Using External Code
In LabVIEW

‘7 NATIONAL
’ INSTRUMENTS'

July 2000 Edition
Part Number 370109A-01

Worldwide Technical Support and Product Information
WWW. ni . com

National Instruments Corporate Headquarters
11500 North Mopac Expressway ~ Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,

Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521,

China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,

Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, | ndia 91805275406,

Isragl 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625,
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,
Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,

Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail tot echpubs@i . com

© Copyright 1993, 2000 National Instruments Corporation. All rights reserved.

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions,
due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media that do not execute programming
instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not
warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed

for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult
National Instrumentsiif errors are suspected. In no event shall National Instruments be liable for any damages arising out of

or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER'’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR
NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL
INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments
must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects,
malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including

photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks
CVI™, LabVIEW™, National Instruments™, and ni.com™ are trademarks of National Instruments Corporation.
Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTSAND TESTING FOR A LEVEL
OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL
COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE
EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) INANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS
CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONSIN ELECTRICAL
POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE
FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION,
INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR
FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC
SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF
THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES’). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH)
SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM
FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE
REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO
BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS
FROM NATIONAL INSTRUMENTS TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER
MAY USE NATIONAL INSTRUMENTS PRODUCTSIN COMBINATION WITH OTHER PRODUCTSIN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS
ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL
INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A
SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND
SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Contents

About This Manual

CONVENTIONS ...ttt r et r s r et r e n e Xiii
Related DOCUMENLALION.coeirerreeiereseeree e Xiv
Chapter 1
Introduction
Calling Code in Various Platforms...........cooirerrenninee e 1-1
Characteristics of the Two Calling APProaches..........ccceeeirrernenneeeneeeseseeseens 1-2
Detailsof Call Library FUNCLION..........cccoeiriireinee e 1-3
DEtailS Of A CINooviiiteieeet et 1-3
Chapter 2
Shared Libraries (DLLS)
Calling Shared LiBraries.o 2-1
Calling Conventions (WIiNAOWS)cccceoeririneneniiriese e 2-3
PaAramMELErS ... 2-3
Calling Functions That Expect Other Data TYPES......c.evereereeerierereriereeseenens 2-5
Building @ Shared Library (DLL)ooeoiiiieeeeeerene st 2-6
Task 1: Build the Function Prototype in LabVIEW.ccocivieniieniciieene. 2-6
Task 2: Completethe .C File......ooi i 2-8
Task 3: Build aLibrary Project in an External IDE...........ccocooieiencneeiieenne. 2-10
Calling EXTErNal APISottt 2-14
Common Pitfalls with the Call Library FUNCEION..........cccocrereniiineeieeeeane 2-14
Example 1: Call a Shared Library that You BUilt ..., 2-16
Example 2: Call aHardware Driver APl ... 2-17
Example 3: Call the WIN32 APl ..o 2-19
Additional Examples of LabVIEW CallSto DLLS......cccooiiiiiiieeeeeee e 2-25
Debugging DLLSand CallStO DLLS.....cooiiiiiereseee e 2-26
Troubleshooting the Call Library FUNCHON.........ccoeieinninecee e 2-26
TroublesShooting YOUF DL Lccccoiiiiieciene e 2-26
Troubleshooting ChECKIISE.........ccooiiiiie s 2-27
Module DEfiNitionN FIlES........cccoiiiiieesieees s 2-29
Array and String OPLIONS.......ccciiiiiiirererieieere ettt et see e e e 2-30
Arrays Of NUMEITC DAtccocerveriiriiiiiiieieeeeeere e 2-30
SEANG DALA. ... ve ettt bbb e e b e b saeene 2-31
ATy aNd SENG TiP. oottt s s 2-33

© MNational Instruments Corporation v Using External Code in LabVIEW

Contents

Chapter 3
CINs
SUPPOIEA LBNQUAGES -....cueeveeeeeieeteeterie sttt e st see e e e e e e e e e e e ssesaeseeseas 31
Y=ol 0 TSR 31
MiCTOSOft WINAOWS.......cueiiieieiiiie ettt 31
Solaris, Linux, and HP-UX ... e 32
Resolving MUltithreading ISSUESccoerirereieniere et s 32
Making LabVIEW Recognize a CIN as Thread Safe.........ccoeveeeeeeiencnicnene 3-2
Using C Codethat is Thread Safe..........cooeveeinenenine e 33
Creating @ CTN ...ttt bbbttt r et seeeae e 33
Step 1. Set Up Input and Output Terminalsfor aCIN.........cccccceiriniencienene 3-4
Step 2. Wire the Inputs and Outputsto the CINcooeieieririninieneneree 3-6
SteP 3. Create @.C FIle ..o 3-6
Step 4. Compile the CIN SOUrCe COAEcovrerereririeniere e 3-8
Step 5. Load the CIN Object COUEccueererererierierieiere e 3-16
LabVIEW Manager ROULINES.cccoiiieriirieieeeeeiesiese sttt e e sae b e e 3-16
POINLErS 8S ParameELersScccooiiiiiiiee ettt 3-17
Debugging EXternal COOEcoouiiiiriiiiciesie ettt 3-18
D] 0o | = T 1 PRSP 3-19
WWINAOWS ..ottt ettt sbe b b seeean 3-19
UNEX ottt bbbt et 321
Chapter 4
Programming Issues for CINs
PaSSiNG ParaMELEr'S........cceiueeeieeee e s ste st steste e e e e e st saesae e ste st e aesae e e e enesresnesnens 4-1
Parametersin the CIN .C Fil€. ..o 4-1
Passing Fixed-Size Datato CINS........ccccverererececire e 4-2
Return Value for CIN ROULINES ... 4-3
EXamples With SCAlars ..o 4-4
Creating aCIN That Multiplies TWo NUMbBErsccccocvviececeese e 4-4
Passing Variably Sized Datato CINS........ceovicieii e 4-7
Resizing ArraySand StHNQS......ceeveveeceneeieeee s s eee e see s 4-9
SELCINATTAYSIZE.....oceeeee et e et ne s 4-11
NUMENCAITAYRESIZEee ettt 4-12
Examples with Variably Sized Data........cccccoeceeveieeie e 4-14
MANAGEr OVEIVIEWeoveieieieieesteetee et este et e ste s seestessee e esaesteesaesseenesreensesreeneesreensensenns 4-21
S F S ol B = Bl 1N o 4-23
MEMOTY MENAJETcoiiiiiiiiie e e esne e 4-27
LAY == o T PSSP 4-32
SUPPOI MBNAGETiiiteiiieeiie sttt sttt sa e sre e be s sbaesteeree s 4-36

Using External Code in LabVIEW vi www.ni.com

Contents

Chapter 5
Advanced Applications
CIN ROULINES ...ttt ettt sttt et sae e aesteenbesbeetesteenbesreeseennannas 51
Data Spaces and Code RESOUICES........ccucrueeerererirene e e 51
One Referencetothe CIN inaSingle VI ... 5-3
Multiple Referencesto the Same CIN inaSingle VI ... 5-5
Multiple Referencesto the Same CIN in Different VIS.......ccocoiiieicinenne. 5-6
Code Glaobals and CIN Data Space Globals...........coeieieirniniencneeceee 5-8
Chapter 6
Function Descriptions
Memory Manager FUNCLIONS...........coeieeeeieesise st ettt e ne e ens 6-1
SUPPOIt Manager FUNCLIONS........c.ciireeeereereeeseestesee e esee s e e esee e sse e snesre s nes 6-5
Mathematical OPEratioNS.........cccvverueriereereeerere s sese et see s 6-8
AADS e e bbb st e e e 6-9
FS O I T 0= TSSOSO 6-10
AZCheckHandle/DSCheckHaNAIEc.coeereirieerieeriereese e 6-11
AZCheCKPII/DSCRECKPETccvirieierieiesesteseeere sttt 6-12
AZDisposeHandle/DSDispOSEHaNAIE.........coovreveriie e 6-13
AZDIiSPOSEPLI/DSDISPOSEPLEecueceeeeeeeeerestesiesteste e seeseesaesesesesresresaesre e seseeneeneenesseens 6-14
AZGetHandleSize/DSGEtHANAIESIZEc.coeverieirieirieereese e 6-15
AZHandAndHand/DSHaNdANAHENGccoeiriiieiririreeseree e 6-16
AZHandToHand/DSHaNdTOHANccoiirirnirrerrieee st 6-17
AZHeapCheCk/DSHEBPCNECK........cveececeeeisie et 6-18
AZHLOCK ...ttt etttk etk et e be e b e 6-19
A [N [U o T 6-20
A o | U1 0= T 6-21
AZHUNIOCK ..ottt sttt st st sttt s s sae s e 6-22
AZMaxXMEM/DSMAXMEIMcuoririiiiieirieieieeee sttt sttt seeteseesesessesaesesens 6-23
AZMEMSLATDSMEMSLALScveveveveeierieierieie ettt se s eenas 6-24
AZNewHandle/DSNEWHENIE..........cccoiiiiiieieeer e e 6-25
AZNEWHCIT/DSNEWHCIT ...t es 6-26
AZNEWPCIT/DSNEWPCIT ..ottt et e e 6-27
AZNEWPELI/DSNEWPLE ...ttt sttt s e see b b e 6-28
AZPtrANdHaNd/DSPIANAHANGccooiiiiieeee e 6-29
AZPtrToHand/DSPETOHANGoouiiiriiiie e e 6-30
AZPtrToOXHaNd/DSPITOXHENG.cceiuiieiiiienieeeieeee st 6-31
AZRecoverHandle/DSRecoverHandIe..........ccoveieiriniinine et 6-32
AZSetHandleSize/DSSEtHaNAIESIZE...........coueererirere e e 6-33
AZSEtHSZCII/DSSEHSZCIT ...t es 6-34
BINSEAICH ... e 6-35
2 oo (@ 2] o S 6-36

© MNational Instruments Corporation vii Using External Code in LabVIEW

Contents

(O 2L oSS U R ST P S PP 6-37
ClIEAIMMEBIM ...ttt bbbt b et bbb e 6-38
CPSIIBUF ...ttt ettt b e st b et b et b e et st 6-39
(O (1 1 4o TP TSRS S VST PRURTPRP 6-40
CPSIITNAEX ...ttt st bbbt b e et e 6-41
CPSIITNSEIT ... et s e e et r e nneerennes 6-42
CPSITL BN .. e e 6-43
CPSITREMOVE ...ttt r et r e r e e e nes 6-44
CPSITREDIACE. ...ttt ettt 6-45
CPSIISIZE. ...ttt bbb bbbt b e e 6-46
CTOPSEE ..ttt e r e ettt r e r e nr e nnenes 6-47
DALECSIIING ...ttt sttt sttt b et b e b b e 6-48
D =] [0S o T PP USRS RURURTP PPN 6-49
FAAUPELN.......ceceiie bbb 6-50
FAPPENANBIME.cviiitiietieet et bbbt bbb 6-51
FAPPPEIN ...t 6-52
FATTTOPEIN.cooectie bbb 6-53
FCOPY ettt ettt et renren 6-54
FCIEALE ...ttt et r e e r e 6-55
FCrEAIEAIWAYS ...ttt bbb bbbttt 6-57
FDEPN ... bbb 6-59
FDITNGIME. ..ottt bbbt bbbttt 6-60
FDISPOSEPELNceiiiiiiiei ittt bbb 6-61
FDISPOSERENINUM ...ttt bbbt 6-62
FEMPLYPEEN ..ot 6-63
FEXISES ..ttt bbb 6-64
FRIGHENPELN........coeieiee bbb 6-65
FRTUSN b bbb 6-66
FGELACCESSRIGNES ...ttt e 6-67
FGEIDEf GIOUPc.eveeeieeeieee sttt bbbt bbb 6-68
FGERIEOR ..ottt bbbt 6-69
FGEUNTO ..ttt bbbttt 6-70
FGEIPEINTYPE. ...t bbb 6-72
FGEIVOINTO .t bbb 6-73
FITENGMECMIP. ...ttt bbb 6-74
FIENGMEINACMP ..ot e e e 6-75
FITENGMENCITIP. ...ttt 6-76
FISAPELN ..ot bbb 6-77
FISAPEINOT TYPE. ...ttt e 6-78
FISAPathOINOLAPELN.........oviiieiicicec e 6-79
FISAREINUIM ...cceictt e bbb 6-80
FISEMPLYPALN ..ottt 6-81
FLISIDIT ettt bbb bbb 6-82
FLOCKOIUNIOCKRANGE ...ttt 6-84

Using External Code in LabVIEW viii www.ni.com

Contents

FIMAKEPEEN ...ttt 6-86

Y @2 oS PSS 6-87

FIMOPEN ...ttt r b r e e e 6-88

MOV ettt st et b e bt e bt e e ar e e s be e ean e e be e s abeenneesnreens 6-91

FIMMREBA ...ttt ettt 6-92

FIMISEEK ...ttt 6-93

FIMTEIL ettt bbb 6-94

MWV TR, ettt e ettt se b e s ae s st e beseene e e e e e e ens 6-95

FINBIMIE. ... et sttt b e ae e sar e s beeear e e nbe e e beenneenareen 6-96

FINBIMEPLE ...ttt s be e s ar e e b e s areenneesnneen 6-97

[NS T 5 SR 6-98

FNEWREFNUM ...t st s e e 6-99

FINOLAPELN ...ttt 6-100
FPENCIMIP ... 6-101
FPENCPY ...t 6-102
[S 1] 0T S 6-103
FPANTOAZSIIING. ...ttt b et snens 6-104
FPENTODSSIING. ...ttt ettt b e nnens 6-105
FPANTOPELN.cooieiiiee e 6-106
FREFNUMTORD ..ottt 6-107
FREFNUMTOPELN ..ottt st 6-108
FREIPALN. ...ttt b 6-109
FREMOVE. ...ttt st b e ae e sar e e s be e saneesbe e s beenneesareens 6-110
FSEACCESSRIGNES ...ttt bbb 6-111
FSEIEOR ...ttt bbb e et b e 6-112
[T 11) TS 6-113
FSEPAINTYPE. ...ttt 6-115
FSUFIESPAL ...ttt bbb bbbt es 6-116
FSUINGTOPELN......c.ccuieciicee e 6-117
FTEXITOPRALN ...ttt 6-118
FUNFIAEEENPALN ...t 6-119
FVOINBIME. ...ttt sttt ae st e s besee st e e ne e e e e eneeneens 6-120
GEEALONG .. vttt et b et r e r e r e n e rens 6-121
[1= (O 1 = SRS 6-122
HILB ..ottt bbb bbbt bbbt 6-123
HIBYTE. ..o e s 6-124
HINTDDIE. ... 6-125
LSAIPNAL . 6-126
RSB o 1 OO P P PRPPT 6-127
LS I T PP U PR TPPPRPRPPPRPRN 6-128
LSUDPET ... e 6-129
LOLB ...ttt b bbb e b ettt beh e p et b s 6-130
LOBYLE . s 6-131
o 0o TR P T 6-132

© MNational Instruments Corporation ix Using External Code in LabVIEW

Contents

LONIBIIE. ... bbb 6-133
LSITBUF ...ttt bbb 6-134
[(0 11 o PP PP TSRS RURURURPRURN 6-135
IS I o T PP U TSP SOTORURURTRPRPRN 6-136
LT OPSEE ..ttt e et r e e nre 6-137
IVLBX ..ttt bbbt h bRt b et bt b 6-138
IMHTTESECS. ..ttt bbbttt b et 6-139
VI bbbt bbb 6-140
IMOVEBIOCK ...ttt bbbt 6-141
NUMENTCATTAYRESIZE ...t 6-142
OFfSaL .ttt bbb bbbt 6-143
1 PSSRSO PR P 6-144
PPSITCESECIIP ...ttt nnen 6-145
PPSEICIMD ¢ 6-146
PSIBUF ... bbb 6-150
PSETCBSECIMP. ...ttt 6-151
PSEICAL. ...ttt bbb 6-152
PSEC M e 6-153
P Y ..ttt et 6-154
PSEIL BN . et 6-155
PSITINCPY ...t 6-156
P O SN .t 6-157
L 0 S | PP PP TP RURPRPRUPTPTPRPIN 6-158
(@50 SO OSSOSO TSRS P TSP 6-159
RANAOMIGEN.......ceeietiet ettt bbbttt bbb 6-160
SECSTODELE. ...ttt ettt r e 6-161
SEEAL ONG. .ttt e et r e 6-162
SEECINATTAYSIZE....ceeeeeeeete ettt e b e ettt et e sb e 6-163
SEFCL ...ttt b et bt bbb b e be e 6-164
R (O 1 1o TP T SRRSOV PR PRSP 6-165
R (O o) PO TSRSV PRUPTP 6-166
R o TSSO TSRSV PR PP 6-167
SN CBSECIMP ...ttt se s e e et r b sae s r e r e e e 6-168
SN CIMIPD et e r ettt r e e nn s 6-169
SN CPY ettt bt r e e nn s 6-170
SWBPBIOCK. ...ttt e bbb e 6-171
THMECSIIING ..ttt ettt et et s b e e b e b se et e bbb e b esesaeseeneneas 6-172
THMEINSECS. ...ttt bbb e b e sttt re bt et e bbb e st nn s e 6-173
TOLOWES ... e e 6-174
LI 018 o= TP 6-175
UNUSED ...ttt bbbttt bbbt b ettt b e 6-176
WVOPO ...ttt e bbb et bbbt b et bbbt nenn 6-177

Using External Code in LabVIEW X www.ni.com

Contents

Appendix A
Common Questions

Appendix B
Technical Support Resources

Glossary

© MNational Instruments Corporation Xi Using External Code in LabVIEW

About This Manual

Conventions

This manual describesthe LabVIEW programming objects that you use to
call compiled code from text-based programming languages: the Call
Library Function and the Code Interface Node. This manual includes
reference information about libraries of functions, memory and file
manipulation routines, and diagnostic routines that you can use with calls
to external code.

»

> @ =

bold

italic

nonospace

nonospace bol d

The following conventions appear in this manual:

The» symbol leads you through nested menu items and dial og box options
to afina action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

Thisicon denotes a tip, which alerts you to advisory information.
This icon denotes a note, which aerts you to important information.

Thisicon denotes a caution, which advises you of precautions to take to
avoid injury, dataloss, or a system crash.

Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

Italic text denotes variables, emphasis, acrossreference, or an introduction
to akey concept. Thisfont also denotestext that is a placehol der for aword
or value that you must supply.

Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.
Thisfontisalso used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

Bold text in thisfont denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

© MNational Instruments Corporation Xiii Using External Code in LabVIEW

About This Manual

nmonospace italic

Platform

Italic text in thisfont denotes text that is a placeholder for aword or value
that you must supply.

Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

Related Documentation

Using External Code in LabVIEW

The following document contains information that you might find helpful
as you read this manual:

¢ LabVIEW User Manual

Sun users might also find the following document helpful:
e Sun Workshop CD-ROM, Sun Microsystems, Inc., U.S.A.

Linux users might also find the following document helpful:

e« The GNU C Compiler Reference Manual, Free Software Foundation,
1989-2000.

