in the text form (as a Name);

- the hierarchical Names (the serial chain of local names from the every level) should be used mainly;

- the Data should be represented in the ‘physical’ form (temperatures, voltages, currents, etc.) and conversion from ‘raw’ ADC counts to calibrated data should be performed on the “far” side (where Data are taking) but not on the “near” side where User is requesting them.

All the manipulations with the nodes (and their branches) of hierarchical system structure (tree) should be based on a simple set of Functions such as Open/Close, Put/Get Data/Status, etc. This set of functions should be hardware and link protocol(s) independent and may/should be used on the any hierarchical level.

Created software should be platform independent – any computer under Unix, Linux, Windows (and VAX VMS) may be used in the system.

Flexibility

- all important for User and changeable parameters of monitoring and control should be placed into the configuration file(s) and may be changed without software recompiling;

- any type of Fieldbuses and Fieldbus nodes may be used in the system as well as some specific interconnection protocols (PC parallel and serial ports, VME bus, etc.) in addition to the main CAN-Open protocol.

Testing facilities

- the ability of a node to perform the requested action should be checked before the command execution;

- every step of the every action should be checked (i.e. every Function, every subFunction, ... lowFunction should return an error code);

- User should have ‘near’ side feedback from any request execution on the ‘far’ side;

- two simulation mechanisms should be built into software

- Data simulation, the random values around Normal physical value should be

 generated in this mode,

- Error simulation, the random errors with desirable probability should be

 generated for the Functions (it allows to test the stability of system

 operation).

1.2. Hierarchical trees and their levels

--

The main SCT DCS terms and definitions are described in this section. The general structure of SCT and its Slow Control (SC) system is shown in Fig.1.

 Figure 1

 UPPER ATLAS LEVELS

 o o /

 /()\ Expert User /()

 /\ /\

HARDWARE: SOFTWARE:

Local Control DCS Requests

Station

 Ethernet TCP/IP

Satellite Control DCS Functions

Station

 PCI Bus TCP/IP

CAN Controller CAN Procedures

 CAN Bus

 “CAN Open”

CAN Box

 CAN Operations

 Mini Link

 Channels

System Numbers -> 0 N N 0

of the Channels “Name Convertor”

Detector Tree – the hierarchical structure of SCT-detector itself (see Fig.1 from the right). It may contain up to 6 levels, the main of them are the following:

- Detector level, includes SCT-detector as a part of ATLAS;

- Section level, maybe the barrel cylinders or the forward tracker disks;

- Sector level, the staves (parts of cylinder) or sectors (parts of disk);

- Module level, the microstrip detector modules of a stave or disk;

- Sensor/Actuator level, the module channels for monitoring or control.

DCS Tree - the hierarchical structure of Detector Control System (DCS) for SCT-detector (see Fig.1 from the left). It may contain up to 6 levels, the main of them are the following:

- Syst(em) level, based on Local Control Station (LCS) – IBM PC and is a part

 of ATLAS DCS;

- Host level, the subparts of SCT DCS based on Satellite Control Stations

 (SCS) – IBM PC;

- Node level, PC controller cards for communications;

- Port level, the ports of CAN-controller card, or PC serial or parallel

 ports, or a port of Ethernet card;

- Unit level, the devices that are connected to CAN-bus, or to PC serial

 or parallel links;

- Chan(nel) level, the parts of Unit that get a monitoring data from one Sensor

 or put control data to one Actuator.

Agent – tree node on the any level that has brunches to the down Agents (if level > 1).

WARNING: 1. The term ‘Agent’ is used here instead of ‘node’ (of tree) because

 the term ‘Node’ is occupied for the 4-th level of DCS Tree.

 2. The CAN-node (box) is a Unit in this document.

The both structures have a common root and (on the down level) the equal number of channels, but the number of intermediate levels and the number of Agents on the every level may be different.

1.3. Agents Names and Addresses

As it is well known, every Agent Iden(tificator) may be represented in the following forms:

- Name , readable text string;

- Address, “numerical name” – set of numbers.

The Names are using for the Detector Tree (because they are oriented on SCT User) and the Addresses are using for the DCS Tree (they may be used by DCS Expert).

The hierarchical Idens only are used for the Names/Addresses because they reflect of Tree structure and due to it they are more convenient. The delimiter between the Local Idens is “.” (for both - Names and Addresses).

1.3.1. Local and System Numbers

It is supposed that DCS Tree logically has “full” and fixed structure: every Agent on some level has an equal number of subAgents (not all of them may be occupied physically).

Local Number – a serial number of Agent in the group that belongs to one upper Agent.

System Number – a serial total number of Agent on its hierarchical level.

The terms: Host, Node, Port, Unit, Chan(nel) are used in DCS Tree for its hierarchical Agents definition and for their Local Numbers as well:

 Host - the serial number of Power PC (if many);

 Node - the serial number of CAN Controller card in one Host;

 Port - the serial number of CAN Controller Port (or CAN bus) in one Node;

 Unit - the serial number of CAN-box on the CAN-bus (for one Port);

 Chan - the serial number of CAN-box channel.

The DCS Tree may be described by the levels number of numerical values. Every value defines the maximum possible number of subAgents (or branches) on the appropriate level: HOSTmax, NODEmax, PORTmax, UNITmax, CHANmax. For DCS Tree the System number of any Agent may be easy calculated:

 for a Node Nnum = (Host * NODEmax) + Node;

 for a Port Pnum = (Host * NODEmax * PORTmax) +

 (Node * PORTmax) + Port;

 for a Unit Unum = (Host * NODEmax * PORTmax * UNITmax) +

 (Node * PORTmax * UNITmax) +

 (Port * UNITmax) + Unit.

The system numbers are non-visible usually neither for User nor for Expert, but they are widely used in the software for access to Node and Unit structures.

The System Address (Iden) is represented as a hierarchical set of the Local Numbers of (upper) Agents:

 Node System Iden (Addr): Host . Node . tNOB . tNOB . tNOB

 Unit System Iden (Addr): Host . Node . Port . Unit . tALL

 Chan System Iden (Addr): Host . Node . Port . Unit . Chan

Two formal “numbers” – tALL and tNOB may be useful in the System Idens for addressing to ALL the Agents of some level or to NOBody on that level and below; in this case a System Address has the fixed length.

1.4. The kinds of DCS information

Data – a portion of information from/to Sensor/Actuator; the Data may be

- Raw , means the Data will be sent to (were taken from) channel directly,

- Physical, Data in float representation that converted from the Raw data by

 using calibration constants.

Stat(us) – every Sensor or Actuator channel and upper Agents have 32-bits Control Status Register (CSR).

Info – the common term for Data and/or Status of a channel.

1.5. Multiplexing and demultiplexing in CAN

 Every CAN message on a CAN bus usually has a Data Fragment that contains

the set of bytes (say – 8). One or two bytes create 1 Cell that is carrying

Data from/to one DCS Chan. Every CAN box may have several CAN frames with

the individual internal addresses (for instance, PDO1 and PDO2 in CAN Open);

it means that DCS Chan-s are organised inside CAN box as internal two level

structure – Data Cells are combined in the CAN Fragments (frames).

 The local serial number of DCS Chan in the CAN box may be calculated in a

following way:

 Chan = (Frag * CELLmax) + Cell, (1)

 where CELLmax – maximum possible number of Cells in one Frag(ment).

Because the internal CAN box organisation may be very different (for instance, the ATLAS LMB box has one CAN cell but it is sending Data from 32 DCS Chan-s in serial) the internal structure of Multiplexors and Demultiplexors (i.e. frames and cells) is “transparent” for User (as it is shown in Fig.1) and for him one DCS Unit contains the DCS Chan-s only. The only place where frames and cells may be “visible” is the list of Chan-s in the Configuration file.

While sending the data into one DCS Chan only some care should be taken about other Data Cells in the same CAN frame (they should be filled by appropriate Data for other DCS Chan-s). The way was chosen for obtaining the “frame coherence” is to keep the copy of CAN cells in the software structures that are associated with the Unit.

2. The User means for Sensors parameters setting

==

 Every Agent of SC system needs usually some Configure information from

the upper system level before Running. The channels (down Agents) should have

the Calibration information also for sending the unified (physical) Data to

the upper layers. The upper layer Agent should be able to get (set) the Status

information about the State(s) of monitoring devices. The Synchro information

may be necessary also for co-operative work of all the DSC parts.

 In principle, the inter-Agents information (Info) exchange may be driven

1) by Call (on Info Request from the upper level);

2) by Event (on Info Sending from the down level);

3) by Loop (periodically).

In the Slow Control system the first or the third mechanisms may be used

mainly (the Event driven exchange needs Agent Guarding procedure in addition),

except some extra cases (from Interlock) where the second type have to be used

for obtaining the minimum detection time of a fault.

 Every Request should have a Response in the TimeOut limits. The TimeOut

value is a part of Config Info.

2.1. The Agents Status Files

 In according with the DCS structure the Status Info is subdivided into the

several functional levels:

- the System Config Info shows the DCS structure constants and what History

 and Error files will be used in the Run;

- the Host Config Info defines Input/Output queues lengths, TimeOut Values,

 the Period of Monitoring, the number of Scanning Loops in the Run, etc.;

- the Node Config Info defines the physical (manufacture and production) names

 the logical Idens and initial Status of DCS Nodes and their Ports;

- the Unit Config Info defines the same parameters for Units and their Chan’s;

the last 3 Config’s contain also the System addresses of every Agent in DCS

structure.

 Every Status Info (see Suppl.8.1) is represented originally as Microsoft Access Table that may be changed by Expert before a Run and after it every changed Table should be exported to the Bin-directory as a plain text file. The Hosts must be placed in the Tables in the serial incremental order because every Table is reading only until the end of found Host section. The end of all the tables is marked by the “99” (unreal) number of the Host.

2.2. The Naming and Calibration Files

The naming and calibration Info is placed in a Configuration File that is the base file for Expert. The Naming Table (see Supplement 8.2 from the left) includes Names of Detector sensors and actuators and CAN Addresses of DCS Chan-s that are associated with them.

2.2.1. The Detector Names

Sensor Names

 General: Short: Detailed: Short:

 Alignment Algm

 Cooling Cool

 Current Curr

 High (Volt) Curr HivoCurr

 Humidity Humi

 Ambient Humi AmbiHumi

 Interlock Lock

 Hardware Lock HardLock

 Software Lock SoftLock

 Mechanics Mech

 OverCurrent Ovcr

 High (Volt) Ovcr HivoOvcr

 Low (Volt) Ovcr LovoOvcr

 Pressure Pres

 Barometric Pres BaroPres

 Temperature Temp

 Ambient Temp AmbiTemp

 Cable Temp CablTemp

 Cooling Temp CoolTemp

 High Voltage Temp HivoTemp

 Low Voltage Temp LovoTemp

 Module Temp ModlTemp

 Shield Temp ShldTemp

 Stave Temp StavTemp

 Voltage Volt

 High Volt HighVolt

 Low Volt Low_Volt

Actuator Names

(will be added)

Detector Names

 Comments:

 Module level : Module

 Sector level : Stave (Barrel)

 Sector (Forward)

 Section level : Layer (Barrel)

 Disk (Forward)

 Detector level: SCT_Barrel

 SCT_Forward

For instance, the full name of detector module Sensor may be:

 SCT_Barrel . Layer04 . Stave03 . Module02 . HighVolt01

2.2.2. The Calibration Info

 The Limit Table (see Suppl.8.3) includes information about the Types of 6 possible Limits and appropriate Normal physical value. The 16 Limit Types may be currently used.