Windows users might also find the following documents helpful:

¢ Microsoft Windows documentation set, Microsoft Corporation,
Redmond, WA, 1992-1995

« Microsoft Windows Programmer’ s Reference, Microsoft Corporation,
Redmond, WA, 1992-1995

e Win32 Programmer’ s Reference, Microsoft Corporation,
Redmond, WA, 1992-1995

¢ Microsoft Visual C++ CD-ROM, Microsoft Corporation,
Redmond, WA, 1997

Xiv www.ni.com

Introduction

Thismanual discusses several methodsin LabVIEW to call codewrittenin
other languages.

» Use platform-specific protocols.
» UseCal Library Function to call the following types of shared
libraries:
— Dynamic Link Libraries (DLL) in Windows
— Code Fragments on the Macintosh
— Shared Librarieson UNIX

e Create aCode Interface Node to call code written specifically to link
toVls.

Also, to convert an instrument driver written in LabWindows/CV1 you can
select Tools»l nstrumentation»l mport CVI Instrument Driver and
invoke the LabWindows/CVI Function Panel Converter. Refer to
LabVIEW Help for more information about this converter.

Calling Code in Various Platforms

This section describes the differences between running Windows and
UNIX applications from within your VIs and running Macintosh
applications from within your VIs.

(Windows and UNIX) Use the System Exec V1. Use the simple System Exec
V1 on the Functions»Communication paletteto run acommand line from
your VI. The command line can include any parameters supported by

the application you want to launch.

If you can access the application through TCP/IP, you might be ableto pass
data or commands to the application. Refer to the documentation for the
application for a description of its communication capability. If you are a
LabVIEW user, refer to the Using LabVIEW with TCP/IP and UDP
Application Note for more information about techniques for using
networking VIsto transfer information to other applications. You also can
use many ActiveX LabVIEW tools to communicate with other
applications.

© MNational Instruments Corporation 1-1 Using External Code in LabVIEW

Chapter 1 Introduction

(Macintosh) Use the Apple Event Vis. Apple Events are a

M acintosh-specific protocol through which applicationscommunicate with
each other. You can use them to send commands between applicationsor to
launch other applications. If you are aLabVIEW user, refer to the Using
Apple Events and the PPC Toolbox to Communicate with LabVIEW
Applications on the Macintosh Application Note for information about
different methods for using Apple Event VIsto launch and control other
applications.

Characteristics of the Two Calling Approaches

@ Note Inmost cases, Call Library Function is easier to use than a Code Interface Node.

Using External Code in LabVIEW

The LabVIEW Call Library Function and the Code Interface Node (CIN)
are block diagram objects that link source code written in a conventional
programming languageto LabVIEW. They appear on the block diagram as
icons with input and output terminals. Linking external codeto LabVIEW
includes the following steps:

1. Youcompilethesource codeandlink it to form executable code. If you
already have a compiled DLL, this step is not necessary.

2. LabVIEW callsthe executable code when the node executes.

LabVIEW passesinput datafrom the block diagram to the executable
code.

4. LabVIEW returns data from the executable code to the block diagram.

The LabVIEW compiler can generate code fast enough for most
programming tasks. Call CINs and shared libraries from LabVIEW to
accomplish tasks a text-based language can accomplish more easily, such
astime-critical tasks. Also use CINs and shared libraries for tasks you
cannot perform directly from the block diagram, such as calling system
routines for which no corresponding LabVIEW functions exist. CINs and
shared libraries aso can link existing code to LabVIEW, athough you
might need to modify the code so it uses the correct LabVIEW datatypes.

CINsand shared libraries execute synchronously, so LabVIEW cannot use
the execution thread used by these objects for any other tasks. When a VI
runs, LabVIEW monitors the user interface, including the menus and
keyboard. In multithreaded applications, LabVIEW uses a separate thread
for user interface tasks. In single-threaded applications, LabVIEW
switches between user interface tasks and running VIs.

1-2 www.ni.com

Chapter 1 Introduction

When CIN or shared library object code executes, it takes control of its
execution thread. If an application has only a single thread of control, the
application waits until the object code returns. In single-threaded operating
systems such as Macintosh, these objects even prevent other applications
from running.

LabVIEW cannot interrupt object code that is running, so you cannot reset
a VI that isrunning a CIN or shared library until execution completes. If
you want to write a CIN or shared library that performs along task, be
aware that LabVIEW cannot perform other tasksin the same thread while
these objects executes.

Details of Call Library Function

Y ou can call most standard shared librarieswith Call Library Function. In
Windows these libraries are DLLs, on the Macintosh they are Code
Fragments, and on UNIX they are Shared Libraries. Call Library Function
includes alarge number of datatypesand calling conventions. Y ou can use
it to call functions from most standard and custom-made libraries.

Call Library Functionismost appropriate when you have existing codeyou
want to call, or if you are familiar with the process of creating standard
shared libraries. Because a library uses aformat standard among several
development environments, you can use almost any devel opment
environment to create alibrary that LabVIEW can call. Refer to the
documentation for your compiler to determine whether you can create
standard shared libraries. Refer to the Chapter 2, Shared Libraries (DLLS),
for more information about Call Library Function.

Details of a CIN

The CIN isageneral method for calling C code from LabVIEW. Y ou can
pass arbitrarily complex data structures to and from a CIN. In some cases,
you might have higher performance using CINs because data structures
pass to the CIN in the same format that they are stored in LabVIEW.

In some cases, you might want a CIN to perform additional tasks at
certain execution times. For example, you might want to initialize data
structures at load time or free private data structures when the user

closes the VI containing the CIN. For these situations, you can write
routines that LabVIEW calls at predefined times or when the node
executes. Specifically, LabVIEW calls certain routines when the VI
containing the CIN isloaded, saved, closed, aborted, or compiled. You
generally use these routinesin CINsthat perform an ongoing task, such as
accumulating results from call to call, so you can alocate, initialize,

© MNational Instruments Corporation 1-3 Using External Code in LabVIEW

Chapter 1 Introduction

and deallocate resources at the correct time. Most CINs perform a
specific action at run-time only.

To create a CIN, you must be an experienced C devel oper. Also, because
CINs aretightly coupled with LabVIEW, there are restrictions on which
compilersyou can use.

After you write your first CIN as described in this manual, writing new
CINsisrelatively easy. The work involved in writing new CINsis mostly
in coding the algorithm, because the interface to LabVIEW remains the
same, regardless of the development system.

Using External Code in LabVIEW 1-4 www.ni.com

Shared Libraries (DLLSs)

This chapter describes how to call shared libraries—called DLLs on the
Windows platform—from LabVIEW. Examples and troubl eshooting
information appear |ater in the chapter to help you build and use DLLs and
configure LabVIEW'’s Call Library Function successfully. The general
methods described here for DLLs also apply to other types of shared
libraries.

Calling Shared Libraries

Use Call Library Function to call a 32-bit Windows DLL, a Macintosh
Code Fragment, or a UNIX Shared Library function directly.

Thediagram ontheleft showsthe Call Library Function object on the block
diagram. You access this function on the Functions»Advanced palette.

Right-click theicon and select Configur e in the shortcut menu to access
the Call Library Function dialog box where you specify the library,
function, parameters, return value for the object, and calling conventionsin
Windows. When you click OK in the dialog box, LabVIEW updates the
icon according to your settings, displaying the correct number of terminals
and setting the terminals to the correct data types. The following figure
showsthe Call Library Function dialog box.

@ Note The shortcut menu for the Call Library Function object also contains the Create .c
Fileitem, which createsa. c prototypefile that contains C declarations for the parameters
that you are passing.

© MNational Instruments Corporation 2-1 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

Library Mame or Path

Function Mame |funchams I |Run in Ul Thiead [=
Calling Conventions | C _-I
Palameter—lleturn type E_
Type | Woid =] Add & Parameter Before |

Ii»! Call Library Function %]

Browse... |

Add a Parameter After |

Delete thiz Parameter |

Function Prototype:

woid funcM ame(vaid):

Catcel |

Using External Code in LabVIEW

Figure 2-1. Call Library Function Dialog Box

Asyou configure parameters, the Function Prototype area displaysthe C
prototype for the function you are building. Thisareaisaread-only display.

Thereturn valuefor the function returnsto theright terminal of thetop pair
of terminals of the object. If thereis no return value, this pair of terminals
is unused. Each additional pair of terminals corresponds to a parameter in
the functions parameter list. To pass avalueto the function, wireto the | eft
terminal of aterminal pair. To read the value of a parameter after the
function call, wire from the right terminal of aterminal pair.

In a multithreaded operating system, you can make multiple callsto a
DLL or shared library simultaneously. By default, al cal library objects
run in the user interface thread. The control below the Browse button inthe
Call Library Function dialog box reflects your selection of Run in Ul
Thread or Reentrant.

Before you configure a Call Library Function object to be reentrant, make
sure that multiple threads can call the function(s) simultaneously. The
following list showsthe basic characteristics of thread safe codein ashared
library.

e Thecodeisthread safe when it stores no global data (for example,
no global variables, no files on disk, and so on); does not access any

2-2 www.ni.com

Chapter 2 Shared Libraries (DLLS)

hardware (in other words, does not contain register-level
programming); and makes no callsto any functions, shared libraries,
or driversthat are not thread safe.

* Thecodeisthread safe when it uses semaphores or mutexesto protect
access to global resources.

e Thecodeisthread safe whenit iscalled by only one non-reentrant VI.

Refer to the Execution Properties page topic in LabVIEW Help for more
information about reentrancy. Refer to the Using LabVIEW to Create
Multithreaded VIs for Maximum Performance and Reliability Application
Note for more information about multithreading in LabVIEW.

Calling Conventions (Windows)

Use the Calling Conventions pull-down menu in the Call Library
Function dialog box to select the calling conventionsfor the function. The
default calling convention is C. Y ou can aso use the standard Windows
calling convention, __st dcal | . Refer to the documentation for the DLL
you want to call for the appropriate calling conventions.

Parameters

Initially, Call Library Function has no parameters and has areturn val ue of
Void. To add parameters to the function, click the Add a Parameter
Before or After buttons. To remove a parameter, click the Delete this
Parameter button.

Use the Parameter pull-down menu to select different parameters or the
return value. When selected, you can edit the Parameter nameto
something more descriptive, which makes it easier to switch between
parameters. The parameter name does not affect the call, but it is
propagated to output wires.

Use the Type pull-down menu to indicate the type of each parameter.
The return type can be V oid, meaning the function does not return avalue,
Numeric, or String.

For parameters, you can select Numeric, Array, String, Waveform,
ActiveX, or Adapt to Type.

After you select an item from the Type pull-down menu, you see more

items you can use to indicate details about the data type and about how to
passthe datato thelibrary function. Call Library Function has anumber of
different itemsfor data types, because of the variety of datatypes required

© National Instruments Corporation 2-3 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

by different libraries. Refer to the documentation for the library you call to
determine which data types to use.

Void—Accepted only for the return value. Thisvalue is not available
for parameters. If your function does not return any values, use Void
for the return value.

Numerics—For numeric data types, you must indicate the exact
numeric type using the Data Type pull-down menu. Valid types
include the following:

— Signed and unsigned 8-bit, 16-bit, and 32-bit integers
— Four-byte, single-precision numbers
— Eight-byte, double-precision numbers

Y ou cannot use extended-precision numbers and complex numbers.
Standard libraries generally do not use them.

You also must use the Pass pulldown menu to indicate whether you
want to pass the value or a pointer to the value.

Arrays—Indicate the data type of arrays using the same items as for
numeric data types, the number of dimensions, and the format to use
in passing the array. Use the Array For mat pull-down menu to make
one of the following choices:

— Array Data Pointer—Passes a pointer to the array data.

— Array Handle—Passes a pointer to a pointer to afour-byte value
for each dimension, followed by the data.

— Array Handle Pointer—Passes a pointer to an array handle.

Caution Do not attempt to resize an array with system functions, such asr eal | oc.
Doing so might crash your system. Instead, use one of the CIN manager functions, such as
Nurreri cAr r ayResi ze.

Using External Code in LabVIEW

Strings—Indicate the string format for strings. Valid values for String
Format include C String Pointer, Pascal String Pointer, String Handle,
or String Handle Pointer.

Select astring format that the library function expects. Most standard
libraries expect either a C string (string followed by a null character) or a
Pascal string (string preceded by alength byte). If the library function you

are calling is written for LabVIEW, you might want to use the String

Handle format, which is a pointer to a pointer to four bytes for length
information, followed by string data.

2-4 www.ni.com

Chapter 2 Shared Libraries (DLLS)

Caution Do not attempt to resize a string with system functions, such asr eal | oc.
A Doing so might crash your system.

Wavefor m—For waveform data types, you indicate the dimension, and
you use the Data Type pull-down menu to indicate the exact numeric type.

ActiveX—For ActiveX objects, you select one of thefollowingitemsinthe
Data Type pull-down menu:

ActiveX Variant Pointer—Passes a pointer to ActiveX data.

I Dispatch* Pointer—Passes a pointer to the | Dispatch interface of an
ActiveX Automation server.

I Unknown Pointer —Passes a pointer to the lUnknown interface of an
ActiveX Automation server.

Adapt to Type—Pass arbitrary LabVIEW datatypesto DLLsin the same
way they are passed to a CIN, asfollows:

Scalars are passed by reference. A pointer to the scalar is passed to
thelibrary.

Arrays and strings are passed as a handle (pointer to a pointer to
the data).

Clusters are passed by reference.

Scalar elementsin arrays or clustersarein line. For example, a
cluster containing anumeric is passed as a pointer to a structure
containing a numeric.

Cluster within arrays arein line.
Strings and arrays within clusters are referenced by a handle.

Calling Functions That Expect Other Data Types

Y ou might encounter afunction that expectsadatatype LabVIEW doesnot
use. For example, you cannot use Call Library Functionto passan arbitrary
cluster or array of non-numeric data. If you need to call afunction that
expects other data types, use one of the following methods:

© National Instruments Corporation

Depending on the data type, you might be able to pass the data by
creating a string or array of bytesthat contains a binary image of the
data you want to send. You can create binary data by typecasting data
elements to strings and concatenating them.

Write alibrary function that accepts data types that LabVIEW does
use, and parameters to build the data structures the library function
expects, then calls the library function.

2-5 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

e WriteaCIN that can accept arbitrary data structures. Refer to
Chapter 3, CINs, for more information about writing CINSs.

Building a Shared Library (DLL)

This section uses a simple shared library example to describe the three
basic tasks for building external code librariesto call from LabVIEW:

e Task1: Build the Function Prototype in LabVIEW
e Task2: Completethe .c File
e Task 3: Build a Library Project in an External IDE

In the Example 1: Call a Shared Library that You Built section, you will
call the shared library that you build here.

Task 1: Build the Function Prototype in LabVIEW

Using External Code in LabVIEW

To build a function prototype for your shared library, you must build a
prototype in LabVIEW and then fill in all the details of your code. When
you alow LabVIEW to generate this C source code, you help ensure that
the basic syntax of the codein your shared library will be valid.

Perform the following steps to build your prototype sourcefile,
nmyshar ed. c.

1. CreateaVI called Array Averagein LabVIEW, and access the block
diagram. Select Functions»Advanced»Call Library Function and
place this object on the block diagram.

2. Right-click the Call Library Function icon and select Configureinthe
shortcut menu to invokethe Call Library Function dialog box. Leave
the Library Name or Path control empty.

3. Enter the following general specifications.
a. Typeavg_numinthe Function Namefield.
b. Select Cinthe Calling Conventions control.
4. Definethereturn value:

a. Inthe Parameter control change the default name, r et urn
t ype, to amore descriptive name, er r or .

b. Inthe Type control select Numeric.
c. Inthe Data Type control select Signed 32-bit Integer.

2-6 www.ni.com

Chapter 2 Shared Libraries (DLLS)

5. Definethe a parameter:

a
b.

Click the Add Parameter After button.

Inthe Parameter control replacethe default name, ar g1, withthe
precise name, a.

In the Type control select Array.
In the Data Type control select 4-byte Single.
Inthe Array Format control select Array Data Pointer.

@ Note The Array and String Options section describes the available settings for arrays and
stringsin the Call Library Function icon.

6. Definesi ze:

a Click the Add Parameter After button.

b. IntheParameter control replacethedefault name, ar g2, with the
precise name, si ze.

c. IntheType control select Numeric.

d. IntheData Type control select Signed 32-bit Integer.

e. InthePass control select Value.

7. Defineavg:

a. Click the Add Parameter After button.

b. IntheParameter control replacethedefault name, ar g3, withthe
precise name, avg.

c. IntheType control select Numeric type.

d. Inthe Data Type control select 4-byte Single.

e. InthePasscontrol select Pointer to Value.

8. Check that the Function Prototype indicator displays the return value
and three parametersin the correct order, asfollows:

I ong avg_nun(float *a, long size, float *avg)

@ Note The syntax you seein the Function Prototypeindicator istechnically correct.
However, the . ¢ file that LabVIEW generatesin the next section will be more precise
because the first parameter will appear asfl oat a[] .

9. Click OK to save your settings and close the dialog box.

10. Observe how the Call Library Function icon updatesto reflect your
Settings.

© National Instruments Corporation

2-7 Using External Code in LabVIEW

Chapter 2

5

5

Shared Libraries (DLLS)

11. Right-click the Call Library Function icon and select Create .cfilein
the shortcut menu. Save thefileasmyshar ed. c.

Note Inthisexample, youusea. ¢ sourcefile. Whenyouwork with C++ libraries, change
the extension of the sourcefileto . cpp.

Preventing C++ Name Decoration

When you build shared libraries for C++, you must prevent the C++
compiler from decorating the function namesin the final object code. To
do this, wrap the function declarationinanext ern " C' clause, as shown
in the following prototype.

extern "C' {

| ong MyDLLFuncti on(l ong nlnput, unsigned |ong nQut put,
voi d *argl);

}

| ong MyDLLFuncti on(l ong nlnput, unsigned |ong nQutput,
void *argl)
{

/* Insert Code Here */

Note If you disable C++ decoration of afunction, the compiler cannot create polymorphic
versions of the function.

Task 2: Complete the .c File

The Call Library Function generates the following source code skeletonin
myshar ed. c:

/* Call Library Source File */

#i ncl ude "extcode. h"

Il ong avg_nunm(float a[], long size, float *avg);
Il ong avg_num(float a[], long size, float *avQ)

{
/* Insert Code Here */

}

Using External Code in LabVIEW 2-8 www.ni.com

Chapter 2 Shared Libraries (DLLS)

Replacethe/* Insert Code Here */ spacer with the following
function code, making sureto place the code within the pair of curly braces:
int i;
float sumeO;

if(a != NULL)
{
for(i=0;i < size; i++)
sum = sum+ a[i];
}
el se
return (1);
*avg = sum/ size;
return (0);

Required Libraries

This simple example requires no header files. When you build more
complex shared libraries, you must include header filesfor al related
libraries. For example, a Windows shared library project might need to
includewi ndows. h. In another instance, a project might need to include
ext code. h, theheader filefor the set of LabVIEW manager functionsthat
perform simple and complex operations, ranging from low-level byte
mani pulation to routines for sorting data and managing memory.