The Calibration Table in a Config File (see Suppl.8.2 from the right) contains the Info for conversion of Raw values to Physical ones. The number of calibration constants now is equal to 4 and the current calibration formula for the first step is the following:

 s = B*(x - A), (2)

 where s - is the sensor value (voltage, current, etc.),

 x - is the raw ADC count (integer),

 A,B - are the first step calibration constants.

The following approximations may be used on the second step:

linear approximation

 y = (s - C)/D, if s = D*y + C (3.1)

square root approximation

 y = [SquareRoot(C*C + 4D*s) - C]/2D, if s = D*y*y + C*y (3.2)

logarithm approximations

 y = C + [ln(s)/D], if s = exp[D*(y - C)] (3.3)

 y = 1 / {[1/C] + [ln(s)/D]}, if s = exp{D*[(1/y)-(1/C)]} (3.4)

 where y - is the physical value (float),

 s - is the sensor value, see (2),

 C,D - are the second step calibration constants.

The “A” and “B” are compensating the pedestal and the tolerance in conversion

factor of ADC; the “D” and “C” constants may be used for linear or nonlinear

interpolation of Sensor scale. If A=0, B=1, C=0, D=1 the raw values will be on the “output” (y = x) for calibration formula (3.1).

 The complex sensors, for instance for humidity monitoring, may be described in Calibration Table also. The formula for calculating of the humidity is

 h = H1/(H1 + H2) (3.5,a)

Relative Humidity, RH is calibrated by:

 RH = B*h - A. (3.5,b)

The A,B-calibration constants should be placed in the record for the second

sensor (H2) and in its last column (Refer) should be presented the reference

on the first sensor (H1) local number in the same Unit.

The Agents Status, Naming and Calibration Tables (or Files) are the internal specifications of SC system and they should be non-changable (non-writable) for User.

2.4. The Selection Groups

The Data from monitored sensors may be selected by using the various criteria’s. Every criteria combines the proper channels into a

Group – the set of monitored Chan-s that are selected for Data extracting. For instance, the simplest way is to combine all the sensors of one type into one Group. The second way – to unite them basing on their “geographical area” community (for instance, for Ladder or Disk), etc.

The 8 selection Groups are possible in the current software. The 8-bits array is using in the CSR of any channel as a (linear) Group code; it means that every Chan may belong up to the 8 Groups simultaneously. The information about the Chan-s Addresses and their serial order inside the Group is stored in ‘Csct_gr1-8’ files (see Suppl.8.4).

NOTE: 1. The start Group number is ‘1’;

 2. The start Order number is ‘1’ (‘0’ means the “channel absence” - may

be used as a mask);

 3. In the Request attributes the Group number corresponds formally to

 Chan number and the Order number corresponds formally to Input-Info

 (see 3.3).

The Chan-s that are listed in the Group-files are included automatically in the set of monitored channels.

2.5. The Status Byte convention

 As was said before the every DCS Agent (on the Node, Port, Unit and Chan levels) has an unified “Control-Status Register” (CSR):

 CAN Specific CSR | Group Code | R W S E

 | | (bit array) | | | |

 | | | | | | | | | |80|40|20|10| 8| 4| 2| 1 h

The meaning of R(ead), W(rite), S(tatus), E(rror) fields is shown below:

 HexCode:

 E Bit_0,1 - Severity of Error: 0 - Normal (No Error), 0h

 2 - Warning, 2

 1 - Alarm, 1

 3 - Fatal; 3

 S Bit_2,3 - Operation mode : 0 - Module is OFF System, 0

 1 - Module is IN System, 4

 2 - Module is READY, 8

 3 - Module is ACTIVE (Busy); C

 R: W:

 W Bit_4,5 - Write Abilities : 0 - No Ability, 00 00

 R Bit_6,7 - Read Abilities : 1 - By Call (from UppLevel), 40 10

 2 - By Event(from LowLevel), 80 20

 3 - Periodically. C0 30

The “general” status information (2 low bytes) is writing to the every Agent CSR from the Config Files during the Initialization (see Supplement 8.1).

 In addition to 2 general status bytes there are 2 CAN specific CSR bytes that may be used in the different ways. They may be written and/or read by using the special DCS “status access” functions.

3. The hierarchical structure of DCS functions

==

 As can be easy seen from Fig.1 the CAN equipment is only the part (down

level part) of the entire SC system because CAN protocols can't cover all the

needs of a complex SC system. For instance:

- “CAN Open” protocol is defined in the boundaries of one CAN bus only,

- the possible number of CAN cells for one COB-Id is very limited.

But, of course, the standard CAN protocols and "CAN Open" in particularly may

be included on the down level in the set of SC system protocols.

 It means that one (or several) additional function(s) level(s) should be

used in the system. The base functions are: “Write” and “Read” Data or Status information.

 The current hierarchical organization of the main DCS functions is shown

in the Fig.2.

 Figure 2

Name SET GET Near side

What to do Info Info External Buffer: Request level

Data Channels Data

 Request Request Channels State

Expert

Way Network or Direct Link ‘Copy’

 <==>

 DCS Trans/Action DCS message: Far side

 Respond level

 Segment Length

 ‘Read’ Physical Data

 Chan(s) State

 DCS Function -----

 ------ | s Manufacture

 | t and Protocol

 ‘Write’ Status / Raw Data i Independent

 General Structure n Level

 U

 CAN(Open) ------

 Procedure ------ | s CAN Protocol

 | t Oriented

 CAN Specific i Level

 Status Structure n

 U

 CAN Operation Manufacture

 ‘Send’ ‘Take’ Driver Level

 The manufacture drivers and/or "CAN Open" profiles are the base (first

level) elements of DCS Functions hierarchy. The several simple CAN-box

Operations are combined in one CAN Procedure for changing of CAN modules State

or setting/getting the Data. The specific (vendor defined) Status structures

are using on this level.

 Every Node/Unit on the next level is represented by its Node/Unit General

Structure which contains the main changeable Node/Unit attributes (parameters)

and the Monitored Data (for Unit). These Structures are initialized from the

Config_Files when an Init Function of the proper level is called.

 The next is so-called (trans)Action level where the CAN (or other) Data

and Status are placed into the Message buffer. There are 2 types of the DCS messages:

- short ones, where only one channel Data or Status is sending as an integer

 (raw) value,

- long ones, where the physical Data and Status information from all the

 channels is sending.

In the last case the monitored Data are converted in the calibrated form and the message information is “compactizied” (see Sect.5). All the Data and Status requests are the short messages. The respond DCS message maybe short or long. The format of DCS message is described below, the message buffer on the “far” side is storing the Info about one Scan only and it is rewriting periodically in the asynchronous Mode.

The last - "Request" level permits to make setting and getting DCS Info by using the Names of Detector parts. Every Request may be a broadcast or broadcall command for CAN hardware because a Detector Name may correspond to a group of the CAN channels.

 There are two possibilities in the interconnections between Request and

Respond levels (Fig.2):

- real TCP/IP Client/Server connection from near to far side (remote Mode),

- direct “near” to “far” internal connection (Net simulation - local Mode);

in the last case a DCS message is using just an internal Buffer for one Scan.

3.1. The “far side” DCS Functions and they numbers

--

 Below is a list of the main DCS Functions:

 0x10: int InitDCShost(int Host);

 0x14: int InitDCSnode(int Host, int Node, int Port);

 0x18: int InitDCSunit(int Host, int Node, int Port, int Unit);

 0x20: int WriteDCSstatus(int Host, int Node, int Por#, int Uni#, int Cha#,

 ui Wsts);

 0x24: int SendDCSstatus(int Host, int Node, int Port, int Unit, int Chan,

 ui Wsts);

 0x28: int TakeDCSstatus(int Host, int Node, int Port, int Unit, int Chan,

 ui *Rsts);

 0x2C: int ReadDCSstatus(int Host, int Node, int Por#, int Uni#, int Cha#,

 ui *Rsts);

 0x30: int WriteDCSdata(int Host, int Node, int Port, int Unit, int Chan,

 ui Wdat);

 0x34: int SendDCSdata(int Host, int Node, int Port, int Unit, int Chan,

 ui Wdat);

 0x38: int TakeDCSdata(int Host, int Node, int Port, int Unit, int Chan,

 ui *Rdat);

 0x3C: int ReadDCSdata(int Host, int Node, int Port, int Unit, int Chan,

 ui *Rdat);

 0x48: int WaitDCSevent(int Host, int Node, int Port, int Unit, int Chan,

 ui *Edat, ui *Ests);

 0x4C: int TakeDCSevent(uc *Host, uc *Node, uc *Port, uc *Unit, uc *Chan,

 uc *More, ui *Cdat, ui *Csts);

 0x50: int CloseDCSunit(int Host, int Node, int Port, int Unit);

 0x54: int CloseDCSnode(int Host, int Node);

 0x58: int CloseDCShost(int Host);

 uc -> unsigned char, ui -> unsigned int

 # => may be absent, if Port,Unit,Chan-number == tNOB -> Access To_NOBody

The ‘Write’ and ‘Read’ functions are writing and reading Data or full Status

Word to/from Unit general structures; the ‘Send’ and ‘Take’ functions provide

in addition the Data and CAN specific CSR exchange between Unit’s structures

and CAN hardware if an appropriate DCS Chan is writable or readable (see 2.5).

 The Functions are manufacture and CAN protocols independent and may be

widely used for many types of Buses and Serial Lines. All the Functions return

a "zero" or an Error Code.

3.2. CAN Message Structure

 The DCS Action (see Fig.2) is an equivalent of the DCS Function but, as

was said before, it is organized as internal DCS message with the fixed “byte

ordered” platform independent format.

 The request (command - from the left) and response (execute - from the

right) Action messages have the usual fields:

 COMmand Message (to CAN) EXEcute Message (from CAN)

 B00 : Message Number Message Number+1 (exe_msg_num: even)

 B01-02: Message Length Message Length (in Bytes)

 B03 : To.. - Chan Iden From - Chan Iden (or VME address)

 B04 : To.. - Unit Iden From - Unit Iden (:)

 B05 : To.. - Port Iden From - Port Iden (:)

 B06 : To.. - Node Iden From - Node Iden (:)

 B07 : To.. - Host Iden From - Host Iden

 B08 : What - Func Iden What - Func Iden (CAN/VME Function)

 B09-13: From - Five Bytes To.. - Five Bytes

 B14-17: Info - Reserve= 0 Info - Error Code (LowByte is in B14)

 B18-21: Info - Reserve= 0 Info - Error Addr (LowByte is in B18)

 B22-25: Date - Day, H,M,S Date - Day, H,M,S (Day is in B22)

 B26...: Data - of 1 Frame Data - of 1 Frame (and Status info)

 Every Message starts from a current (incremented) non zero Number, it is

odd for COM_message and even for EXE_message. The two next bytes contain the

message Length identifier. Five Bytes of an address (To..) are carried in the

Bytes_03-07. Function Code is placed in "What to do" Byte (B08) of a Message.

Client is starting by issuing of a Request Message (with the next odd number)

for Data/Status reading or writing (the request attributes are placed in the

Bytes_26-29).

 Server can control of CAN modules and can execute commands from the Client

Requests. Server acknowledges every Message receiving (by incrementing B00 and

repeating of B03-13 in the Reply Message) and if there was short Info request

- includes Read Data and/or Status starting from Byte_B26. In the case of some

error detecting the Server puts the first byte of an error code in Byte_B14

and the second byte - in Byte_B15, in the next 2 bytes the Error Address code

will be written.

 Every Message has 4 bytes for Day(month)/Hour/Minute/Second Time stamp –

in the Bytes_B22-25.