When you want to use the LabVIEW manager functionsinside your shared
library, you must include the LabVIEW library filesin your compiled
project: | abvi ew. | i b forVisual C++,1 abvi ew. sym | i b for Symantec,
and | abvi ew. export . st ub for Metrowerks CodeWarrior. These files
appear intheci nt ool s directory of your LabVIEW installation.
Specifically, you need the LabVIEW manager functionsif you intend to do
any of the following:

« Allocate, free, or resize arrays, strings, or other data structuresthat are
passed into or out of your library from LabVIEW.

e Work with LabVIEW Path data types.
* Work with file refnumsinside your library.
e Useany of the Support Manager functions.

Refer to Chapter 6, Function Descriptions, for more information about the
manager functions.

© National Instruments Corporation 2-9 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

Task 3: Build a Library Project in an External IDE

Using External Code in LabVIEW

The process of building alibrary project is specific to each integrated
development environment (IDE) and each operating system. Therefore,
this section describes three compiler/platform combinations that you can
use to build shared librariesto use in LabVIEW: Microsoft Visua C/C++
on Windows, Gnu C/C++ on UNIX, and Metrowerks CodeWarrior on
Macintosh.

Microsoft Visual C++ 6.0 on 32-bit on Windows
Platforms

Follow the steps in this section to build a project and that compiles
nyshar ed. ¢ and generatesnyshar ed. dl | .

Adding the DLL Export Keyword

You must explicitly export each function from your DLL to make it
available to LabVIEW. For this example, you should usethe _decl spec
(dl'l export) keyword to export the avg_numfunction. By declaring the
dllexport keyword, you eliminate the need for a modul e definition file,
which the Modul e Definition Files section describes. _decl spec

(dl'l export) isaMicrosoft-specific extension to the C or C++ language.

1. Opennyshared. c andinsertthe_decl spec(dl | export) keyword
in front of the code for avg_num Thisfunction also has a declaration
statement, and you must place the keyword in front of the declaration,
too.

The following excerpt shows the two placesin nyshar ed. c that
requirethe _decl spec(dl | export) keyword.
_decl spec(dl I export) long avg_nun{fl oat *a,

|l ong size, float *avg);
_decl spec(dl I export) long avg_nun{fl oat *a,

I ong size, float *avg)

Setting Up the Project

Perform the following steps in the Microsoft Visual C++ integrated
development environment to set up a project for myshar ed. c.

2. Sedlect FilesNew and select Win32 Dynamic Link Library (DLL) in
the listbox of the Projects tab. Click OK to continue.

2-10 Www.ni.com

Chapter 2 Shared Libraries (DLLS)

@ Note You do not use Microsoft Foundation Classes (MFC) in this example. Howevey, if
you want to use these object classesin a project, you can select MFC AppWizard (dll) at
this point, instead of selecting Win32 Dynamic Link Library. Then, copy the code from
the nyshar ed. ¢ sourcefile and place it into the skeleton source code file that the MFC
AppWizard generates.

L2 ATL COM Appiafizard

7] Cluster Resource Type Wizard MyDLL

#7| Cuztom Appw/izard
F3 D atabase Project

ool

fiim MFL Activer Controhwfizard
[MFC Appiwizard (dl)
il MFC Appwiizard [exe)
4 Utility Project
A |'Win3Z Application
Win32 Conzole Application

EWind2 Dynarnic-Link Librany ——

Figure 2-2. Creating a Project in Visual C++

3. Theapplication prompts you to choose the type of DLL that you want
to create; select An empty DLL project.

4. Click Finish to finish creating your project and return to the Visual
C++ workspace.

5. From the Project menu, select Add to Project»Files and add the
nyshar ed. ¢ sourcefile.

@ Note When you want to use the LabVIEW manager functionsin a Windows DLL, you
alsomust add | abvi ew. | i b to your project. Theci nt ool s directory of your LabVIEW
installation contains this. 1'i b file.

© National Instruments Corporation 2-11 Using External Code in LabVIEW

Chapter 2

Using External Code in LabVIEW

Shared Libraries (DLLS)

6. Select Project»Settings and access the C++ tab of the Project
Settings dialog box and make the following settings:

a. Select Code Generation in the Category pull-down menu.

b.

For this example and for all configurations, set the Struct
member alignment control to 1 Byte.

Select Debug Multithreaded DLL inthe Userun-timelibrary
control to apply the Win32 Debug configuration, as shown in the
following figure.
You have the option to choose the Win32 Rel ease configuration,

instead. In that case you would select M ultithreaded DLL inthe
Userun-timelibrary control.

General | Debug CfC++

Link | Resources | MIE% EE

Categony: ICDde Generation

Processor;

j Eecet |

Use run-time librany:

|Blend * =

Calling convention:

I_c:deu:l* j

Debug Multithreaded j

Single-Threaded *
Multithreaded

Multithreaded DLL
Debug Single-Threaded
3 Multithreaded

Figure 2-3. Setting the Use run-time library control, Microsoft Visual C++

7. Select Build»Build myshared.dll to cause Visual C/C++ to build a
DLL and place it in either the Debug or Release output directory,
depending on which configuration option you selected in step 6c¢.

Inthe Example 1: Call a Shared Library that You Built section, you call this

DLL from LabVIEW.

Gnu C or C++ Compilers on Solaris, Linux, or HP-UX
Use the following command to compile the myshar ed. ¢ source file that

you completed in the Task 2: Complete the .c File section.

gcc -fPIC -shared -0 <output nane> <source file>

The —f PI C option instructs GCC to produce position independent code,

output should be a shared library file.

2-12

whichissuitablefor shared libraries. The- shar ed option specifiesthat the

Www.ni.com

Chapter 2 Shared Libraries (DLLS)

@ Note Some versions of the Gnu linker do not produce suitable output for shared libraries.
The—f no- gnu- | i nker instructs GCC to usethe system linker rather than the Gnu linker.
The output nameisnormally afilewitha. so extension on Solaris, Linux, . s| on HP-UX.

@ Note If you use g++ to compile ashared library on HP-UX, check to be sure that the
Dynamic Loader is calling the shared static global shared classinitiaizersin that library.

Reducing Symbol Scope

By default, al symbols (functions and global variables) defined in your
code are available. It is sometimes desirable for your library to distinguish
between those symbols that should be accessed by external objects, and
those that are for internal use only. Use a mapfile to make these
distinctions. The mapfile is atext document that the linker takes as input
and uses to determine, among other things, which symbols should be
exported.

Use the following basic syntax for amapfile, where<l i brary file>is
the name of the output file:

<library file> {

gl obal :

[Synbol for gl obal scope 1];

[Synbol for gl obal scope 2];

| ocal :

[Symbol s for |ocal scope 1]; or “*”

3

Under the global and local sections, list al of the symbols that you want to
be available globally or locally, respectively. Each section is optional, but
remember that all symbols are global, by default. In the local section, you
can choose to use the “*” wildcard, rather than listing individual symbols.
Thiswildcard means, “any symbol not already defined as global,” and

alows you to easily make symbol definitionsin terms of symbolsto be
exported, rather than symbols to be reduced in scope.

After you create the mapfile, saveit, and instruct the linker to use it by
appending - M <mapf i | e> to the gcc command-line argument list.

© National Instruments Corporation 2-13 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

Metrowerks CodeWarrior on Power Macintosh

Create a shared library using the process that the Metrowerks
documentation describes. To use this shared library with LabVIEW, you
must set struct alignment to 68k in the PPC Processor settings panel. Be
sure to export the function(s) that you want to call from LabVIEW.

Calling External APIs

It isfrequently desirable to access external APIs from within LabVIEW
code. Most often, aLabVIEW programmer accesses external APIsto
obtain functionality that the operating system provides. Normally, you can
use the LabVIEW Call Library Function object to accomplish this goal.

Y ou must provide the following information to the Call Library Function.

e Function name asit appearsin the library

¢ Function prototype

e Library or module in which the function resides
e Cdling conventions of the function

e Thread-safe status of the function

Common Pitfalls with the Call Library Function

Using External Code in LabVIEW

The function reference documentation for any API should provide most of
the information that Call Library Function requires. However, you should
keep in mind the common errors listed in this section.

Incorrect Function Name

Your library call can fail when the name of the function asit appearsin the
library is different than is expected. Usually this error occurs due to
function name redefinition, or to function name decoration, as in the
following examples:

¢ Redefinition—This pitfall appears when an APl manufacturer uses a
define mechanism, such as#def i ne directivein ANSI C, to definean
abstracted function name to one of many functions present in the
library, based on some external condition such as language or debug
mode. In such cases, you can look in the header (. h) filefor the API to
determine whether a#def i ne directive redefined the name of a
function you want to use.

« Function Name Decor ation—This pitfall appears when certain
functions have their names decorated when they are linked. A typical
C compiler tracks name decoration, and when it looksfor afunctionin

2-14 Www.ni.com

Chapter 2 Shared Libraries (DLLS)

ashared library, it recognizes the decorated name. However, because
LabVIEW isnot aC compiler, it does not recognize decorated names.
If you suspect that function name decoration is causing difficulty,
inspect the shared library’s exported functions. In LabVIEW 6.0, the
Function Name control inthe Call Library Function dialog box isa
pull-down list where you can access alist of al functions within the
library you have selected. In addition, most operating systems have a
utility you can useto view alibrary’s exports, for example, QuickView
on the Windows operating system and the nmcommand on most UNIX
systems.

Data Types

Your library call can fail when you do not use the correct data types.
LabVIEW only supports basic numeric datatypes and C strings. Also, you
can select Adapt to Typein the Type control of the Call Library
Function dialog box and direct LabVIEW to passits own internal data
types for a given parameter. Y ou might encounter the following specific
problems:

* Non-Standard Data Type Definitions—Frequently, other APIs use
non-standard definitions for data types. For example, instead of using
char, short, and| ong, the Windows APl uses BYTE, WORD, and
DWORD. If an API that you are using makes use of such datatypes, you
need to find the equivalent basic C data type so that you can properly
configure the Call Library Function object. The Example 3: Call the
Win32 API section presents an example of this process.

» Structureand Class Data Types—Some APIs have structure and, in
the case of C++, class data types. LabVIEW cannot use these data
types. If you need to use a function that has a structure or class as an
argument, you should write a CIN or shared library wrapper function
that takes as inputs the data types that LabVIEW supports and that
appropriately packages them before LabVIEW calls the desired
function.

Constants

Your library call can fail when your external code uses identifiersin place
of constants. Many APIs define identifiers for constants to make the code
easier to read. LabVIEW must receive the actual value of the constant,
rather than the identifier that a particular API uses. Constants are usually
numeric, but they may also be strings or other values. To identify all
constants, inspect the header file for the API to find the definitions. The
definition may either bein#def i ne statements, or in enumerations, which

© National Instruments Corporation 2-15 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

use the enumkeyword. The Constants section presents an example of this
identification process.

Calling Conventions

Your library call can fail when certain operating systems use calling
conventions other than the C calling convention and the Standard
(__stdcal I) calling convention. The calling convention defines how data
is passed to afunction, and how clean up occurs after the function call is
complete. The documentation for the API should say which calling
convention(s) you must use. The Standard (__st dcal |) calling
convention is also known as the WINAPI convention or the Pascal
convention.

Use of calling conventions other than the C or Standard calling conventions
frequently causes the failure of library callsin LabVIEW, because those
other calling conventions use an incompatible method for maintaining the
stack.

Example 1: Call a Shared Library that You Built

Using External Code in LabVIEW

This example describes how to complete an averaging VI called Array
Average in which the LabVIEW Call Library Function calls

nyshar ed. dl | . (In UNIX the shared library filehasa. so or . sl
extension.) The section Building a Shared Library (DLL) describes how to
begin building the Array Average VI and how to create nyshar ed. dl | .
This section describes the three stages for completing the Array Average
VI so that it can call theavg_numfunctionin nyshar ed. dl | .

e Complete configuration of the Call Library Function icon.
e Createthefront panel.
¢ Createtheblock diagram.

Configuration of Call Library Function
Complete the configuration of the Call Library Function object asfollows.

1. If necessary, create an Array Average V1 as described in the Task 1:
Build the Function Prototype in LabVIEW section.

2. Intheblock diagram of the Array Average VI, right-click the Call
Library Function icon and select Configurein the shortcut menu to
invoke the Call Library Function dialog box.

3. FortheLibrary Nameor Path control, browse and select
nyshar ed. dl | asthe shared library that Call Library Function calls.

2-16 Www.ni.com

Chapter 2 Shared Libraries (DLLS)

Create Front Panel
Create the front panel of the VI asfollows.

1. Placean array control, Ar r ay, to contain ascalar array of SGL with
four members.

2. Placeanumeric SGL indicator, Aver age Val ue, to display theresult
of your averaging calculation.

3. Placeanumericindicator, Er r or, to display any errorsthat your VI
generates.

Create the Block Diagram
Perform the following steps to compl ete the block diagram.

1. Connecttheiconsfor following front panel controlsto the Call Library
Function icon.

Connect the Array of data control to the a input.
Connect the Array Size control to the si ze input.
Connect a constant, zero, to the avg input.

o o T o

Connect the Average Valueindicator to theavg output.
e. Connect the Error indicator to theer r or output.

2. Inthefront panel, add dummy valuesto the array and run the VI to
calculate the average of those values.

3. Saveyour work and close the VI.

If your DLL returnsincorrect results or crashes, verify the data types and
wiring to see if you wired the wrong type of information. If you require
further help, several sectionsin this chapter present troubleshooting tips
and pitfalls to avoid.

Example 2: Call a Hardware Driver API

LabVIEW usersfrequently want to accessan APl associated with hardware
that they have purchased. With National Instruments hardware, however,
you do not need to use the shared library object to gain access; all National
I nstruments products come with LabVIEW interfaces.

In this example you call a hypothetical interface card for a databus called
“X-bus.” The X-bus interface card comes with a software driver for your
operating system. The X-bus documentation provides standard
information:

« Alisting of all functions that you can use to access the hardware.

© National Instruments Corporation 2-17 Using External Code in LabVIEW

Chapter 2

Shared Libraries (DLLS)

Description of the shared library file xbus. dI | that contains these
functions.

Instructions on including a header file xbus. h. Although LabVIEW
does not permit you to include such header files, you can open header
files and extract information about function prototypes and constants.

A statement about the Standard (__st dcal |) calling convention that
the X-bus library uses.

One of the functions you want to use with this hypothetical hardwareis
XBusRead16, which reads a 16-bit integer from a certain address. The
documentation describes XBusRead16 asfollows:

| ong XBusReadl6(unsi gned | ong of fset, short* data);

Puts 16 bits from the register at “ offset” into the memory location
pointed to by “data.” Returns 1 if successful, or O if it fails.

Given thisinformation, you can configure the LabVIEW Call Library
Function appropriately, as follows:

1

Create anew V| called Read Data and place a Call Library Function
object in the Block diagram.

Right-click the Call Library Function object and select Configurein
the shortcut menu.

Inthe Call Library Function dialog box, make the following settings.
a. Select stdcall (WINAPI) inthe Calling Conventions control.
b. TypeXbusRead16, in the Function Name control.

c. Select Signed 32 bit Integer in the Data Type control for the
return type parameter.

d. Add aparameter and nameit offset and select Unsigned 32 bit
Integer in the Data Type control.

e. Add aparameter and nameit data and set its data type to be
pointer to asigned 16-bit integer.

Inspect the function prototype that appearsin the Function Prototype
indicator. If thisthe prototype you see does not match the definition of
the function in the API you are calling, you must change your settings
inthe Call Library Function dialog box.

Thefollowing graphic showswhat the front panel and block diagram of the
final VI that callsxbus. dI I might look like.

Using External Code in LabVIEW

2-18 Www.ni.com

Chapter 2 Shared Libraries (DLLS)

offset

!IE R
i 5 ded
data returned ucceede
daka returnsd
Succeeded

Figure 2-4. VI That Calls Hardware

Example 3: Call the Win32 API

LabVIEW users frequently want to access the 32-bit Windows platform
API (the Win32 API). In Win32 environments, various DLLs permit your
application tointeract with the operating system and with the graphi cal user
interface. Because the API offers thousands of functions, programmers
must rely on the documentation for the Microsoft Software Development
Kit (SDK). Microsoft Visual Studio products give you access to the SDK
documentation. Y ou can also access thisinformation at the Microsoft Web
site on the Internet.

@ Note Instead of using the Windows DLL as described in this example, you could easily
create this message box in LabVIEW.

In this example you call the Windows MessageBox function, afunction
which illustrates several of the typical complexities of the Win32 API.
MessageBox isasimple SDK function that presents a small dialog box
with amessage, and has the following prototype:

int MessageBox(HWND hwiad, // handle to owner w ndow
LPCTSTR | pText, // text in nmessage box
LPCTSTR | pCaption, // nmessage box title
U NT uType // nessage box style);

Notice the non-standard data types like HVWND, and LPCTSTR. The Win32
API uses hundreds of datatypesin the SDK, and very few of them are
standard C data types. However, many of the non-standard data types are
merely aliases for standard C datatypes. The APl usesthe aliasesto
identify the context of a particular data type. The datatypesin the
preceding prototype correspond to the following standard C data types:

© National Instruments Corporation 2-19 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

Table 2-1. Mapping Win32 Data Types to Standard C Data Types

WIN32 SDK Data Type

Basic C Data Type

HWD

int **

LPCTSTR

const char *

Ul NT

unsi gned int

Using External Code in LabVIEW

In order to properly call the MessageBox function in LabVIEW, you need
toidentify the equivalent LabVIEW datatypes, which you can usually infer
from the C data types. Mapping LPCTSTRand Ul NT to LabVIEW is
straightforward: LPCTSTRisa C String and Ul NT isaU32.

Mapping HWND is more complex. The preceding table shows HWND to be a
double pointer to an integer. However, inspection of the function shows
that MessageBox uses HWND merely as a reference number that identifies
the owner of the window. Because of thisfact, you do not need to know the
integer valuefor which the HWNDis ahandle. Instead, you need to know the
value of the HWND variableitself. Because it is adouble pointer, and hence
apointer, you can betreat it asan unsigned 32-bit integer, or, in LabVIEW
terms, aU32. It isvery common to run across handles like HWND in the
Win32 SDK. In LabVIEW you are amost always interested in the handle
itself, and not the data to which it points. Therefore, you can usualy treat
handles—whose names always begin with the letter H in the Win32
APl—asU32.

If the SDK documentation does not make clear what C datatype
corresponds to a Win32 type, search wi ndef . h for the appropriate
#def i ne ort ypedef statement.

Table 2-2. Mapping Win32 Data Types to LabVIEW Data Types

WIN32 SDK Data Type LabVIEW Data Type

HWND ul nt 32
LPCTSTR CStr (C string pointer)
Ul NT ul nt 32

Constants

This section presents methodsfor finding the numerical values of constants
in the Win32 API, using MessageBox constants as examples. The
following table lists selected constants for MessageBox.

2-20 Www.ni.com

Chapter 2 Shared Libraries (DLLS)

Table 2-3. Selected Constants for MessageBox

Constant

Description

MB_ABORTRETRYl GNORE An Abort, Retry, Ignore message box.

VB_CANCEL TRYCONTI NUE A Cancel, Try Again, Continue message box in Windows 2000.

An dternativeto MB_ ABORTRETRYI GNORE

VMB_HELP A Help button to add to a message box for Windows 98/95,
Windows NT 4.0 and later. The system sends a\W_HEL P message to
the owner whenever the user clicks the Help button or presses <F1>.