3.3. The “near side” DCS Requests and Responds

--

 There are 2 near side high level subroutines for manipulating with the single channel Data and/or Status info (short messages):

 int Request(int Host, int Node, int Port, int Unit, int Chan,

 int Func, /* The DCS FUNCtion */

 unsigned int Info); /* The Data/Status Info for an INPut */

 int CopyRespond(int Host, int Node, int Port, int Unit, int Chan,

 unsigned int *Info); /* Pointer for Data or Status OUTput */

The first string in the attributes describes DCS Address of the channel. All the general Func(tion)s that are listed in p.3.1 may be used in the Request(). The CopyRespond() subroutine just takes the reading Info from the EXE_message and may be used for checking the quality of Request execution.

Two additional SC-system functions may be requested also (see details in p.6):

 0x80: int SetDCSstate(int Scod); - Set DCS System State

 0x84: ui GetDCSstate(void); - Get DCS Global state parameters

There are special Requests for Info in calibrated and normalized forms:

 0x90: GetDCSinfo - Function Code for Request

 0x94: GetDCSnormal - Function Code for Request (see p.5.2)

The full Data & Stat information from all the channels of the last Scan is sending in the compact format on this request. After it the small (Group) portions of Info may be copied from EXE-message locally.

3.4. The types and functionality of SCT-DCS Server and Clients

--

 There are 2 types of the Clients (remote Request Agents) in SCT-DCS:

- "Main Client" that may be run by Expert only. It is able to generate any

 request to the Server;

- "Look Client" may be used by everybody. It is able to send "GetDCSinfo"

 request only.

 The Server is starting by the Local Client as a “Child”, they both are

sitting in a Host computer. The “Parent” is a Main client for the server. The

Server executable program should be prepared before its call and should be

put into the file with “Cserver.exe” name.

 The other clients (their number may be up to 30) are subdivided in 3

groups: they can get SC data “on Call” (by sending request every time they

need) or “on Event” (that is discovered in the system) or Periodically (“on

Time” – regular). The “event” and regular clients should register themselves

before data getting by sending to Server a Request with GetDCSinfo function

and with the Info value

- 0x88 for adding to Event list (0x84 – for deleting), see CSR bits in 2.5,

- 0xC8 for adding to Periodical list (0xC4 – for deleting).

After it they will receive the proper data from the Server.

 - Watch-dog Timer Figure 3

 “isolation”

 Local Client

 (Parent)

 Main Look

 Remote Client Remote Client

 . .

 . “on Call” “on Event” .

 . Group Server Group .

 . (Child) .

 Look Look

 Remote Client Remote Client

 “on Time”

 Group

 Look Look

 Remote Client Remote Client

The TCP/IP links are using for remote clients. All the links are realized in

unblocking manner (there is no indefinite waiting time during “read” and

“write” transActions (see watch-dog timers in Fig.3), therefore nobody can

cause the system hang-up.

 The Server Loops (time sharing) organization is shown in Fig.4. The average Detecting Time:

 - for Scanned modules - tens or hundreds of sec (Tmon / (12);

 - for Eventable modules - several msec (if Server is out of Scan).

 The advantages of "Periodical Sending" mode in CAN (Tsend ((Tmon / 2)):

 - CAN bus loading is more regular;

 - there is no waiting time for respond, therefore a Scan time is very short;

 - there is no CAN-boxes TimeOut and hang-up problems.

 The CAN Unit is sending Data to Server only if the monitoring procedure

was done successfully, in other case it returns an error.

 Figure 4

 New Time

 CAN

 -> Hardware

 Time < Tmon ? CAN Request

 CAN Respond

 Is Client ? Main

 Make

 Make Script Quick Server one

 Line Loop Scan

 Loop

 Is Event ?

 Periodical

 Sending

 <-

 CAN

 Hardware

 Send Scan data to

 “Regular” Clients

3.4.1. Quick Loop procedures

In the 'Quick Loop' a Server is checking;

- the possible requests from Main and Look Clients;

- the 'Event List' that contains "look at me" Flags from the channels that are

 able to send the CAN messages in some Extra Cases;

until the Period of Monitoring (Tmon) is not over.

3.4.1.1. Script Files

The manipulation with the Actuator channels needs sending some control Info in non-predictable order (at the time of Code compiling) in addition to getting Actuators Data and Status from addresses that may be varied. The Info exchange protocol may be based on some other functions than simple numerical Value Write/Read (see p.3.1). For instance, it may be based on Text String Sending/Taking (Chiller machine) and maybe very slow (needs several seconds waiting after every Request). The special system subroutine was created to meet these requirements, it is able to read and to execute the

Script - serial set of commands that are represented in the form of a text lines. The important new function in a Script is ‘WaitMsec’ (milliseconds). One Script Line is executing in one Quick Loop cycle, the next Line is reading on the next cycle only. If ‘WaitMsec’ is presented in the Line the incrementing of Sript Lines will be postponed till wait interval will be over (the Script itself will be transparent for Quick Loops).

The Func(tion)s that may be used in the Script Requests and their “text format” (in the left columns) is shown below:

 InitHost: func = INITdcsHOST InitNode: func = INITdcsNODE

 InitUnit: func = INITdcsUNIT SendStat: func = SENDdcsSTATUS

 ReadStat: func = READdcsSTATUS TakeStat: func = TAKEdcsSTATUS

 SendData: func = SENDdcsDATA ReadData: func = READdcsDATA

 TakeData: func = TAKEdcsDATA SendStri: func = SENDdcsSTRING

 TakeStri: func = TAKEdcsSTRING MoveStri: func = MOVEdcsSTRING

 ClosUnit: func = CLOSEdcsUNIT ClosNode: func = CLOSEdcsNODE

 ClosHost: func = CLOSEdcsHOST WaitMsec: No Request on it

As may be seen from previous list the additional functions were created for Strings dealing:

 0x40: int SendDCSstring(int Host, int Node, int Port, int Unit, int Chan,

 char *Stri);

 0x44: int TakeDCSstring(int Host, int Node, int Port, int Unit, int Chan,

 char *Stri);

 0x9C: MoveDCSstring - FunctCode for Far side Request.

Every letter of a String[i] is copied while Sending/Taking into appropriate Chan[i] of selected Unit structure. Taking is copied a String into sGET global buffer also. Due to it any Stri(ng) was read may be moved to any Unit.

The format of the Script Line (Suppl.8.5) is the following:

 Request Host Node Port Unit Chan Func Info/Stri

 or

 WaitMsec Time None None None None None None

If some of the parameters are not necessary for the request (for instance, Node, Port, Unit, Chan for ‘InitHost’) they should be described as ‘None’. Any String may be commented by inserting ‘#’ before ‘Request’ or ‘WaitMsec’.

4. Error Handling

=================

 The current principle of DCS functionality is "to execute until the first Error" on the any (Action, Function, Procedure, Operation) level except Agents closing actions. Due to it the System Error register contains the unified fields for Action/Function, Procedure and Driver errors and for general Error status:

 Error Bits 0,1 - Severity of Error : 0 - Normal (No Error is even always),

 2 - Warning,

 1 – Alarm (Fault is odd always),

 3 - Fatal;

If the system is working in the "periodical" or closing mode the Error counter may be used also. The Error register ERRc (ERR-code) and Error counter ERRn (ERR-number) have 32-bits length and ERRc has following bits distribution:

 Hardware Code | Function | Procedure | Operation Errors | ES

 11 bits | 6 bits | 7 bits | 6 bits | 2| 1 h

 Error Counter

 b

where ES is Error Severity.

 There are no Error printing (drawing) facilities in the DCS Functions

themselves (because they are on a "Far side"). The special set of subroutines

was developed for the Errors indication in the Text or Graphics modes (on the

Client/User side). Some examples of the Error Messages are shown below:

 Function Errors: Procedure errors: Operation Errors:

 " InitDCSnode : Open_CanObj() failure Write_Queue_OverFlow "

 " CloseDCSnode : CrNotifAnalyz() failure Read_Queue_Overflow "

 " InitDCSunit : CanCrNotifBox() failure Overflow_in_CAN_chip "

 " WriteDCSstatus: CanSdoServ() failure Unknown_Overflow "

 " ReadDCSstatus : CanCrNotifGuard() failure Data_just_read_was_old "

 " WriteDCSdata : CanNmtServGlobal() failure Not_supported "

 " ReadDCSdata : CanBoxWrite() failure CAN_communication_stuff "

 " WaitDCSevent : Can't find Unit by Name CAN_communication_form "

 The special set of Data/State Read/Write simulation Functions was created;

it allows to exclude CAN hardware from SC system for other DCS parts testing

and software debugging. Any errors can be generated artificially in a random

way in this Mode, it permits to check the system sensitivity to errors and the

system tolerance to them.

5. Data Compactization

======================

 The monitoring calibrated Data are usually represented as float variables

(see above), it means that several tens of bits are necessary for the every

count storing. It is much more than the amount of information that contains in

the monitored Data. In according with the classical Shannon formula the amount

of information in one count is not more than 6-7 bits (the Data distribution

peak is relatively narrow - see details in the ATLAS Note No 142). The several

ways are possible for reducing the Data buffer length in a Message or in the

archive.

5.1. The Info Coding in DCS Message for monitored Data

--

 There is the hierarchical set of embedded segments for Host, Node, Port,

Unit and Chan portions of Info in the CAN Message. The number of segments on the every level is equal to HOSTmax, NODEmax, PORTmax, UNITmax, CHANmax correspondingly. The every fragment is starting from its length (2 Bytes), due to it the CAN Message may be easy decoded and encoded.

5.1.1. Chan(nels) Info Compact Coding

 The Chan Info contains Data and Status fields. They both are “half Byte”

encoded: code starts from a current value length (the first half of Byte) and

then the value itself (float or integer) is represented in binary-decimal code.

For instance, for “zero value” coding the only one Byte is needed for 32-bit

Integer (code = 01h) and 2 bytes are used (code = 0B 03h) for the Float.

HalfByte (hB) codes for Numericals: Byte

 0..9 – Digits (Decimal), First hByte Length in hB/B

 10 - Minus Sign,

 11 - Float Dot; Third hByte Second hByte

Chars coding, if the First hByte:

 12 - Char String, size = Length,

 13 - Char String, size = Length + 15,

 14 - Char String, size = Length + 30, (NULL) Last hByte

 15 - Char String, size = Length + 45.

The Name of Detector structure part may be coded also as a Byte Array. The length of string (up to 60 Bytes) is in the ‘Length’ hByte.

The schematic structure of DCS-message is shown below:

 Data Section Length

 Host 0 Length

 Node 0 Length

 Port 0 Length

 Unit 0 Length

 Chan 0 Data compact code

 Chan 0 Status compact code

 Chan 1 Data compact code

 Chan 1 Status compact code

 Unit 1

 Unit 2..

 Port 1

 Port 2..

 Node 1

 Node 2..

 Host 1

 Host 2..

5.2. Data Normalization

 As we need to know the detailed behavior of monitoring parameter around

its Normal value only the "three slope" scale may be used as it is shown in Fig.5.

 Figure 5

 Normalised Value

255- Monitored Data

 Distribution

224-

192-

128-

 Minm = Norm - (3*(Norm-FatL))

 64- Maxm = Norm + (3*(FatH-Norm))

 32-

 Raw Value

 | | | | | | |

Minm FatL AlrL Norm AlrH FatH Maxm

For so-called Data Normalization procedure the Limits are standardized:

 Alarm_Low is always equal to 64, Alarm_High is always equal to 192,

 Fatal_Low is always equal to 32, Fatal_High is always equal to 224,

 Minimum is always equal to 0, Maximum is always equal to 255,

and Normal value is always equal to 128 - see Fig.5. As a result the 8 bits (1 Byte) only is necessary for monitoring Data (internal) representation. Such format is very suitable for graphics Data out and for the further Data Compression.