MB_OK A message box with an OK button. Thisis the default message box.

&)

InVisual Studio, programmers do not use the actual values of constants. In
LabVIEW, however, you need to pass the actual numeric value of the
constant to the function. Y ou find these valuesin the header filesthat come
with the SDK. The SDK online documentation normally lists the relevant
header file at the bottom of the help topic for a given function. For
MessageBox, the SDK online documentation has the following statement:

Header: Declared in wi nuser.h

The header file named in this statement usually declares the constants.
Searching through that header file you should be able to find a#def i ne
statement or an enumeration that assigns the constant text a value.

wi nuser . h defines values for some of the MessageBox constants as
follows:

#define MB_OK 0x00000000L
#defi ne MB_ABORTRETRYI GNORE 0x00000002L
#define MB_| CONWARNI NG MB_| CONEXCLANMATI ON

Thus, MB_K hasthe decimal value0, MB_ ABORTRETRY| GNORE hasthedecimal
value 2, and MB_I CONWARNI NGisdefined as MB_| CONEXCLANMATI ON.
Elsawhereinwi nuser . h you find the following statement defining

MB_| CONEXCLAMATI ON.

#defi ne MB_I CONEXCLAMATI ON 0x00000030L

A hexadecimal value of 30 trandates to adecimal value of 48.

Tip Keepinmindthat constantsinthe SDK often areused in bitfields. A bitfieldisusually

asingleinteger in which each bit controls a certain property. The uType parameter in
MessageBox isan example of abitfield. Often, you can combine multiple constantsin
order to set multiple properties through one parameter. In order to combine these constants,

© National Instruments Corporation 2-21 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

you use a bit-wise OR operation (|). For example, to set the MessageBox to have a
warning icon and the buttons Abort, Retry, and | gnore, you pass the following value of
uType to MessageBox:

MB_ABORTRETRYI GNORE | MB_I CONEXCLAMATI ON = 0x32

E"} In LabVIEW, you combine multiple constants by wiring integer types to the OR operator.

Using External Code in LabVIEW

S

Figure 2-5. Combining Function Constants in LabVIEW

Determining the Proper Library and Function Name

Before you can configurethis call to the Win32 API, you must identify the
DLL that contains MessageBox and the specific name of MessageBox
within the DLL. Refer to the description of MessageBox in the
documentation that comes with your SDK or search for “MessageBox” on
the Microsoft Web site. A Requirements section follows the function
description for MessageBox and contains the following information:

“Requirements:
Windows NT: Requires version 3.1 or later.
Windows: Requires Windows 95 or |ater.
Windows CE: Requires version 1.0 or |ater.
Header: Declared in winuser.h.
Import Library: Use user32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows
and Windows NT.”

Thelmport Library linenamesthestatic library user 32. | i b that you need
tolink toin order to build a program in the C language. Every static library
in the SDK has a dynamic counterpart that has the same filename, but has
a.dl | extensioninstead of a. | i b extension. ThisDLL that contains the
actual implementation of the desired function. So, in this case you know
that user 32. dl | contains MessageBox.

2-22 Www.ni.com

Chapter 2 Shared Libraries (DLLS)

Unicode Versions and ANSI Versions of Functions

MessageBox usesonestring argument. The SDK implementstwo versions
of functions that use string arguments, a Unicode version and an ANSI
version. One of the itemsin the Requirements section of the MessageBox
documentation says, “Unicode: Implemented as Unicode and ANSI
version on Windows and Windows NT.” Y ou can distinguish the two
versionsin the DLL because each has aw(Unicode) or an A (ANSI)
appended to the end of the function name. wi nuser . h contains the
following code:

#i f def UNI CODE

#defi ne MessageBox MessageBoxW
#el se

#defi ne MessageBox MessageBoxA
#endi f // ! UNI CODE

This code defines MessageBox to be either MessageBoxA or
MessageBoxW depending on whether the application is a Unicode
application. In effect, aMessageBox function does not exist in

user 32. dl | . Instead, there is afunction MessageBoxA and afunction
MessageBoxW In most casesin LabVIEW, aVI programmer uses the
ANSI version of the function, because the LabVIEW strings are based on
ANSI, not Unicode. For thisexample, you usethe MessageBoxA function.

Configuring a Call to the Win32 API

Now that you are familiar with many aspects of the Win32 API, you can
configure aLabVIEW Call Library Function to call the MessageBox
function. Remember that you must use the Standard (__st dcal |) calling
convention in cals to any function in the Windows SDK.

The following graphic shows a correctly configured instance of the Call
Library Function. Makeyour Call Library Function dialog box match the
settingsin the graphic. Refer to the Task 1: Build the Function Prototypein
LabVIEW section for a separate exampl e that teaches you how to configure
controlsin Call Library Function.

© National Instruments Corporation 2-23 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

i+ Call Library Function

Library Mame or Path

uzerd2 dil

Function Hame IMessageB o,

Browse... |

| Reentrant

=l

Add a Parameter Before |

Calling Corwentions | stdcall (INAP) =
ParameteriuType E_
Type | Mumeric =l
Data Type I Unzigned 32-bit Integer _"I
Pass | Yalue =]

Add a Parameter After |

Dielete thiz Parameter |

Function Prototype:

int32 hessageb oxd[ulnt32 hiwind, CStripT ext, CStr IpCaption, ulnt32 uTvpe];

[o< |

Caticel |

Figure 2-6. Configuring Call Library Function to call the Win32 API

Y ou can configure the block diagram of this VI to match the following
graphic.

Mo more space,

Button Preszed
—

[ME_ICONEXCLAMATION]
w

ME_ABORTRETEYIGNORE]

Figure 2-7. Block Diagram for a Call to the Win32 API

Using External Code in LabVIEW

2-24

Www.ni.com

Chapter 2 Shared Libraries (DLLS)

This VI generates the following message box.

This is a Test

& Mo more space.

Betry | lgnore |

Figure 2-8. Running a LabVIEW Call to the Win32 API

Additional Examples of LabVIEW Calls to DLLs

Y ou can access several other examples to learn more about calling DLLs
from LabVIEW.

e |f youhaveasound card with Windows sound driversinstalled on your
system, investigate the Play Sound VI found in the LabVIEW
Examples directory:

\ LABVI EW EXAMPLES\ DLL\ SOUND\ PLAYSND. LLB\ Pl ay
Sound. vi

You can use this V1 to play Windows . WAV sound files on your
computer from LabVIEW.

e |If you do not have a sound card you can generate a sound in your PC
speaker by calling the MessageBeep functionin User 32. DLL.
The function prototypeis:

VO D MessageBeep(U NT uType);

e ThelLabVIEW example VI Hostname returns the host name of your
computer, demonstrating how to use LabVIEW string handles:
\ LABVI EW EXAMPLES\ DLL\ HOSTNAME\ host nane. vi

* You can programmatically position your cursor anywhere on your

monitor using the Set Cur sor Pos function in User 32. DLL. The
function prototypeis:

BOOL Set CursorPos(I NT x, INT y);

x andy are the coordinates you want, referenced from the upper | eft
corner of the screen. The return value is TRUE if the function was
successful and FAL SE if it was unsuccessful. Remember that the value
returned istype BOOL, which is defined in the Win32 API as a 32-hit
signed integer with values 0=FAL SE and 1=TRUE.

© National Instruments Corporation 2-25 Using External Code in LabVIEW

Debugging DLLs and Calls to DLLs

When you debug your LabVIEW callsto DLLs, you must be prepared to
trace problemsin the DLL you are calling and in your implementation of
Call Library Functionin LabVIEW.

Troubleshooting the Call Library Function

When your LabVIEW callsto DLLs generate errors, check for the
following problemsin your use of Call Library Function. Also refer to the
Troubleshooting your DLL section and the Troubleshooting Checklist
section.

Make sure that the path to the DLL fileis correct.

If LabVIEW givesyou the error messagef uncti on not found i n
I i brary, double-check your spelling of the name of the function you
wish to call. Remember that function names are case sensitive. Also,
be sure that your compiler has not decorated the function, as discussed
in the Preventing C++ Name Decoration section.

If your VI crashes, make sure that you are passing exactly the
parameters that the function in the DLL expects. For example, make
sure that you are passing ani nt 16 and not ani nt 32 when the
function expectsi nt 16. Also confirm that you are using the correct
calling convention __stdcal | or C.

Troubleshooting your DLL

When LabVIEW callsto DLLs generate errors, check for the following
problemsin your DLL. Also refer to the Troubleshooting the Call Library
Function section and the Troubleshooting Checklist section.

Remember that you need to declare the function with the _decl spec
(dl'l export) keyword in the header file and the source code or
define it in the exports section of the module definition file.

When you usethe _decl spec (dl | export) keyword and you are
asousingthe _stdcal | calling convention, you must declare the
DLL function namein the EXPORTS section of the module definition
(. def) file. Inthe absence of a. def file, st dcal | might truncate
function namesin an unpredictable pattern, and so, the actual function
name would be unavailable to applications that call the DLL.

When a function has not been properly exported, you must recompile
the DLL. Before recompiling, you must close all applicationsand Vis
that may make use of the DLL. Otherwise, the recompile will fail

Chapter 2 Shared Libraries (DLLS)

because the DLL isstill in memory. Most compilers warn you when
the DLL isin use by an application.

After you confirm the name of the function, and after you confirm
proper export of the function, find out whether you have used the C or
C++ compiler on the code. If you have use the C++ compiler, the
names of thefunctionsinthe DLL are altered by aprocess called name
mangling. The easiest way to correct name mangling is to enclose the
declarations of the functions you wish to export in your header file
withtheextern "C' statement:

extern "C'

{

/* your function prototypes here */
}

Try to debug your DLL by using the source level debugger provided
with your compiler. Using the debugger of your compiler, you can set
breakpoints, step through your code, watch the values of the variables,
and so on. Debugging using conventional tools can be extremely
beneficial. For more information about debugging, please refer to the
appropriate manual for your compiler.

Calling the DLL from another C program is also an excellent way to
debug your DLL. By doing this, you have a means of testing your DLL
independent of LabVIEW, thus helping you to identify any problems,
sooner.

Troubleshooting Checklist

Complete the following checklist to eliminate many potential problems
from LabVIEW Vlsthat call DLLs.

U

© National Instruments Corporation

Call Library Function uses the proper calling convention
(Cor __stdcall).

Cadll Library Function has the correct path to the DLL.

Call Library Function has the correct spelling, syntax, and case
sensitivity for the function name that you are calling. Otherwise, the
error message Functi on not found in |ibrary appears.

In the Call Library Function icon, dataiswired to the input terminals
of al the parameters that you are passing to aDLL function. Also,
check that the function is properly configured for all input parameters.

2-27 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

[] Return typesand datatypes of argumentsfor functionsin Call Library
Function exactly match the data types your function uses. Erroneous
data type assignments can cause crashes.

[l Call Library Function passes arguments to the function in the correct
order.

[J Resizing of arrays and concatenation of strings can take place only
under the following conditions:

— Onlywhen Call Library Function passes aLabVIEW Array
Handle or LabVIEW String Handle, and,

— Onlywhenyouadd | abvi ew. | i b to aVisua C++ project,
| abvi ew. export . st ub to a CodeWarrior project, and
| abvi ew. sym | i b to a Symantec project.

Caution Never resize arrays or concatenate strings using the arguments passed directly to
afunction. Remember, the parameters you pass are LabVIEW data. Changing array or
string sizes may result in a crash by overwriting other data stored in LabVIEW memory.

[cCall Library Function passes strings of the correct type to afunction:
C string pointers, Pascal string pointers, or the LabVIEW string
handles. The Windows API requires the C-style string pointer.

Pascal strings do not exceed 255 charactersin length.

Remember that C strings are NULL terminated. If your DLL function
returns numeric datain a binary string format (for example, through
GPIB or the seria port), it may return NULL values as part of the data
string.

[0 For arrays or strings of data, you always pass a buffer or array that is
large enough to hold any results that the function places in the buffer.
However, if you are passing them as LabVIEW handles, use CIN
functionsto resize them under Visua C++, CodeWarrior, or Symantec
compilers.

[l Whenyouareusing__stdcal |, youlist DLL functionsin the
EXPORTS section of the module definition file.

[l DLL functions that other applications call appear in the module
definition file EXPORTS section, or you include the _decl spec
(dl I export) keyword in the function declaration.

Using External Code in LabVIEW 2-28 www.ni.com

Chapter 2 Shared Libraries (DLLS)

1 Whenyou useaC++ compiler, you export functionswith theext er n
"C'{} statement in your header filein order to prevent name
mangling.

[l ForaDLL that you have written, you never recompile the DLL while
the DLL isloaded into memory by another application, for example,
by your V1. Before recompiling aDL L, make sure that all applications
making use of the DLL are unloaded from memory. This ensures that
theDLL itself isnot loaded into memory during arecompile. The DLL
might fail to rebuild correctly if you forget thispoint and your compiler
does not warn you.

[J You tested the DLL with another program to ensure that the function
(and the DLL) behave correctly. Testing it with the debugger of your
compiler or asimple C program in which you can call afunctionin a
DLL will helpyouidentify whether possibledifficultiesareinherent to
the DLL or are related to LabVIEW.

Module Definition Files

In the Building a Shared Library (DLL) section, you configure LabVIEW
to use the C calling convention in the . ¢ source file you build with the
LabVIEW Call Library Function. In contrast, you usethe __st dcal |
calling convention when you call the Win32 API. When you build a shared
library (DLL) with __st dcal | , you normally use a module definition

(. def) file to export the functionsin your DLL. In the absence of a. def
file, __stdcal | might truncate function namesin an unpredictable
pattern, so the actual function name would be unavailable to applications
that call the DLL.

You can associate amodule definition (. def) filewithaDLL. The. def
file contains the statements for defining aDLL, such as the name of the
DLL and the functions that it exports, as shown in the following example.

LI BRARY nyshar ed
EXPORTS
avg_num

The preceding code example demonstrates key requirementsfor . def files:

e Theonly mandatory entriesinthe . def filesarethe LI BRARY
statement and the EXPORT statement.

* Thell BRARY statement must be the first statement in the file.

© National Instruments Corporation 2-29 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

e Thenameyou specify in the LI BRARY statement identifies thelibrary
in theimport library of the DLL.

e The namesyou specify in the EXPORTS statement identify the
functions that the DLL exports.

@ Note Instead of a. def file, many Windows programmers use the LINK option in Project
Settings of the Visual C++ compiler to obtain equivalent command-line options for most
module definition statements.

Array and String Options

This section reviews important concepts regarding array and string datain
Call Library Function.

Arrays of Numeric Data

Arraysof numeric datacan be comprised of any type of integers, or floating
point numberswith single (4-byte) or double (8-byte) precision. When you
pass an array of datato aDLL function, you can pass the data as an Array
DataPointer, asal abVIEW Array Handle, or asal abVIEW Array Handle
Pointer.

The following list presents the characteristics of Array Data Pointers,
whether you pass them in the Windows API or in another APl. Remember
that the Windows API does not use LabVIEW array handles, so with
functions that are part of the Windows API you can use only Array Data
Pointers.

e You can set the number of dimensionsin the array, but you must not
include information about the size of the array dimension(s). Instead,
you must pass the size of the array dimension(s) information to your
DLL in aseparate variable.

e Specifically, never resize an array or perform operations that may
change the length of the array data passed from LabVIEW. Resizing
may cause a crash because the pointer sent is not an allocated block,
but rather, points into the middle of an allocated block.

e Toreturn an array of data, you should allocate an array of sufficient
sizeinLabVIEW, passit to your function, and havethisarray act asthe
buffer. If the data takes less space, you can return the correct sizeasa
separate parameter and then, on the calling diagram, use array subset
to extract the valid data.

Using External Code in LabVIEW 2-30 www.ni.com

Chapter 2 Shared Libraries (DLLS)

If you passthe array data as a LabVIEW Array Handle, you can use
LabVIEW CIN functionsto resizethearray. In order to call LabVIEW CIN
functions, your compile must include the correct LabVIEW library file,
which islocated within the LabVIEW ci nt ool s directory.

* For CodeWarrior, include | abvi ew. export . st ub.
e For Symantec, include! abvi ew. sym | i b.
» For Visual C++,includel abvi ew. | i b.

String Data

The types of your string pointers much match the types of string pointers
that your function uses, or errors will occur. Call Library Function offers
the following choices:

e C String Pointer—Pointer to the string, followed by a NULL
character. Most Win32 API functions use this C-style string pointer.

» Pascal String Pointer—Pointer to the string, preceded by alength
byte.

« LabVIEW String Handle—Pointer to a pointer to the string,
preceded by four bytes of length information.

e LabVIEW StringHandlePointer—A pointer toahandlefor astring,
preceded by four bytes of length information.

You can think of astring as an array of characters; assembling the
charactersin order formsastring. LabVIEW stores a string in a special
format in which thefirst four bytes of the array of charactersform asigned
32-bit integer that stores how many characters appear in the string. Thus,
astring with n characters will require n + 4 bytes to store in memory. For
example, inthefollowing graphic thestringt ext containsfour characters.
When LabVIEW storesthe string, thefirst four bytes contain the value 4 as
asigned 32-bit number, and each of the following four bytes contains a
character of the string. The advantage of this type of string storage is that
NULL characters are allowed in the string. Strings are virtually unlimited
in length (up to 231 characters). This method of string storage isillustrated
in the following figure. If you passa LabVIEW String Handle from Call
Library Function to the DLL, then you can use the LabVIEW CIN
functions like DSSet Handl eSi ze to resize the LabVIEW String Handle.

\o[\00[vo0]v4] t [e [x|t
string length string data

Figure 2-9. The LabVIEW String Format

© National Instruments Corporation 2-31 Using External Code in LabVIEW

Chapter 2 Shared Libraries (DLLS)

Using External Code in LabVIEW

Remember, you must add | abvi ew. | i b to aVisual C++ project,
| abvi ew. export. st ub to a CodeWarrior project, and
| abvi ew. sym | i b to a Symantec project.

The Pascal string format isnearly identical to the LabVIEW string format,
but instead of storing the length of the string asa signed 32-bit integer, itis
stored as an unsigned 8-bit integer. This limits the length of a Pascal style
string to 255 characters. A graphical representation of a Pascal string
appearsinthefollowing figure. A Pascal string that isn characterslong will
reguire n + 1 bytes of memory to store.

\04| t | e | X | t
string data

string
length

Figure 2-10. The Pascal String Format

C strings are probably the type of strings you will deal with most
commonly. The similarities between the C-style string and normal numeric
arraysin C becomes much more clear when one observesthat C strings are
declared aschar *, wherechar istypically an unsigned byte. Unlike
LabVIEW and Pascal strings, C strings do not contain any information that
directly gives the length of the string. Instead, C strings use a special
character, called the NULL character, to indicate the end of the string.
NULL isdefined to have avalue of zerointhe ASCI| character set. Notice
that NULL isthe number zero and not the character “0”. Thus, in C, astring
containing n charactersrequires n + 1 bytes of memory to store: n bytesfor
the characters in the string, and one additional byte for the NULL
termination character. The advantage of C-style stringsis that they are
limited in size only by available memory. However, if you are acquiring
data from an instrument that returns numeric dataas abinary string, asis
common with serial or GPIB instruments, values of zero in the string are
possible. For binary datawhere NULLs may be present, consider an array
of unsigned 8-hit integers. If you treat the string as a C-style string, your
program will incorrectly assumethat the end of the string has been reached,
when in fact your instrument is returning a numeric value of zero. An
illustration of how a C-style string is stored in memory appears in the
following figure.