 If FatL=n*32, AlrL=n*64, Norm=n*128, AlrH=n*192, FatH=n*224 ("n" is any

integer) are installed for the X-axe then the conversion scale will be linear

(see LimiType "14" (n=1) and "15" (n=10) in the Calibration Table).

6. The System Subroutines

=========================

 For using “by call” in higher level system software the described set of

the programs may be represented as a single “functional box” with some inputs

and outputs, i.e. as the complex subroutine that includes the set of Request and Respond near side commands (see 3.3).

 Two system operations may be used for sending of the local or remote

Requests to CAN hardware and receiving the Responds with Data/Status Info:

 int SetGetByAddress(int *Host, int *Node, int *Port, int *Unit, int *Chan,

 int *Func, /* The DCS FUNCtion */

 int *Iinp, /* The Data/Status Info for an INPut */

 float *Dout, /* Pointer for Data OUTput */

 int *Sout, /* Pointer for Status OUTput */

 int *Eout) /* Pointer for Error OUTput */

 int SetGetByName(char *Name, int *Func, int *Iinp,

 float *Dout, int *Sout, int *Eout,

 int *Numb) /* The NUMBer of Chans found by Name */

The first subroutine is oriented on Expert Requests because it deals with DCS

addresses and the second one – on User Requests (Detector Name is in the

arguments). The first subroutine returns (on Dout and Sout addresses) one Data

and one Status value; the second one – the group of Data and Status values

that was found “under” Detector Name (it may be Device, subComponent or all

the Detector).

 The writing and reading are the examples of “single” operation. For easy

control of the system resources more complex procedures are necessary that are

able to produce the serial sequence of operations, such as: scanning, opening

and closing.

 There are 2 System Procedures that may be called via “SetGet” subroutines

for setting and checking the total DCS Status and for making the monitoring

Scan:

 0x80: int SetDCSstate(int Scod);

 where Scod - System Status CODe: 0x00 - Set OFF System State,

 0x04 - Set IDLE System State,

 0x08 - Set READY System State,

 0x4C - Set ACTIVE State and Scan Data,

 0xCC - Scan Data Periodically;

 0x84: int GetDCSstate(void); - returns of Scod.

 Two additional System requests are defined for more specialized operations

by using the Detector's Names:

 0x88: SetDCSdata - for Data writing to the group of CAN channels

 (makes WriteDCSdata & SendCANdata);

 0x90: GetDCSinfo - for copying the results to Data and Status Buffers.

By using System Operations and System Procedures any Extern Connection to the

SC System (via interprocesses mechanism or directly) may be done very easy.

6.1. The Testing Software

6.1.1. The Scanning Program as a LabView CIN

 All the described functions and subroutines are written in ‘C’ but they

may be successfully used in the LabView environment as LabView CINs.

 The DCS Scanning Program is based on the SetGetByAddress() subroutine and

SetDCSstate(Scod) system function is called on the every Scan. The functional

Module (see Fig.5) has 6 inputs: 5 - for Host, Node, Port, Unit, Chan numbers;

Iinf (input info) - for new Request and 2 outputs: Sout - an indicator of the

Current system state or error, Dout - for calibrated or normalysed data

getting.

 The system or value current State (or Error info) is presented on the 1-st

output in according with unified Status (p.2.5) and Error codes convention (i.e. the Data are comparing with the Limits).

 Data for Host(Node(Port(Unit(Chan))) are always available from the second

output.

 Figure 5

 Status+Limits

 Config.File Calibr.File

 Error

 LabView

 New State

 State Scan Buffer User

 Scanner Normalyser Data

 Channels Data Inp/Outp

 Chan Channels State

 Address

 o /

 /()

 /\

 newState+ChanNumber happy User

If Func=SETdcsSTATE and Iinf=4Ch the program is scanning one time all the Sensors (of all the Units, of all the Ports, of all the Nodes, of all the Hosts) that are included in the Configure Table, and puts Data and Status values into the DCS-message.

If Func=GETdcsINFO the full Data & Stat message is sending to “near side”.

If Func=COPYgrpINFO the program is making a copy of Chan info that is numbered in ‘Iinf’ (the Group is pointed in ‘Chan’ section of Address).

If Func=COPYchaINFO the addressed Chan Info is copying.

6.1.2. The Testing programs

 This scanning routine is also a part of 2 Testing programs, the first one represents the results in the Text and the second one - in the Graphics form. By using two-level menu in these programs any channel may be selected for Data/Status writing from the keyboard. The scanning results may be watching on the screen for the predefined group of the channels. The ‘Csct_gr1.txt’ file (see Supplement 8.4) is using for predefinition (selecting) of the Chan-s that are desirable demonstration (watching).

7. Software that is available from MSU

======================================

Assuming that all DCS subsystems will be based mainly on CAN equipment,

the following set of CAN hardware modules was tested:

- National Instruments CAN Controller card for IBM_PC;

- CAN-A and CAN-D slave boxes from "or" Industrial Computers;

- Local Monitor Box that was designed in ATLAS DCS group;

- Embedded LMB (ELMB) that was designed in ATLAS DCS group.

7.1. The list of Programs

The list of created testing Libraries and Programs is presented below.

Cversion.c - This file contains all the Global "C" variables and structures

 and controls all the possible Oper_Modes.

 It may be Compiled and Run as the Server or as the Client,

 or as a Library (CIN for the LabView), or as the Test program in

 the Text or Graphical Modes. The proper definitions must be done

 in Define Modes Area.

 If CANVHEAD and LIBRaries are defined this File can be used

 as the Header File.

Ctst_txt.c - CAN modules TeST in the TeXT mode, main program (for expert).

 Tests all the CAN programs (Open/Close, Write/Read/Event) on the

 Hardware Independent Trans/Action Level in the Text Terminal

 mode.