2-32 Www.ni.com

Chapter 2 Shared Libraries (DLLS)

t e | x]t]oo
string data

NULL
Character

Figure 2-11. The C String Format

When you pass string datato aDLL, you must follow the same guidelines
asfor arrays:

Never resize a string, concatenate a string, or perform operations that
may increasethelength of string datapassed from LabVIEW if you are
using the C or Pascal string pointers.

If you must return data as a string, you should first allocate a string of
the appropriate length in LabVIEW, and pass this string into the DLL
to act as a buffer.

If you passaLabVIEW String Handle from Call Library Function to
the DLL, then you can use the LabVIEW CIN functions like
DSSet Handl eSi ze to resize the LabVIEW string handle.

E Note To usethe LabVIEW CIN function calls you must add | abvi ew. | i b to a Visual
C++ project, | abvi ew. export . st ub toaCodeWarrior project, and| abvi ew. sym | i b
to a Symantec project.

Array and String Tip

When you are not passing LabVIEW handles and your DLL function must
create an array, change its size, or resize a string of data, you should break
the function into two steps:

1.

© National Instruments Corporation

Determine the number of elementsthat the array requires, or thelength
of the string to be returned. Have this first function return the desired
sizeto LabVIEW.

InLabVIEW, initidlize an array or string with default values, and pass
thisarray to asecond function in your DLL, which actually placesthe
datainto the array. If you are working with string-based instrument
control, it may be easier to passan array of 8-bit integersthan C strings
because of the possibility of having NULL values in the string.

When you are passing aLabVIEW Array Handle or LabVIEW String
Handle from the Call Library Function object to your DLL, you can
usethe LabVIEW CIN functionsto resize or create an array or string.
Refer to the Required Libraries section for more information about
this set of functions.

2-33 Using External Code in LabVIEW

CINs

This chapter discusses the LabVIEW Code Interface Node (CIN), a block
diagram node that links C/C++ source code to LabVIEW.

Supported Languages

Theinterface for CINs supports a variety of compilers, although not all
compilers can create code in the correct executable format.

External code must be compiled as aform of executable appropriate for a
specific platform. The code must be relocatable, because LabVIEW loads
external code into the same memory space as the main application.

Macintosh

CINsin LabVIEW for Macintosh access a shared libraries. To prepare the
code for LabVIEW, use the separate utilities| vsbuti | . app for
Metrowerks CodeWarrior and | vsbuti | . t ool for the Macintosh
Programmer’s Workshop. These utilities come with LabVIEW.

You can create CINs with compilers from the two major C compiler
vendors:

e Metrowerks CodeWarrior from Metrowerks Corporation of
Austin, TX

* Macintosh Programmer’s Workshop (MPW) from Apple Computer,
Inc. of Cupertino, CA

LabVIEW header files are compatible with these two environments.
Header files might need modification for other environments.

Microsoft Windows

LabVIEW for Windows supports CINs created with any of the following
compilers:

e Microsoft Visual C++
e Symantec C

© MNational Instruments Corporation 3-1 Using External Code in LabVIEW

Chapter 3 CINs

Refer to the Microsoft Windows subsection in the Step 4. Compile the
CIN Source Code section in this chapter for information about creating
aCIN using these compilers.

Solaris, Linux, and HP-UX

LabVIEW for Sun supports external code compiled in ashared library
format. To prepare thislibrary for LabVIEW, use LabVIEW utility
| vsbutil.

The gcc compiler istested thoroughly with LabVIEW on Solaris, Linux,
and HP-UX platforms. For Solaris, Sun Workshop C Compiler isalso
tested thoroughly with LabVIEW.

Resolving Multithreading Issues

Y ou must resolve two issues in order to make multithreaded CINSs:
e Make LabVIEW recognize your CIN as being multithreaded.
¢ UseC codethat is completely multithread safe.

Making LabVIEW Recognize a CIN as Thread Safe

The CIN node on the block diagram is orange if you have not set the node
to bethread safe. A thread safe nodeisyellow. Perform the following steps
to make LabVIEW recognize a CIN node as thread safe.

Add the CI NPr operti es function to your CIN code, in the prototypes
section of your . ¢ sourcefile:

CIN MyErr ClI NProperties(int32 prop, void *data);

Add the following function statement to the functions section of your . ¢
sourcefile:

CIN MyErr CINProperties(int32 prop, void *data)

{
switch (prop) {
case kCl Nl sReentrant:
*(Bool 32 *)data = TRUE;
return nokrr;

}
ret urn ngNot Support ed;

}

Using External Code in LabVIEW 3-2 www.ni.com

Chapter 3 CINs

Using C Code that is Thread Safe

The CI NPr oper ti es function only labels your CIN as being safe to run
from multiple threads. Whether the CIN is actually thread-safe depends
entirely upon what C code has been written. For information about what
makes C code safe or unsafe to be run from multiple threads
simultaneously, please consult C programming documentation. The
following list presents basic answers to the question, Is my CIN code
thread safe?

» TheCIN codeisthread safe when it stores no unprotected global data
(for example, no global variables, no fileson disk, and so on); does not
access any hardware (in other words, does not contain register-level
programming); and makes no calls to any functions, shared libraries,
or driversthat are not thread safe.

* TheCIN codeisthread safe when it uses semaphores or mutexes to
protect access to global resources.

e TheCIN call isthread safe when only one non-reentrant V1 calls
the CIN; and the code accesses no global resources through CIN
housekeeping routines, such as, Cl NI ni t, Cl NAbor t , Cl NDi spose,
and others.

Creating a CIN

In general, to create a CIN, describe in LabVIEW the data you want to
pass to the CIN. Then, write the code for the CIN using one of the
supported programming languages. After you compile the code, run

a utility that puts the compiled codeinto aformat LabVIEW can use.
Then, instruct LabVIEW to load the CIN.

If you runthe V1 at this point and the block diagram needs to execute the
CIN, LabVIEW callsthe CIN object code and passes any datawired to the
CIN. If you save the VI after loading the code, LabVIEW saves the CIN
object code along with the VI so LabVIEW no longer needs the original
code to execute the CIN. You can update your CIN object code with new
versions at any time.

The exanpl es directory containsaCl Ns directory that includes al of the
examples given in this manual. The names of the directoriesin Cl Ns
correspond to the CIN name in the examples.

To create a CIN, complete the following steps.

© MNational Instruments Corporation 3-3 Using External Code in LabVIEW

Chapter 3 CINs

Step 1. Set Up Input and Output Terminals for a CIN

Using External Code in LabVIEW

Access the Code Interface Node located on the Functions»Advanced
palette and place it on ablock diagram.

A CIN hasterminals with which you can indicate which data passes to and
from a CIN. Initially, the CIN has one set of terminals, and you can pass a
single value to and from the CIN. To add additional terminals, resize the
node, then right-click the node and select Add Parameter.

The following illustration shows how to resize the node to add parameters.

TR A
EEIEIAT FIIELAE EEITEAE
[T | I

L

Each pair of terminals corresponds to a parameter LabVIEW passes to the
CIN. Thetwo types of terminal pairs are input-output and output-only.

Input-Output Terminals

By default, aterminal pair isinput-output; the left terminal is the input
terminal, and the right terminal is the output terminal. For example,
consider aCIN that has a single terminal pair. A 32-bit integer control is
wired to the input terminal and a 32-bit integer indicator iswired to the
output terminal, as shown in the following illustration.

When the V1 callsthe CIN, the only argument LabVIEW passesto the CIN
object code is a pointer to the value of the 32-bit integer input. When the
CIN completes, LabVIEW then passes the value referenced by the pointer
to the 32-hit integer indicator. When you wire controls and indicators to the
input and the output terminals of aterminal pair, LabVIEW assumes the
CIN can modify the data passed. If another node on the block diagram
needs the input value, LabVIEW might have to copy the input data before
passing it to the CIN.

Consider the same CIN, but with no indicator wired to the output terminal,
as shown in the following illustration.

3-4 www.ni.com

Chapter 3 CINs

[TIET]
Toolg

0| 1
Qo |
0 P

If you do not wire an indicator to the output terminal of aterminal pair,
LabVIEW assumes the CIN will not modify the value you passto it. If
another node on the block diagram uses the input data, LabVIEW does
not copy the data. The source code should not modify the value passed into
the input terminal of aterminal pair if you do not wire the output terminal.
If the CIN does modify the input value, nodes connected to the input
terminal wire may receive the modified data.

Output-Only Terminals

If you use aterminal pair only to return avalue, make it an output-only
terminal pair by resizing the node then right-clicking the node and selecting
Output Only. If aterminal pair is output-only, the input terminal is gray,
as shown in the following illustration.

For output-only terminals, LabVIEW creates storage space for areturn
value and passes the value by reference to the CIN the same way it passes
values for input-output terminal pairs. If you do not wire a control to the
left terminal, LabVIEW determines the type of the output parameter by
checking the type of the indicator wired to the output terminal. This can
be ambiguousif you wire the output to two destinations that have different
datatypes. To solvethis problem, wire acontrol to the left (input) terminal
of the terminal pair as shown in the previousillustration. In this case, the
output terminal takeson the same datatype astheinput terminal. LabVIEW
uses the input type only to determine the data type for the output terminal;
the CIN does not use or affect the data of the input wire.

To remove a pair of terminals from a CIN, right-click the terminal you
want to remove and select Remove Terminal. LabVIEW disconnects
wires connected to the deleted terminal pair. Wires connected to terminal
pairs below the deleted pair remain attached to those terminals and stretch
to adjust to the terminals' new positions.

© MNational Instruments Corporation 3-5 Using External Code in LabVIEW

Chapter 3 CINs

Step 2. Wire the Inputs and Outputs to the CIN

Connect wiresto al the terminal pairs on the CIN to specify the data

you want to pass to the CIN, and the data you want to receive from the
CIN. The order of terminal pairs on the CIN corresponds to the order

in which parameters are passed to the code. Y ou can use any

LabVIEW datatypes as CIN parameters, so you can pass arbitrarily
complex hierarchical datastructures, such asarrays containing clustersthat
can in turn contain other arrays or clustersto a CIN. Refer to the Passing
Parameters section in Chapter 4, Programming Issues for CINSs, for
information about how LabVIEW passes parameters of specific datatypes
to CINs.

Step 3. Create a .c File
Right-click the node and select Create .c Fileto createa. c fileinthestyle

Using External Code in LabVIEW 3-6 www.ni.com

Chapter 3 CINs

and types whose definitions may conflict with the definitions of system
header files. Theci nt ool s directory also containshost t ype. h, which
resolves these differences. This header file also includes many of

the common header files for a given platform.

Alwaysuse#i ncl ude "extcode. h" at the beginning of your source
code. If your code needs to make system calls, also use #i ncl ude
"host t ype. h" immediately after #i ncl ude "ext code. h", and then
include your system header files. host t ype. h includes only a subset of
the. h filesfor a given operating system. If the . h file you need is not
included by host t ype. h, you can includeit in the. c file for your CIN
after you include host t ype. h.

LabVIEW callsthe CI NRun routine when it istime for the node to
execute. Cl NRun receives the input and output values as parameters. The
other routines (Cl NLoad, Cl NSave, Cl NUnl oad, Cl NAbort, CI NI ni t,
Cl NDi spose, and Cl NPr oper ti es) are housekeeping routines, called at
specific times so you can take care of specialized tasks with your CIN. For
example, LabVIEW calls Cl NLoad when it first loadsa V1. If you need to
accomplish a special task when your V1 loads, put the code for that task in
the CI NLoad routine. To do so, write your Cl NLoad routine as follows:

CIN MyErr ClI NLoad(RsrcFile reserved) {
Unused (reserved);
/* ENTER YOUR CODE HERE */
return nokErr;

}

In general, you only need to write the CI NRun routine. Use the other
routineswhen you have special initialization needs, such aswhen your CIN
must maintain some information across calls, and you want to preallocate
orinitialize global stateinformation. Thefollowing code showsan example
of how to fill out the CI NRun routine from the previously shown
LabVIEW-generated . ¢ file to multiply a number by two. Refer to the
Passing Parameters section in Chapter 4, Programming Issues for CINS,
for information about how LabVIEW passes datato a CIN, with several
examples.
CIN MgErr CI NRun(int32 *num.in, int32 *numout) {
*numout = *numin * 2;
return noErr;

}

© MNational Instruments Corporation 3-7 Using External Code in LabVIEW

Chapter 3 CINs

Step 4. Compile the CIN Source Code

Y ou must compile the source code for the CIN as a LabVIEW subroutine
(. 1 sb) file. After you compile your C/C++ code in one of the compilers
that LabVIEW supports, you use aLabVIEW utility that puts the object
codeintothe. | sb format.

Because the compiling processis often complex, LabVIEW includes
utilitiesthat simplify the process. These utilitiestake a simple specification
for aCIN and create object code you can load into LabVIEW. These tools
vary depending on the platform and compiler you use. Refer to the
following sections for more information about compiling on your platform.

Note TheLabVIEW Base Development system can use existing . | sb files, but cannot
create new . | sb files. You can create. | sb filesin the LabVIEW Full and Professional
Development Systems.

Using External Code in LabVIEW

Compile on Macintosh

LabVIEW for Macintosh uses shared libraries asaresource for customized
code. To prepare the code for LabVIEW, use the separate utilities

I vsbuti | . app for Metrowerks CodeWarrior and | vsbuti | .t ool for
the Macintosh Programmer’ s Workshop. These utilities are included with
LabVIEW.

You can create CINs with compilers from the two major C compiler
vendors:

e Metrowerks CodeWarrior from Metrowerks Corporation of
Austin, TX

¢ Macintosh Programmer’s Workshop (MPW) from Apple Computer,
Inc. of Cupertino, CA

Always use the latest Universal headers containing definitions for Power
Macintosh compilers.

Metrowerks CodeWarrior for Power Macintosh

To set up your CIN project, use the project stationery in the
cintool s: Metrowerks Files: Project Stationery:LabVlI EW
Cl N MAPPC folder.

3-8 www.ni.com

Chapter 3 CINs

To create a CIN for Power Macintosh, you need your source files and
Cl NLi b. ppc. mner ks in your CodeWarrior project. LabVIEW installs
Cl NLi b. ppc. mner ks intheci nt ool s: Met rower ks Fil es: PPC
Li brari es folder.

If you call any routines within LabVIEW, such as DSSet Handl eSi ze()

orSet Cl NArraySi ze(),youasoneedthel abvi ew. export . st ubfile.
LabVIEW installs| abvi ew. export. st ub intheci nt ool s: Power PC
Li brari es folder.

If you call any routines from a system shared library, you must add the
appropriate shared library interface file to your project.

When building a CIN using CodeWarrior for PPC, you can set many of
the preferences to whatever you want. However, other preferences must be
set to specific valuesto correctly create a CIN. If you do not use the project
stationery, make sure you set the following preferencesin the CodeWarrior
Preferences dialog box:

» Clear the Prefix File (using M acHeader s does not work).
e Set Struct Alignment to 68K .
» Clear al the Entry Point fields.

* Set Export Symbolsto Use .exp file and place a copy of thefile
pr oj ect Nanme. exp (from your ci nt ool s: Met r ower ks
Fi |l es: PPC Li brari es folder) in the same folder as your
CodeWarrior project. Rename thisfileto pr oj ect Nane. exp, where
pr oj ect Nane isthe name of the project file. CodeWarrior looksin
thisfile to determine what symbols your CIN exports. LabVIEW
needs these to link to your CIN.

e SetProject Typeto Shared Library. Set the file nameto
ci nNane. t np, whereci nNane isthe name of your CIN. Set Typeto
. t mp. Set Creator to LVsh.

* Addyour ci nt ool s folder to the list of access paths.
To build the CIN, select Project»M ake.

When you successfully build the ci nNane. t np file, use the
I vsbuti | . app application to createthe ci nNane. | sb file.

Note

© MNational Instruments Corporation 3-9 Using External Code in LabVIEW

Chapter 3 CINs

Using External Code in LabVIEW

In the file selection dialog box, make sure the For Power PC box is
checked. Select any other options you want for your CIN, and then select
your ci nNane. t np file. LabVIEW createsci nNarme. | sb in the same
folder asci nName. t np.

Macintosh Programmer’s Workshop

Y ou can use Macintosh Programmer’s Workshop (MPW) to build CINs
for Power Macintosh. Severa scripts are available for the MPW
environment to help you build CINs.

e Cl NMake—This script uses a simplified form of a makefile you
provide. You can run it every time you need to rebuild your CIN.

e LVMakeMake—Similar tothel vinknf (LabVIEW Make Makefile)
script available for building CINs on UNIX. This script builds a
skeletal but complete makefile you can then customize and use with
the MPW nake tool.

You must have one makefile for each CIN. Name the makefile by
appending . | vmtothe CIN nametoindicatethat itisaLabVIEW makefile.
The makefile should resemble the following pseudocode. Make sure that
each Di r command ends with the colon character (:).

. nane = nane

Name for the code; indicates the base name for your CIN. The source
code for your CIN should bein nane. c. The code created by the
makefileis placed in anew LabVIEW subroutine (. | sb) file,

nane. | sb.

+ type = type
Type of external code you want to create. For CINs, use atypeof CI N.
e codeDir = codebDir:

Complete pathname to the folder containing the . ¢ file used for the
CIN.

e cinToolsDir = cinTool sDir:

Complete pathname to the LabVIEW ci nt ool s: MPWfolder.
e LVWers = 2

Version of Cl NMake script reading this. | vmfile,
e inclDir =-i inclDir:

(Optional) Complete or partial pathname to afolder containing any
additiond . h files.

3-10 Www.ni.com

Chapter 3 CINs

e otherPPChj Fil es = ot her PPCObj Fi | es

(Optional) List of additional object files (fileswith a. o extension)

your code needs to compile. Separate the names of files with spaces.
e ShLi bs = sharedLi braryNanes

(Optional) A list of the link-time copies of import librarieswith which

the CIN must be linked. Each should be a complete path to the file.
Separate the names with spaces.

e ShLi bMaps = sharedLi bMappi ngs

(Optional) The command-line arguments to the MakePEF tool that
indicate the mapping between the name of each link-time import
library and the run-time name of that import library. These usually look
similar to the following:

-librenanme |ibA xcoff=libA
-librenane |ibB. xcoff=libB

Only the file names are needed, not entire paths.
You must adjust the —bi r names to reflect your own file system hierarchy.

Modify your MPW command search path by appending the
ci nt ool s: MPWfolder to the default search path. This search path is
defined by the MPW Shell variable commands.

set commands "{commands}", "<pathnane to directory of
ci nTool sDi r>"

Go to the MPW Worksheet and enter the following commands. Set your
current folder to the CIN folder:

Directory <pathnane to directory of your CI N>

Run the LabVIEW CI N\vake script:
Cl NVvake <name of your CI N>

If CI NMake doesnot find a. | vmfilein the current folder, it builds a
file named ci nNarre. | vm and prompts you for necessary information.
If CI NMake findsci nName. | vm but it does not have the line

LVMers = 2, MPW savesthe. | vmfileinci nNane. | vm ol d and
updates the ci nNane. | vmfile to be compatible with the new version of
Cl NVake.

© National Instruments Corporation 3-11 Using External Code in LabVIEW

Chapter 3 CINs

Using External Code in LabVIEW

The format of the CI NMake command follows, with optional parameters
listed in brackets.

Cl Nvake [-MakeOpts “opts”] [-RShell] [-dbg] [-noDel ete]
<name of your ClI N>

- MakeQpt s opt s specifies extra options to pass to nake.

- Rshel |

- dbg If this argument is specified, Cl NVake prints
statements describing what it does.

-noDel et e If thisargument is specified, CI NMake does not
delete temporary files used when making the
CIN.

You can use LVMakeMake to build an MPW makefile that you can then
customize. You should only have to run LVvakeMake once for each CIN.
You can modify the resulting makefile by adding the proper header file
dependencies, or by adding other object filesto be linked into your CIN.
Theformat of aLVMakeMake command follows, with optional parameters
listed in brackets.

LVMakeMake [- o makeFi | e] <name of your ClI N>. make

-0 maekeFi | e indicates the name of the output makefile. If this
argument is not specified, LVMakeMake writes to standard
output.

For exampl e, to build a Power M acintosh makefilefor aCIN named my Cl N,
use the following command:

LVMakeMake nmyCI N > nyCl N. ppc. make
creates the makefile

You can then use the MPW make tool to build your CIN, as shown in the
following commands:

make -f myCl N ppc. make> nmyCl N. mnakeout
creates the build conmands

nyCl N. makeout

executes the build comrands

Load the. | sb filethat this application creates into your LabVIEW CIN.

3-12 Www.ni.com

Chapter 3 CINs

Microsoft Windows

To build CINsfor LabVIEW for Windows, use the Microsoft Visual C++
or Symantec C compilers.

Visual C++ Command Line

This section describes using command line tools in Windows 2000/NT/9x
to build CINs.

1.

© National Instruments Corporation

Add aCl NTOOLSDI R definition to your list of user environment
variables.

(Windows 2000/NT) You can edit thislist with the System control panel
accessory. For example, if you installed LabVIEW for Windowsin
c:\ I abvi ew, the CIN tools directory should be

c:\l abvi ew\ ci nt ool s. In thisinstance, you would add the
following line to the user environment variables using the System
control panel.

CI NTOOLSDI R = c:\ | abvi ew ci nt ool s

(Windows 9x) Modify your AUTOEXEC. BAT to set CI NTOOLSDI Rtothe
correct value.

Build a. | vmfile (LabVIEW Makefile) for your CIN. You must

specify the following items:

* nare isthe name of CIN or externa subroutine (for example,
mult).

e typeisCIN or LVSB, depending on whether itisa CIN or an
external subroutine.

e linclude $(ClI NTOOLSDI R)\ ntl vsb. mak

To define additional include paths for a CIN you must add a
ClI NCLUDES lineto the. | vmfile, asfollows:

CI NCLUDE = -1 pat hnanes

You must include the - | argument on the line and pat hnanes isthe
directory where you look for other includes.

If your CIN uses extra object files, you can specify the obj Fi | es
option. You do not need to specify thecodeDi r parameter, becausethe
codefor the CIN must bein the same directory asthe makefile. You do
not need to specify thewcDi r parameter, because the CIN tools can
determine the location of the compiler.

You can compile the CIN code using the following command, where
mul t isthe makefile name.

nmake /f nult.lvm

3-13 Using External Code in LabVIEW

Chapter 3 CINs

Using External Code in LabVIEW

If you want to use standard C or Windows libraries, define the symbol
ci nLi brari es. For example, to use standard C functionsin the
previous example, you could use the following . | vmfile.

nane = nult

type = CIN

cinLibraries=libc.lib

linclude $(CI NTOOLSDI R)\ ntl vsh. mak

To include multiple libraries, separate the list of library names
with spaces.

Visual C++ IDE

Tobuild CINsusing theVisual C++ Integrated Devel opment Environment,
compl ete the following steps.

1

Create anew DLL project. Select File»New and select Win32
Dynamic-Link Library asthe project type. You can name your
project whatever you want.

Add CIN objects and libraries to the project. Select Project»Add To
Project»Filesand select ci n. obj , | abvi ew. l'i b, vsb. li b, and

| vsbmai n. def from the Ci nt ool s\ W n32 subdirectory. You need
thesefilesto build a CIN.

Add Ci nt ool s to the include path. Select Proj ect»Settings and
change Settingsfor to All Configurations. Select the C/C++ tab and
set the category to Preprocessor. Add the path to your Ci nt ool s
directory in the Additional include directoriesfield.

Set alignment to 1 byte. Select Proj ect»Settings and change Settings
For to All Configurations. Select the C/C++ tab and set the category
to Code Generation. Select the Struct member alignment tab and
select 1 byte.

Choose arun-time library. Select Project»Settings and change
Settings for to All Configurations. Select the C/C++ tab and set the
category to Code Generation. Select Multithreaded DL L inthe Use
run-timelibrary control.

Make a custom build command to run | vsbut i | . Select

Pr o ect»Settings and change Settings for to All Configurations.
Select the Custom Build tab and changethe Build commandsfield as
follows; this code should appear on asingle line;

"<your path to cintool s>\w n32\|vsbutil" $(TargetNane) -d
"$(WkspDir)\$(QutDir)"

Change Output file fieldsto $(Qut Di r) $(Tar get Nane) . | sb.

3-14 Www.ni.com

Chapter 3 CINs

@ Note The LabVIEW Base Development system can use existing . | sb files, but cannot
create new . | sb files. You can create . | sb filesin the LabVIEW Full and Professional
Development Systems.

Symantec C

Building CINs using Symantec C is similar to building CINs for Visual
C++ Command Line. However, you should use smake instead of nnake
onyour . | vmfile.

Solaris 2.x

LabVIEW for Solaris 2.x uses external code compiled in a shared library
format. To prepare thislibrary for LabVIEW, use the LabVIEW utility
| vsbutil .

Thegcc compiler and the Sun Workshop C Compiler arethe only compilers
tested thoroughly with LabVIEW.

@ Note LabVIEW 3.0 for Solaris 2.x supported external code compiled in ELF format.

Existing Solaris 1.x and 2.x (for LabVIEW 3.0) CINs do not operate
correctly if they reference functions not in the System V Interface
Definition (SVID) for I i bc, | i bsys, and | i bns| . Recompile your
existing CINs using the shared library format to make sure your CINs
function as expected.

HP-UX and Linux
The gcc compiler isthe only compiler tested with LabVIEW.

gcc Compiler

Create a makefile using the shell script | virknf (LabVIEW Make
Makefile), which creates a makefile for agiven CIN. Use the standard
make command to make the CIN code. In addition to compiling the CIN,
the makefile puts the code in aform LabVIEW can use.

The format for the | vimknf command follows, with optional parameters
listed in brackets.

[vnknf [-o0 Makefile] LVSBName

LVSBNane isthe name of the CIN or external subroutine you want to build.
If LVSBNane isf oo, the compiler assumesthe sourceisf oo. ¢ and names
the output filef oo. | sh.

© National Instruments Corporation 3-15 Using External Code in LabVIEW

Chapter 3 CINs

- 0 isthe name of the makefilel virknf creates. If you do not specify this
argument, the makefile name default is Makefi | e.

The makefile produced assumestheci n. o, | i bci n. a,

makegl ueXxXX. awk, and | vsbuti | filesarein certain locations,

where XXX is SVR4 on Solaris 2.x, | i nux on Linux, and HP on HP-UX. If
these assumptions are incorrect, you can edit the makefile to correct the
pathnames.

Step 5. Load the CIN Object Code

To load the code resource, right-click the node and select L oad Code
Resour ce. Select the . | sb file you created in Step 4. Compile the CIN
Source Code.

LabVIEW loads your object code into memory and links the code to the
current front panel or block diagram. After you save the V1, thefile
containing the object code does not need to be resident on the computer
running LabVIEW for the V1 to run.

If you modify the source code, you can load the new version of the object
code using the L oad Code Resour ce option. Thefile containing the object
code for the CIN must have an extension of . | sb.

Thereis no limit to the number of CINs per block diagram.

LabVIEW Manager Routines

Using External Code in LabVIEW

LabVIEW has asuite of routinesthat you can call from CINs. This suite of
routines performs user-specified routines using the appropriate instructions
for agiven platform. These routines, which manage the functions of a
specific operating system, are grouped into three categories: memory
manager, file manager, and support manager.

External code written using the managersis portable, that is, you can
compile it without modification on any platform that supports LabVIEW.
This portability has the following two advantages:

e TheLabVIEW application is built on top of the managers. Except for
the managers, the LabVIEW source code isidentical across platforms.

¢ TheanalysisVIsarebuilt mainly from CINs. The source codefor these
CINsisthe samefor al platforms.

3-16 Www.ni.com

Chapter 3 CINs

Refer to the Manager Overview section of Chapter 4, Programming | ssues
for CINs, for more information about the memory manager, the file
manager, and the support manager.

Refer to Chapter 6, Function Descriptions, for descriptions of functions or
file manager data structures.

Pointers as Parameters

Some manager functions have a parameter that is a pointer.

These parameter type descriptions are identified by atrailing asterisk
(such as the hp parameter of the AZHandToHand memory manager
function) or are type defined as such (such as the name parameter of the
FNamePt r function). In most cases, the manager function writesavalue
to pre-allocated memory. In some cases, such as FSt r Fi t sPat h or

Get ALong, the function reads a value from the memory location, so you
do not have to pre-allocate memory for areturn value.

The following functions have parameters that return a value for which you
must pre-allocate memory:

AZHandToHand AZMentt at s AZPt r ToHand

Dat eToSecs DSHandToHand DSMentt at s

© National Instruments Corporation 3-17 Using External Code in LabVIEW

Chapter 3 CINs

Correct example:

foo(Path path) {
Str255 buf; /* allocated buffer of 256 chars */
File fd;
MYErr err;

err = FNanePtr(path, buf);
err = FMOpen(& d, path, openReadOnly,
denyWiteOnly);

}

Incorrect example:
foo(Path path) {

PStr p; /* an uninitialized pointer */
File *fd; /* an uninitialized pointer */
MyErr err;

err = FNanePtr(path, p);

err = FMpen(fd, path, openReadOnly
denyWiteOnly);

}

In the correct example, buf contains space for the maximum-sized Pascal
string (whose address is passed to FNanePt r), and f d isalocal variable
(allocated space) for afile descriptor.

In the incorrect example, p isapointer to a Pascal string, but the pointer is
not initialized to point to any allocated buffer. FNanmePt r expectsits caller
to pass a pointer to an allocated space, and writes the name of thefile
referred to by pat h into that space. Even if the pointer does not point to
avalid place, FNamePt r writesits results there, with unpredictable
consequences. Similarly, FMOpen writesitsresultsto the spacetowhich f d
points, which is not avalid place becausef d is uninitialized.

Debugging External Code

Using External Code in LabVIEW

LabVIEW has a debugging window you can use with external code to
display information at run time. Y ou can open the window, display
arbitrary print statements, and close the window from any CIN or external
subroutine.

To create thisdebugging window, usethe DogPr i nt f function. Theformat
for DogPri nt f issimilar totheformat of theSPri nt f function, described

3-18 Www.ni.com

DbgPrintf

syntax

Windows

Chapter 3 CINs

in Chapter 6, Function Descriptions. DogPr i nt f takes a variable number
of arguments, where the first argument is a C format string.

int32 DbgPrintf(CStr cfnt, ..);

Thefirst timeyou call DbgPri nt f, LabVIEW opens awindow to display
the text you pass to the function. Subsequent callsto DbgPr i nt f append
new data as new linesin the window. You do not need to passin the new
line character to the function. If you call DogPr i nt f with NULL instead of
aformat string, LabVIEW closes the debugging window. You cannot
position or change the size of the window.

The following examples show how to use DbgPri nt f .

DogPrintf(""); /* print an enpty |ine, opening
the wi ndow i f necessary */

DogPrintf ("9, varl); /* print the contents of an
LSt r Handl e (LabVI EW stri ng),
openi ng the wi ndow i f necessary
*/

DbgPri nt f (NULL) ; /* close the debuggi ng wi ndow
*/

Windows supports source-level debugging of CINs using Microsoft’s
Visual C environment. To debug CINsin Windows, complete the
following steps.

1. Maodify your CIN to set a debugger trap. You must do thisto force
Visua C to load your debugging symbols. The trap call must be
done after the CIN isin memory. The easiest way to do thisisto place
itin the CINL oad procedure. After the debugging symbols are loaded,
you can set normal debug pointsinside Visual C. Windows 9x has a
single method of setting adebugger trap, while Windows 2000/NT can
use the Windows 95 method or another.

The method common to Windows is to insert a debugger break using
an in-line assembly command:

_asmint 3;

© National Instruments Corporation 3-19 Using External Code in LabVIEW

Chapter 3 CINs

Using External Code in LabVIEW

Adding thisto Cl NLoad gives you the following:
CIN MgErr ClI NLoad(RsrcFile reserved)

{
Unused(reserved);
_asmint 3;
return nokrr;

}

When the debugger trap is hit, Visual C++ invokes a debug window
highlighting that line.

In Windows 2000/NT, you can use the DebugBr eak function.
This function exists in Windows 9x, but does not produce

suitable results for debugging CINSs. To use DebugBr eak, include
<wi ndows. h> at the top of your file and place the call where you
want to bresk:

#i ncl ude <wi ndows. h>
CIN MyErr Cl NLoad(RsrcFile reserved)

{
Unused(reserved);
DebugBr eak() ;
return noErr;

}

When that line runs, you will be in assembly. Step out of that function
to get to the point of the DebugBr eak call.

Rebuild your CIN with debugging symbols.

If you built your CIN from the command line, add the following lines
tothe. | vmfile of your CIN to add debug information to the CIN:

DEGUG = 1
cinLibraries = Kernel 32.1ib

If you built your CIN using the IDE, build adebug version of the DLL.
Select Projects»Settings, the Debug tab, and the General category.
Type your LabVIEW executable in Executable for debug session.

Run LabVIEW.

If you built your CIN from the command line, start LabVIEW
normally. When the debugger trap is run, a message appears:

A Breakpoi nt has been reached. Cick OKto ternminate
application. Cick CANCEL to debug the application.

3-20 Www.ni.com

Chapter 3 CINs

Click the Cancel button to launch the debugger, which attaches to
LabVIEW, searches for the DLLs, then asks for the source file of
your CIN. Point it to your source file, and the debugger loads the
CIN source code. You can then debug your code.

If you built your CIN using the IDE, open your CIN project and
click the GO button. Visual C launches LabVIEW.

UNIX

Youcanusestandard Cpri nt f callsortheDbgPr i nt f function described
in the previous section. Y ou also can use gdb, the Gnu debugger, to debug
the CIN. Y ou must load the VI that contains the CIN before you add
breakpoints; the CIN is not loaded until the V1 is|oaded.

© National Instruments Corporation 3-21 Using External Code in LabVIEW

Programming Issues for CINs

This chapter describes the data structures LabVIEW uses when passing
datato a CIN and describes the function libraries, called managers, which
you can use in external code modules. These include the memory manager,
the file manager, and the support manager.

Passing Parameters

LabVIEW passes parameters to the Cl NRun routine. These parameters
correspond to each of the wires connected to the CIN. Y ou can pass any
datatypeto a CIN you can construct in LabVIEW:; thereis no limit to the
number of parameters you can pass to and from the CIN.

Parameters in the CIN .c File

When you right-click a CIN on ablock diagram and select Create .c File,
LabVIEW createsa. c filein which you can enter your CIN code. The

Cl NRun functionand its prototype are given, and its parameters correspond
to the data types being passed to the CIN in the block diagram. Refer to the
CIN Routines section in Chapter 5, Advanced Applications, for more
information about CIN routines (CI NI ni t, Cl NLoad, and so on).

The. c file created is a standard C file, except LabVIEW gives the data
types unambiguous names. C does not define the size of low-level data
types—thei nt datatype might correspond to a 16-bit integer for one
compiler and a 32-bit integer for another compiler. The. c file uses names
explicit about datatype size, such asi nt 16, i nt 32, f | oat 32, and so on.
LabVIEW includes a header file, ext code. h, that contains typedefs
associating these LabVIEW data types with the corresponding data type
for the supported compilers of each platform.

ext code. h defines some constants and types whose definitions may
conflict with the definitions of system header files. The LabVIEW

ci nt ool s directory also containsthe host t ype. h file, which resolves
these differences. This header file also includes many of the common
header files for a given platform.

© MNational Instruments Corporation 4-1 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

@ Note Alwaysuse#i ncl ude "ext code. h" at thebeginning of your source code. If your
code needs to make system calls, also use #i ncl ude "hosttype. h" immediately after
#i ncl ude "extcode. h", and then include your system header files. host t ype. h
includes only a subset of the . h filesfor a given operating system. If the . h file you need
isnot included by host t ype. h, you can includeit inthe. c file for your CIN after you
include host t ype. h.

If you write a CIN that accepts a single 32-hit signed integer, the . ¢ file
indicatesthe CI NRun routineispassed ani nt 32 by reference. ext code. h
typedefsani nt 32 to the appropriate data type for the compiler you use
(if it isa supported compiler). Therefore, you can usethei nt 32 datatype
in externa code you write.

Passing Fixed-Size Data to CINs

Using External Code in LabVIEW

Asdescribed in the Creating a CIN section in Chapter 3, CINs, you can
designate terminals on the CIN as either input-output or output-only.
Regardless of the designation, LabVIEW passes data by reference to the
CIN. When modifying a parameter value, follow the rules for each kind of
terminal in the Creating a CIN section. LabVIEW passes parametersto the
Cl NRun routines in the same order as you wire data to the CIN—the first
terminal pair correspondsto the first parameter, and the last terminal pair
corresponds to the last parameter.

Refer to thefollowing sectionsfor information about how LabV IEW passes
fixed-size parametersto CINs. Refer to the Passing Variably Szed Data to
CINs section in this chapter for information about manipulating variably
sized data, such as arrays and strings.

Scalar Numerics

LabVIEW passes numeric data types to CINs by passing a pointer to the
data as an argument. In C, this means LabVIEW passes a pointer to the
numeric data as an argument to the CIN. Arrays of humerics are described
in the subsequent Arrays and Strings section in this chapter.

Scalar Booleans

LabVIEW stores Boolean datatypesin memory as 8-bit integers. If any bit
of theinteger is 1, the Boolean datatype is TRUE; otherwise, it is FALSE.
LabVIEW passes Boolean data typesto CINswith the same conventionsit
uses for numerics.

4-2 www.ni.com

Chapter 4 Programming Issues for CINs

@ Note InLabVIEW 4.xand earlier, Boolean datatypeswere stored as 16-bit integers. If the
high bit of the integer was 1, it was TRUE; otherwise, it was FALSE.

Refnums

LabVIEW treats arefnum the same way as a scalar number and passes
refnums with the same conventionsiit uses for numbers.