Ctst_gra.c - CAN modules TeST in the GRAph mode, main program (for expert).

 Tests all the CAN programs (Open/Close, Write/Read/Event) on the

 Hardware Independent Trans/Action Level in the Graph Terminal

 mode.

Ccom_lib.c – This library contains the subroutines for execution of Script

 described procedures.

Creq_lib.c - Provides CAN high level REQuests for the System Initialisation,

 Setting the States and Getting Slow Control Data.

Cact_lib.c - CAN ACTions LIBrary.

 Provides Network (TCP/IP) or Direct Link from Client CAN/VME

 program to Server CAN/VME Functions that deal with hardware or

 with CAN/VME driver simulators.

 May be used as

 a} SIMulation library of network Actions (SIMa);

 b) NETwork Client library (NETC),

 c) NETwork Server program (NETS - in this case the name

 of this File should be changed to Cact_ser.c).

Csys_lib.c - CAN SYStem LIBrary.

 Makes the distribution of the calls to the vendor oriented CAN

 subroutines for the System Host Initialisation, Setting the

 States and Getting the Data from Detector Control System Level.

Cnam_lib.c - Makes on call: Naming file reading and then Detector names and

 CAN addresses structures structures filling; getting CAN Address

 by Detector Name and getting Name by Address.

Cerr_lib.c - CAN ERRror LIBrary.

 Provides all the necessary Error Handling System subroutines on

 the Procedure (hardware dependent), Function (hardware

 independent) and Action (remote control) Levels.

Cfun_sim.c - CAN FUNctions SIMulation library.

 Provides all the necessary (Open/Close, Write/Read/Event)

 simulation subroutines for CAN controllers and boxes on the

 Function (hardware independent) and Action (remote control)

 Levels.

Comp_lib.c - COMPuter COMPatible LIBrary.

 Creates Platform independent Input-Output Text-Graphics

 facilities in "C".

NIca_lib.c - National Instruments CAN controller LIBrary.

 Provides all the necessary (Open/Close, Write/Read/Event)

 subroutines that are based on NIcan Controller drivers for the

 Procedures (hardware dependent level).

NImb_lib.c - National Instruments & local Monitor Box LIBrary.

 Provides all the necessary (Open/Close, Write/Read/Event)

 subroutines for Nican drivers and for LMB boxes on the

 Procedure (hardware dependent), Function (hardware independent)

 and Action (remote control) Levels.

NIel_lib.c - National Instruments & Embedded Local monitor box LIBrary with

 the same possibilities as Nimb_lib.c.

NIor_lib.c - National Instruments & ORic box LIBrary.

 Provides all the necessary (Open/Close, Write/Read/Event)

 subroutines for NTcan drivers and for CST boxes on the

 Procedure (hardware dependent), Function (hardware independent)

 and Action (remote control) Levels.

PCsp_lib.c – The library for IBM_PC Serial Ports.

PCpp_lib.c – The library for IBM_PC Parallel Ports.

 All the DCS settings and calibration constants are reading from the proper

Files during the Host Initialization. These files are generated from Microsoft

ACCESS DataBase Tables:

 Csct_sys - CAN (ATLAS) SCT SYStem parameters,

 Csct_hst – CAN (ATLAS) SCT HoSTs parameters,

 Csct_nod – CAN (ATLAS) SCT NODes parameters,

 Csct_uni – CAN (ATLAS) SCT UNIts parameters,

 Csct_lim – CAN (ATLAS) SCT LIMits types parameters,

 Csct_cnf - CAN (ATLAS) SCT naming and calibration CoNFig info.

 Csct_gr1-8 – CAN (ATLAS) SCT Scan selection groups.

 Csct_ini - Script that is executed on the end of initialization.

 Csct_run - Script that is executed in the Quick Loop.

 Csct_off - Script that is executed on the start of system closing.

The both (text and graphics) test programs may be used for any combination

of the working and simulation libraries. After choosing the necessary

combination of libraries (in the Cversion.c File) the proper version code is

generating (the first compiler operation). Version code "register" contains 3

fields - Hardware (8 bits), Simulation (4 bits) and Terminal mode (4 bits)

linear Codes:

| SystCode HardCode | SimuCode |Term| ShowCode |

| |see Hardware Version Code| A F D | M | A S D E|

|8000|4000|2000|1000|800|400|200|100| 80| 40| 20| 10| 8| 4| 2| 1|h

 | |

 Simulation CODe: Terminal Code: Show CODe:

 D - Driver Simu/Work, If M=1 -> Text terminal mode, E - Errors Show,

 F - Function Simu/Work, If M=0 -> Graph terminal mode; D - Data Show,

 A - Action Simu/Work; System Code: 00 - ATLAS, S - Status Show,

 10 - ZEUS; A - Action Show.

The place and role of the every program may be illustrated with the

following picture:

 Figure 6

 Request Library Naming

 or Test (Text/Graph Inp/Outp) Configuration

 Programs File

 Net Net

 |- - - CAN Actions Library - - -|

 System Commands Library

 ------ |

 ------------- ------------ || ---------------

 NIcan CAN |

 Controller Boxes Agents Status

 Library Libraries and

 Calibration

 Hardware Simulation Files

 Library

 NT-CAN orIC-CAN ELMB-CAN

 Controller Boxes Boxes

 CAN | | | CAN

The Status and Data ShowTerminal Modes are using for debugging of software

and hardware. All the software is written in "platform independent" manner (it

may be run on IBM-PC, Unix and VAX machines) - the special set of Text/Graph

Input/Output libraries was developed for obtaining this aim.

8. SUPPLEMENTs

==============

8.1. The Examples of Agents Status Tables

8.2. The part of Configuration Table

8.3. The Example of Limits Table

8.4. The example of Group selection Table

8.5 The example of Script (command) File

--

Detector

SC Syst

Host

Section

Sector

Node

Unit

Module

Demu

Mulx

Chan

Actuator

Sensor

Chan