Clusters of Scalars

For acluster, LabVIEW passes a pointer to a structure containing the
elements of the cluster. LabVIEW stores fixed-size values directly as
components inside of the structure. If a component is another cluster,
LabVIEW stores this cluster value as a component of the main cluster.

Return Value for CIN Routines

The names of the CIN routines are prefaced in the header file with the
wordsCl N MyEr r, as shown in the following example.

CIN MgErr CINRun(...);

The LabVIEW header file ext code. h defines the word CIN to be either
Pascal or nothing, depending on the platform. Prefacing afunction with the
word Pascal causes some C compilersto use Pascal calling conventions
instead of C calling conventions to generate the code for the routine.

LabVIEW uses standard C calling conventions, so the header file declares
the word CIN to be equivalent to nothing.

The MyEr r datatypeisalabVIEW datatype corresponding to a set of
error codes the manager routines return. If you call a manager routine
that returns an error, you can either handle the error or return the error so
LabVIEW can handleit. If you can handle the errors that occur, return
the error code noEr r.

After calling aCIN routine, LabVIEW checks the MyEr r value to
determine whether an error occurred. If an error occurs, LabVIEW
abortsthe VI containing the CIN. If the VI isasubVI, LabVIEW aborts
the VI containing the subV1. This behavior enables LabVIEW to handle
conditions when a VI runs out of memory. By aborting the running VI,
LabVIEW can possibly free enough memory to continue running correctly.

© MNational Instruments Corporation 4-3 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

Examples with Scalars

Thefollowing examples describe how to create CINsthat work with scalar
data types. Refer to Chapter 3, CINs, for more information about creating
CINs.

Creating a CIN That Multiplies Two Numbers

To createaCIN that takestwo single-precision floating-point numbers and
returns their product, complete the following steps.

1
2.
3.

Place the CIN on the block diagram.
Add two input and output terminals to the CIN.

Place two single-precision numeric controls and one single-precision
numeric indicator on afront panel. Wire the node as shown in the
following illustration. A*B iswired to an output-only terminal pair.

c\-gi;
[EEE=
¥
+
m

E]

Using External Code in LabVIEW

SavetheVI asnul t. vi .

Right-click the node and select Create .c File. LabVIEW promptsyou
to select aname and a storage location for a. c file.

Namethefilenul t . c. LabVIEW creates the following. c file:
/*

* CIN source file

*/
#i ncl ude "extcode. h"

CIN MyErr CINRun (float32 *A, float32 *B,
float32 *A B);

CIN MyErr CINRun (float32 *A, float32 *B,
float32 *A B) {

/* ENTER YOUR CCDE HERE */

return noErr;

}

4-4 www.ni.com

© MNational Instruments Corporation

Chapter 4 Programming Issues for CINs

This. c file containsaprototype and atemplate for the Cl NRun routine
of the CIN. LabVIEW calls the CI NRun routine when the CIN
executes. In this example, LabVIEW passes CI NRun the addresses of
the three 32-hit floating-point numbers. The parameters are listed left
toright inthe same order asyou wired them (top to bottom) to the CIN.
Thus, A, B, and A_B are pointersto A, B, and A* B, respectively.

Asdescribed in the Parametersin the CIN .c File section earlier in this
chapter, thef | oat 32 datatypeisnot astandard C datatype. For most
C compilers, thef | oat 32 data type correspondsto thef | oat data

type. However, thismay not betruein all cases, becausethe C standard
does not define the sizes for the various data types. You can use these

4-5 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW

(Microsoft Visual C++ Compiler Command Line and Symantec C for Windows)
Create afile named mul t . | vm Make sure the name variableis set to
mul t. Buildnul t. 1 vm

(Microsoft Visual C++ Compiler IDE for Windows) Create a project.

(UNIX Compilers) Create amakefile using the shell script | vimknf inthe
ci nt ool s directory. For this example, enter the following command:
I virknf mul t

Thiscreates afile called Makef i | e. After running | virknf , enter the
standard make command, which uses Makef i | e to create afile called
mul t . | sb, which you can load into the CIN in LabVIEW.

Right-click the node and select L oad Code Resour ce. Select
mul t . | sb, the object code file you created.

You should be able to run the V1. If you save the VI, LabVIEW savesthe
CIN object code along with the VI.

Comparing Two Numbers, Producing a Boolean
Scalar

To create aCIN that compares two single-precision numbers, complete the
following steps. If thefirst number isgreater than the second one, thereturn
valueis TRUE; otherwise, thereturn valueis FALSE. Thisexample shows
only the block diagram and the code.

1. TocreatetheCIN, follow theinstructionsin the Creating a CIN section

in Chapter 3, CINSs.
The diagram for this CIN is shown in the following illustration.

]
hinaie
Enmﬁare
TF

Savethe VI asaequal b. vi .
Createa. c filefor the CIN and nameit aequal b. c¢. LabVIEW
creates the following. c file:
/*
* CIN source file
*/
#i ncl ude "extcode. h"

4-6 www.ni.com

Chapter 4 Programming Issues for CINs

CIN MgErr CINRun(fl oat32 *A, float32 *B,
LVBool ean *conpare);

CIN MgErr CINRun(float32 *A, float32 *B,
LVBool ean *conpare) {

if (*A == *B)
*conpare = LVTRUE;
el se

*conpar e= LVFALSE;
return noErr;

}

Passing Variably Sized Data to CINs

LabVIEW dynamically allocates memory for arrays and strings. If a
string or array needs more spaceto hold new data, its current location might
not offer enough contiguous space to hold the resulting string or array. In
this case, LabVIEW might have to move the data to alocation that offers
more space.

To accommodate this relocation of memory, LabVIEW uses handles to
refer to the storage location of variably sized data. A handle is a pointer
to a pointer to the desired data. LabVIEW uses handles instead of simple
pointers because handles allow LabVIEW to move the data without
invalidating references from your code to the data. If LabVIEW moves
the data, LabVIEW updates the intermediate pointer to reflect the new
location. If you use the handle, references to the data go through the
intermediate pointer, which always reflects the correct location of the data.
Refer to the Using Pointers and Handles section later in this chapter for
more information about handles. Refer to Chapter 6, Function
Descriptions, for descriptions of specific handle functions.

Alignment Considerations

When a CIN returns variably sized data, you need to adjust the size of
the handle that references the array. Y ou can adjust the handle size using
the memory manager routine DSSet Handl eSi ze or, if thedatais storedin
the application zone, the AZSet Handl eSi ze routine. Both routineswork,
but it is difficult to calculate the size correctly in a platform-independent
manner, because some platforms have special requirements about how you
aign and pad memory.

© MNational Instruments Corporation 4-7 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW

Instead of using XXSet Handl eSi ze, use the LabVIEW routines that
take this alignment into account when resizing handles. You can use the
Set CI NAr r aySi ze routine to resize astring or an array of arbitrary data
type. Refer to the Resizing Arrays and Strings section in this chapter for a
description of this function.

If you are not familiar with alignment differences for various
platforms, the following examples highlight the problem.
Set Cl NArraySi ze and Nuner i cAr r ayResi ze solve these problems.

« InWindows, a one-dimensional array of double-precision
floating-point numbersis stored in a handle, and the first four bytes
describe the number of elements in the array. These four bytes are
followed by the 8-byte elements that make up the array. In Solaris,
double-precision floating-point numbers must be aligned to 8-byte
boundaries—the 4-byte value is followed by four bytes of padding.
This padding makes sure the array datafalls on eight-byte boundaries.

¢ Inathree-dimensiona array of clusters, each cluster contains a
double-precision floating-point number and a4-byteinteger. Asin the
previous example, Solaris storesthis array in ahandle. Thefirst
12 bytes contain the number of pages, rows, and columnsin the array.
These dimension fields are followed by four bytes of filler (which
ensures the first double-precision number is on an 8-byte boundary)
and then the data. Each element contains eight bytes for the
double-precision number, followed by four bytes for the integer. Each
cluster isfollowed by four bytes of padding, which makes surethe next
element is properly aligned.

Arrays and Strings

LabVIEW passes arrays by handle, as described in the Alignment
Considerations section earlier in this chapter. For an n-dimensional array,
the handle begins with n 4-byte values describing the number of values
stored inagivendimension of thearray. Thus, for aone-dimensional array,
the first four bytes indicate the number of elementsin the array. For a
two-dimensional array, the first four bytes indicate the number of rows,
and the second four bytes indicate the number of columns. These
dimension fields can be followed by filler and then the actual data.

Each element can also have padding to meet alignment requirements.

LabVIEW storesstringsand Boolean arraysin memory asone-dimensional
arrays of unsigned 8-bit integers.

4-8 www.ni.com

Chapter 4 Programming Issues for CINs

@ Note LabVIEW 4.x stored Boolean arraysin memory as a series of bits packed to
the nearest 16-bit word. LabVIEW 4.x ignored unused bitsin the last word. LabVIEW 4.x
ordered the bitsfrom | eft to right; that is, the most significant bit (MSB) isindex 0. Aswith
other arrays, a4-byte dimension size preceded Boolean arrays. The dimension size for
LabVIEW 4.x Boolean arrays indicates the number of valid bits contained in the array.

Paths

The exact structure for Pat h datatypes is subject to change in future
versions of LabVIEW. A Pat h isadynamic data structure LabVIEW
passes the same way it passes arrays. LabVIEW storesthe datafor Pat hs
in an application zone handle. Refer to Refer to Chapter 6, Function
Descriptions, for more information about the functions that manipulate
Pat hs.

Clusters Containing Variably Sized Data

For cluster arguments, LabVIEW passes a pointer to a structure
containing the elements of the cluster. LabVIEW stores scalar values
directly as components inside the structure. If a component is another
cluster, LabVIEW stores this cluster value as a component of the main
cluster. If acomponent isan array or string, LabVIEW stores ahandle
to the array or string component in the structure.

Resizing Arrays and Strings

To resize return arrays and strings you passto a CIN, use the LabVIEW
Set CI NAr r aySi ze routine. Pass to the function the handle you want to
resize, information describing the data structure, and the desired size of the
array or handle. Thefunction takesinto account any padding and alignment
needed for the data structure. However, the function does not update the
dimension fieldsin the array. If you successfully resize the array, you need
to update the dimension fields to correctly reflect the number of elements
in the array.

You can resize numeric arrays more easily with Nuner i cAr r ayResi ze.
Pass to this function the array you want to resize, a description of the data
structure, and information about the new size of the array.

© MNational Instruments Corporation 4-9 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

When you resize arrays of variably sized data (for example, arrays of
strings) with the Set Cl NAr r aySi ze or Nurrer i cAr r ayResi ze routines,
consider the following issues:

e If the new size of the array is smaller, LabVIEW disposes of the
handles used by the disposed element. Neither function sets the
dimension field of the array. You must do thisin your code after the
function call.

e Ifthenew sizeof thearray islarger, LabVIEW does not automatically
create the handles for the new elements. You have to create these
handles after the function returns.

The following sections describe the Set Cl NAr r ay Si ze and
Nuner i cArrayResi ze routines.

Using External Code in LabVIEW 4-10 www.ni.com

Chapter 4 Programming Issues for CINs

SetCINArraySize

MyErr Set CINArraySi ze (UHandl e dataH, int32 paramNum int32 newNunEl nts);

Purpose
Set Cl NAr r aySi ze resizesadata handle based on the data structure of an argument you pass
to the CIN. It does not set the array dimension field.

Parameters

Name Type Description

dataH UHandl e Handle you want to resize.

paramNum i nt32 Number for this parameter in the argument
list to the CIN. The leftmost parameter has a
parameter number of 0, and the rightmost
has a parameter number of n—1, wherenis
the total number of parameters.

newNumEglmts int32 New number of elementsto which thehandle
should refer. For a one-dimensional array

of five values, passavaue of 5. For a
two-dimensional array of two rows by

three columns, pass a value of 6.

Return Value
MyEr r, which can contain the errors in the following list. Refer to the Manager Overview
section later in this chapter for more information about MyEr r .

noErr No error.
nFul | Err Not enough memory to perform operation.
nZonekEr r Handle is not in specified zone.

© National Instruments Corporation 4-11 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

NumericArrayResize

MJErr Nuneri cArrayResi ze(int32 typeCode, int32 nunDi ns, UHandl e *dat aHP,

Purpose

i nt 32 total NewSi ze) ;

Nuner i cArr ayResi ze resizes a data handle referring to a numeric array. This routine also
accounts for alignment issues. It does not set the array dimension field. If *dataHP isNULL,
LabVIEW alocates anew array handlein *dataHP.

Parameters

Name

Type

Description

typeCode

int32

Datatype for the array you want to resize. The header file
ext code. h defines the following constants for this argument:

i B Array of signed 8-bit integers

i W Array of signed 16-bit integers

i L Array of signed 32-bit integers

uB Array of unsigned 8-bit integers

uwW Array of unsigned 16-bit integers

uL Array of unsigned 32-bit integers

fS Array of single-precision (32-bit) numbers
f D Array of double-precision (64-bit) numbers
f X Array of extended- precision numbers

¢S Array of single-precision complex numbers
cD Array of double-precision complex numbers

cX Array of extended-precision complex numbers

numDims

int32

Number of dimensionsin the datastructureto which the handle
refers. Thus, if the handle refersto atwo-dimensional array,
pass avalue of 2.

Using External Code in LabVIEW

4-12 Www.ni.com

Chapter 4 Programming Issues for CINs

Name Type Description

*dataHP UHandl e Pointer to the handle you want to resize. If thisis a pointer
to NULL, LabVIEW alocates and sizes a new handle
appropriately and returns the handlein *dataHP.

totalNewSize | int32 New number of elementsto which the handle should refer. For
aunidimensional array of five values, pass avalue of 5. For a
two-dimensional array of two rows by three columns, pass a
value of 6.

Return Values
MyEr r, which can contain the errorsin the following list. Refer to the Manager Overview
section later in this chapter for more information about MyEr r .

noErr No error.
mFul | Err Not enough memory to perform operation.
nZonekEr r Handle is not in specified zone.

© National Instruments Corporation 4-13 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

Examples with Variably Sized Data

Using External Code in LabVIEW

The following examples describe how to create CINs that work with
variably sized data types. Refer to Chapter 3, CINs, for more information
about creating CINSs.

Concatenating Two Strings

To create a CIN that concatenates two strings and use input-output
terminals by passing the first string as an input-output parameter to the
CIN, complete the following steps. The top right terminal of the CIN
returns the result of the concatenation. This example shows only the
diagram and the code.

1. TocreatetheCIN, follow theinstructionsin the Creating a CIN section

in Chapter 3, CINSs.
The diagram for this CIN is shown in the following illustration.

Concatenated shings|
abc

SavetheVl asl strcat. vi .

Createa. c filefor the CIN and nameit | strcat . c. LabVIEW
creates the following . c file.
/*
* CIN source file
*/
#i ncl ude "extcode. h"
CIN MyErr Cl NRun(

LSt r Handl e varl,
LSt rHandl e var2);

CIN MyErr Cl NRun(
LSt r Handl e var1,
LStrHandl e var2) {

/* ENTER YOUR CODE HERE */

return noErr;

}

4-14 www.ni.com

4.,

© National Instruments Corporation

Chapter 4 Programming Issues for CINs

Fill in the Cl NRun function, as follows:

CIN MyErr Cl NRun(
LSt rHandl e strhi,
LStrHandl e strh2) {
int32 sizel, size2, newSize;
MyErr err;
sizel = LStrLen(*strhl);
size2 = LStrLen(*strh2);
newsSi ze = sizel + size2;
if(err = NunmericArrayResi ze(uB, 1L,
(UHandl e*) &t rhl, newSi ze))
goto out;
/* append the data fromthe second string to
first string */
MoveBl ock(LSt rBuf (*strh2),
LSt rBuf (*strhl) +si zel, size2);
/* update the dinension (length) of the
first string */
LStrLen(*strhl) = newSi ze;
out:
return err;
}

In this example, Cl NRun isthe only routine that performs substantial
operations. Cl NRun concatenates the contents of st r h2 to the end of
st rh1, with the resulting string stored in st r h1.

Before performing the concatenation, Nuner i cAr r ayResi ze resizes
st rh1 to hold the additional data.

If Nurmer i cArrayResi ze fails, it returns a non-zero value of type
MyEr r. Inthiscase, Nuneri cArrayResi ze could fail if LabVIEW
does not have enough memory to resize the string. Returning the error
code gives LabVIEW achance to handle the error. If CI NRun reports
an error, LabVIEW abortsthe calling VIs. Aborting the VIs might free
up enough memory so LabVIEW can continue running.

After resizing the string handle, MoveBl ock copies the second string
to the end of the first string. MoveBI ock isasupport manager routine
that moves blocks of data. Finally, this example setsthe size of thefirst
string to the length of the concatenated string.

4-15 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

Computing the Cross Product of Two
Two-Dimensional Arrays

To create a CIN that accepts two two-dimensional arrays and then
computesthe cross product of the arrays, completethefollowing steps. The
CIN returns the cross product in athird parameter and a Boolean value as
afourth parameter. This Boolean parameter is TRUE if the number of
columnsin thefirst matrix isnot equal to the number of rowsin the second
matrix. This example shows only the front panel, block diagram, and
source code.

1. TocreatetheCIN, follow theinstructionsinthe Creating a CIN section
in Chapter 3, CINs.

The front panel for this VI is shown in the following illustration.

The block diagram for this V1 is shown in the following illustration.

&
[oBL]
2 FE
G # % |

[pBL] s
1 I [nm_]l
TFETF |
Error|
e |

2. SavetheVl ascross. vi .
3. Savethe. c fileforthe CIN ascr oss. c. Following isthe source code
for cr oss. ¢ with the CI NRun routine added.
/*
* CIN source file
* [
#i ncl ude "extcode. h"

Using External Code in LabVIEW 4-16 www.ni.com

© National Instruments Corporation

Chapter 4 Programming Issues for CINs

#defi ne ParamNunber 2
/* The return paraneter is paraneter 2 */

#defi ne NunDi nensions 2
/* 2D Array */

/*

* typedefs

*/

typedef struct {
i nt 32 di nSi zes[2];
float64 argl[1];
} TD1;

typedef TDL **TD1Hdl ;

CIN MgErr CI NRun(TD1HdI A, TD1HdI B, TD1HdI
AxB, LVBool ean *error);

CIN MgErr CI NRun(TD1HdI A, TD1Hdl B, TD1HdI
AxB, LVBool ean *error) {

int32 i,k I;

i nt32 rows, cols;

fl oat 64 *aElmp, *bEl ntp, *resultEl ntp;
MyEr r err=nokrr;

i nt32 newNungl nt s;

if ((k = (*ah)—>dinftizes[1]) !=
(*bh) —>di nf5i zes[0]) {

*error = LVTRUE;
got o out;
}
*error = LVFALSE;
rows = (*ah)->dinSi zes[0] ;
/* nunber of rows in a and result */
cols = (*bh)—>di nSi zes[1] ;
/* nunber of cols in b and result */
newNuntEl nts = rows * cols;
if (err = SetCl NArraySi ze((UHandl e) AxB,
Par amNunber, newNuntl nt s))
got o out;
(*resul t h) —>di nSi zes[0]
(*resul th)—>di nSi zes[1]
aEl mp = (*ah)-—>argl;
bEI ntp = (*bh)—>argl;
resultElmp = (*resulth)—>argi,;
for (i=0; i<rows; i++)
for (j=0; j<cols; j++) {
*resultElntp = O;
for (1=0; I<k; |++)
*resultElmtp += aBElnmtp[i*k +] *

rows;
col s;

4-17 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW

bEl ntp[l*cos + j];
resul t El nt p++;
}
out:
return err;

}

In this example, Cl NRun is the only routine performing substantial
operations. CI NRun cross-multiplies the two-dimensional arrays A and B.
LabVIEW storestheresulting array inr esul t h. If the number of columns
in A is not equal to the number of rowsin B, Cl NRun sets*error to
LVTRUE to inform the calling diagram of invalid data.

Set Cl NArr aySi ze, theLabVIEW routinethat accountsfor alignment and
padding requirements, resizes the array. The two-dimensional array data
structureisthe same asthe one-dimensional array data structure, except the
2D array has two dimension fields instead of one. The two dimensions
indicate the number of rows and the number of columnsin the array,
respectively. The datais declared as a one-dimensional C-style array.
LabVIEW stores data row by row, as shown in the following illustration.

¢ colurnns
0,0 0,1 0,c-1
1,0 1.1 1,01
¥ Fows
r=1,0 r-1,1 r=1,:-1
in mernary
dimSizes argl
@l 011 (@l 01 .. [e=11 [e]l [e+1] .. [r+e-1]
rooco oo o1 01 10 14 -1,

For an array with r rows and ¢ columns, you can access the element at
row i and columnj asshown in the following code.

value = (*arrayh)—>argl[i*c + j];

Working with Clusters

To take an array of clusters and a single cluster as inputs, complete the
following steps. The clusters contain a signed 16-bit integer and a string.
Theinput for thearray of clustersisan input-output terminal. In addition to
the array of clusters, the CIN returns a Boolean parameter and a signed

4-18 Www.ni.com

Chapter 4 Programming Issues for CINs

32-bit integer. If the cluster valueisaready present inthe array of clusters,
the CIN setsthe Bool ean parameter to TRUE and returnsthe position of the
cluster in the array of clusters using the 32-bit integer output. If the cluster
valueisnot present, the CIN addsit to the array, setsthe Boolean output to
FALSE, and returns the new position of the cluster in the array of clusters.

This example shows only the front panel, block diagram, and source code.

1. TocreatetheCIN, follow theinstructionsinthe Creating a CIN section
in Chapter 3, CINSs.

The front panel for this VI is shown in the following illustration.

aray of chusters news anay of clusters
MD nurmber g a MD nurmber| [0
string shring
position
cluster element ,D—
Cl
mju already present?
shing J

The block diagram for this VI is shown in the following illustration.

nesw array af G]UStﬂ’Sl
[Fai]
............. i

osition

Savethe VI ast bl srch. vi .

Savethe. c filefor the CIN ast bl srch. c. Following is the source
codefor t bl srch. ¢ with the Cl NRun routine added.

/*

* CIN source file

*/
#i ncl ude "extcode. h"
#defi ne ParanmNunber O

/* The array paraneter is paraneter 0 */

/*

* typedefs

*/

© National Instruments Corporation 4-19 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

typedef struct {
int16 nunber;
LStrHandl e string;
} TDZ;

typedef struct {
int32 dinSize;
TD2 argl[1];
} TD1;

typedef TD1 **TD1Hdl ;

CIN MgErr Cl NRun(

TD1HdI cl ust er Tabl eh,
TD2 *el enent p,
LVBool ean *presentp,

i nt 32 *positionp);

CIN MgErr ¢ NRun(

TD1HdI cl ust er Tabl eh,
TD2 *el enent p,
LVBool ean *presentp,
i nt32 *positionp) {

int32 size,i;

MyEr r err=nokrr;

TD2 *t nmpp;

LStrHandl e newsStringh;

TD2 *newkl erment p;

int32 newNurEl ement s;

size = (*cl usterTabl eh)—>di nSi ze;
tnpp = (*cl usterTabl eh) —>ar gl;
*positionp = —1;
*presentp = LVFALSE;
for(i=0; i<size; i++) {
i f(tmpp—>nunber == el enent p—>nunber)
i f(LStrCnp(*(tnpp—>string),
*(el ementp—>string)) == 0)
br eak;
tnpp++;
}
if(i<size) {
*positionp = i;
*presentp = LVTRUE;
goto out;
}

newStringh = el ement p—>string;

Using External Code in LabVIEW 4-20

Www.ni.com

Chapter 4 Programming Issues for CINs

i f(err = DSHandToHand((UHandl e *)
&newst ri ngh))

goto out;

newNuntl enents = size+1;

if(err =
Set Cl NArraySi ze((UHandl e) cl ust er Tabl eh,
Par amNunber ,

newNuntl emrents)) {
DSDi sposeHandl e(newSt ri ngh) ;
goto out;
}
(*cl ust er Tabl eh) —>di nSi ze = si ze+1;

newkEl ementp = &((*cl uster Tabl eh)
—>argl[size]);

newEl ement p—>nunber

newEl ement p—>string

*positionp = size;
out:

return err;

}
In this example, Cl NRun is the only routine performing substantial
operations. Cl NRun first searches through the table to seeif the
element is present. Cl NRun then compares string components using
the LabVIEW routine LSt r Cp, which is described in Chapter 6,
Function Descriptions. If CI NRun finds the element, the routine
returns the position of the element in the array.

el ement p—>nunber ;
newst ri ngh;

4. If theroutine does not find the element, add anew element to the array.
Use the memory manager routine DSHandToHand to create a new
handle containing the same string as the one in the cluster element
you passed to the CIN. Cl NRun increases the size of the array using
Set Cl NAr r aySi ze and fills the last position with a copy of the
element you passed to the CIN.

If the Set Cl NAr r aySi ze call fails, the CIN returns the error code
returned by the manager. If the CIN is unable to resize the array,
LabVIEW disposes of the duplicate string handle.

Manager Overview

LabVIEW has alarge number of external functions that you can use to
perform simple and complex operations. These functions, organized into
libraries called managers, range from low-level byte manipulation to
routines for sorting data and managing memory. All manager routines
described in this chapter are platform-independent. If you use these

© National Instruments Corporation 4-21 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW

routines, you can create external code that works on all platforms that
LabVIEW supports.

To achieve platform independence, data types should not depend on the
peculiarities of various compilers. For example, the C language does not
define the size of an integer. Without an explicit definition of the size of
each datatype, it isamost impossibleto create code that worksidentically
across multiple compilers.

LabVIEW managers use data types that explicitly indicate their size.

For example, if aroutine requires a 4-byte integer as a parameter, you
definethe parameter asani nt 32. The managers define datatypesin terms
of thefundamental datatypesfor each compiler. Thus, on one compiler, the
managers might defineani nt 32 asani nt , while on another compiler, the
managers might defineani nt 32 asal ong i nt. When your writer
external code, use the manager datatypesinstead of the host computer data
types, so your code is more portable and has fewer errors.

Most applications need routines for allocating and deall ocating memory
on request. You can use the memory manager to dynamically alocate,
manipulate, and release memory. The LabVIEW memory manager
supports dynamic allocation of both non-relocatable and relocatable
blocks, using pointers and handles. Refer to the Memory Manager section
later in this chapter for more information.

Applicationsthat manipulatefiles can usethefunctionsin thefile manager.
Thisset of routines supports basic fil e operations such as creating, opening,
and closing files, writing data to files, and reading data from files. In
addition, you can use file manager routinesto create directories, determine
characteristics of filesand directories, and copy files. File manager routines
useal abVIEW datatypefor file pathnames (Pat hs) that indicatesafileor
directory path independent of the platform. You can translate aPat h to and
from a host platform’s conventional format for describing afile pathname.
Refer to the File Manager section later in this chapter for more
information.

The support manager contains a collection of generally useful functions,
such asfunctionsfor bit or byte manipulation of data, string manipulation,
mathematical operations, sorting, searching, and determining the current
timeand date. Refer to the Support Manager section later in thischapter for
more information.

4-22 Www.ni.com

Basic Data Types

Chapter 4 Programming Issues for CINs

Manager data typesinclude five basic data types: scalar, char, dynamic,
memory-related, and constants.

Scalar
Scalar data types include Boolean and numeric.

Boolean

External code moduleswork with two kinds of Boolean scalars—those
existing in LabVIEW block diagrams and those passing to and from
manager routines. The manager routines use a conventional Boolean form,
where 0isFALSE and 1is TRUE. Thisformiscalled aBool 32, anditis
stored as a 32-bit value.

LabVIEW block diagrams store Boolean scalars as 8-hit values. The value
islif TRUE, and Oif FALSE. Thisformiscalled an LVBool ean.

The following table describes the two forms of Boolean scalars.

Name Description

Bool 32 32-bit integer, 1if TRUE, Oif FALSE

LVBool ean 8-hit integer, 1 if TRUE, 0if FALSE

Numeric

The managers support 8-, 16-, and 32-bit signed and unsigned integers.
For floating-point numbers, LabVIEW supportsthe single (32-bit), double
(64-bit), and extended floating-point (at least 80-bit) datatypes. LabVIEW
supports complex numbers containing two floating-point numbers, with
different complex numeric types for each of the floating-point data types.
The basic LabVIEW data types for numbers include the following:

e Signed integers

— int8 8-hit integer
— intl6 16-bit integer
- int32 32-bit integer
e Unsigned integers
— ulnt8 8-bit unsigned integer

— ulnt16 16-bit unsigned integer

© National Instruments Corporation 4-23 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW

— ulnt32 32-bit unsigned integer
e Floating-point numbers
— float32 32-hit floating-point number
— float64 64-bit floating-point number
— floatExt extended-precision floating-point number

In Windows, extended-precision numbers are stored as an 80-bit structure
with two i nt 32 components, mhi and m o, and ani nt 16 component, e.
In Sun, extended-precision numbers are stored as 128-hit floating-point
numbers. In Power Macintosh, extended-precision numbers are stored in
the 128-bit double-double format. In HP and Concurrent,
extended-precision numbers are the same asf | oat 64.

Complex Numbers

The complex datatypes are structures with two floati ng-point components,
re and i m Aswith floating-point numbers, complex numbers can have
32-hit, 64-hit, and extended-precision components. The following code
gives the type definitions for each of these complex data types.

typedef struct {
float32 re, im
} cnpl x64;

typedef struct {
float64 re, im
} cnpl x128;

typedef struct {
floatExt re, im
} cmpl xExt ;

char

Thechar datatypeisdefined by C to be asigned byte value. LabVIEW
defines an unsigned char datatype, with the following type definition.

typedef ulnt8 uChar;

Dynamic

LabVIEW definesanumber of datatypesyou must allocate and deallocate
dynamically. Arrays, strings, and paths have data types you must allocate
using memory manager and file manager routines.

4-24 www.ni.com

Chapter 4 Programming Issues for CINs

Arrays

LabVIEW supports arrays of any of the basic data types described in this
section. Y ou can construct more complicated data types using clusters,
which canin turn contain scalars, arrays, and other clusters.

The first four bytes of aLabVIEW array indicate the number of elements
in the array. The elements of the array follow the length field. Refer to the
Passing Parameters section earlier in this chapter for examples of
manipulating arrays.

Strings

LabVIEW supports C- and Pascal-style strings, lists of strings, and LSt r,
aspecial string data type you use for string parameters to external code
modules. The support manager contains routines for manipulating strings
and converting them among the different types of strings.

C-Style Strings (CStr)

A C-style string (CSt r) is a series of zero or more unsigned characters,
terminated by a zero. C strings have no effective length limit.

Most manager routines use C strings, unless you specify otherwise.
The following code is the type definition for a C string.

typedef uChar *CStr;

Pascal-Style Strings (PStr)

A Pascal-style string (PSt r) is a series of unsigned characters. The value
of thefirst character indicatesthe length of the string. This gives arange of
0 to 255 characters. The following code is the type definition for a Pascal

string.

t ypedef uChar Str255[256], Str31[32],
*StringPtr,
** St ringHandl e;

t ypedef uChar *PStr;

LabVIEW Strings (LStr)

Thefirst four bytes of aLabVIEW string (LSt r) indicate the length of the
string, and the specified number of charactersfollow. Thisisthe string data
type used by LabVIEW block diagrams. The following code is the type
definition for an LSt r string.

typedef struct {
int32 cnt;
/* nunber of bytes that follow */

© National Instruments Corporation 4-25 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW

uChar str[1];
/* cnt bytes */
} LStr, *LStrPtr, **LStrHandl e;

Concatenated Pascal String (CPStr)

Many algorithms require manipulation of lists of strings. Arrays of strings
are usually the most convenient representation for lists. However, this
representation can place a burden on the memory manager because of the
large number of dynamic objectsit must manage. To make working with
lists more efficient, LabVIEW supports the concatenated Pascal string
(CPst r) datatype, whichisalist of Pascal-style strings concatenated into
asingle block of memory. Y ou can use support manager routinesto create
and manipulate lists using this data structure.

The following code is the type definition for aCPSt r string.

typedef struct {
int32 cnt;
/* nunber of pascal strings that follow */
uChar str[1];
/* cnt concatenated pascal strings */
} CPStr, *CPStrPtr, **CPStrHandl e;

Paths

A path (pathname) indicates the location of afile or directory in afile
system. LabVIEW has a separate datatypefor a path, represented as Pat h,
which the file manager defines in a platform-independent manner. The
actual datatype for a path is private to the file manager and subject to
change. Y ou can create and manipulate Pat h datatypes using file manager
routines.

Memory-Related

LabVIEW uses pointers and handles to reference dynamically allocated
memory. These data types have the following type definitions.

typedef uChar *UPtr;
typedef uChar **UHandl e;

Refer to Chapter 6, Function Descriptions, for more information about the
use of memory-related data types with functions.

4-26 Www.ni.com

Chapter 4 Programming Issues for CINs

Constants

The managers define the following constant for use with external
code modules.

NULL O(ul nt 32)

Thefollowing constants define the possible values of the Bool 32 datatype.

FALSE 0 (int32)
TRUE 1 (int32)

The following constants define the possible values of the LVBool ean
datatype.

LVFALSE 0 (ul nt8)
LVTRUE 1 (ulnt8)

Memory Manager

Thememory manager isaset of platform-independent routinesyou can use
to alocate, manipulate, and deallocate memory from external code
modules.

If you need to perform dynamic memory allocation or manipulation from
external code modules, use the memory manager. If your external code
operates on data types other than scalars, you should understand how
LabVIEW manages memory and know which utilities manipul ate data.

The memory manager defines generic handle and pointer data types
asfollows.

typedef uChar *Ptr;
t ypedef uChar **UHandl e;

Memory Allocation
Applications use two types of memory allocation: static and dynamic.

Static

With static allocation, the compiler determines memory requirementswhen
you create an application. When you launch the application, LabVIEW
creates memory for the known global memory requirements of the
application. This memory remains allocated while the application runs.
This form of memory management is simple to work with, because the
compiler handles al the details.

© National Instruments Corporation 4-27 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW

However, static memory allocation cannot address the memory
management requirements of most real-world applications, because you
cannot determine most memory requirements until run-time. Also,
statically declared memory might result in larger memory requirements,
because the memory is alocated for the duration of the application.

Dynamic

With dynamic memory allocation, you reserve memory when you need it,
and free memory when you are no longer using it. Dynamic allocation
requires more work than static memory allocation, because you have to
determine memory requirements and allocate and deallocate memory as
necessary.

The LabVIEW memory manager supports two kinds of dynamic

memory allocation. The more conventional method uses pointers to
allocate memory. With pointers, you request ablock of memory of acertain
sizeand the routine returns the address of the block to your CIN. When you
no longer need the block of memory, you call aroutine to free the block.
You can use the block of memory to store data, and you reference that data
using the address the manager routine returned when you created the
pointer. You can make copies of the pointer and use them in multiple places
in your application to refer to the same data.

Pointers in the LabVIEW memory manager are nonrelocatable, which
means the manager never moves the memory block to which a pointer
refers while that memory is allocated for a pointer. This avoids problems
that occur when you need to change the amount of memory allocated to

a pointer, because other references would be out of date. If you need more
memory, there might not be sufficient memory to expand the pointer's
memory space without moving the memory block to anew location.

This causes problems if an application had multiple references to the
pointer, because each pointer refers to the old memory address of the data.
Using invalid pointers can cause severe problems.

A second form of memory allocation uses handles to address this problem.
As with pointers, when you allocate memory using handles, you request
ablock of memory of a certain size. The memory manager alocates the
memory and adds the address of the memory block to alist of master
pointers. The memory manager returns a handle that is a pointer to the
master pointer. If you reallocate a handle and it moves to another address,
the memory manager updatesthe master pointer to refer to the new address.
If you look up the correct address using the handle, you access the correct
data.

4-28 Www.ni.com

Chapter 4

Using External Code in LabVIEW

Programming Issues for CINs

If you need to resize an existing handle, use the XXSet Handl eSi ze
routine, which determines the size of an existing handle. Because pointers
are not rel ocatable, you cannot resize them.

A handleis apointer to apointer. In other words, a handle is the address
of an address. The second pointer, or address, is a master pointer, which
means it is maintained by the memory manager. Languages that support
pointers provide operators for accessing data by its address. With ahandle,
you use this operator twice; once to get to the master pointer, and a second
time to get to the actual data. Refer to the following section for asimple
example of how to work with pointers and handlesin C.

While operating within asingle call of a CIN node, an AZ handle does
not move unless you specifically resizeit. In this context, you do not need
to lock or unlock handles. If your CIN maintains an AZ handle across
different calls of the same CIN (an asynchronous CIN), the AZ handle
might be rel ocated between calls. AZHLock and AZHUnI ock might be
useful if you do not want the handle to relocate. A DS handle moves only
when you resize it.

Additional routines make it easy to copy and concatenate handles and
pointersto other handles, check the validity of handles and pointers,
and copy or move blocks of memory from one place to another.

Simple Example
The following code shows how to work with apointer to ani nt 32.
i nt32 *nyl nt 32P;

mylnt 32P = (int32 *)DSNewPt r (si zeof (i nt32));
*myl nt 32P = 5;
X = *nylnt32P + 7;

DSDi sposePtr (nyl nt 32P) ;

Thefirst line declaresthevariable myl nt 32P asapointer to, or the address

4-30 Www.ni.com

Chapter 4 Programming Issues for CINs

The third line places the value 5 in the memory location to which
myl nt 32P refers. The* operator refersto the valuein the address|ocation.

The fourth line sets x equal to the value at address ny I nt 32P plus 7.
The last line frees the pointer.

The following code is the same example using handles instead of pointers.
int32 **nylnt 32H;

nyl nt 32H =(i nt 32**) DSNewHand!| e(si zeof (i nt 32));
**nylnt 32H = 5;
X = **nmylnt32H + 7,

DSDi sposeHandl e(nyl nt 32H) ;

Thefirst line declares the variable ny| nt 32H as a handle to an a signed
32-hit integer. Strictly speaking, thisline declares nmy| nt 32H as a pointer
to apointer to ani nt 32. Aswith the previous example, this declaration
does not allocate memory for thei nt 32; it creates memory for an address
and associates the name ny | nt 32H with that address. The H at the end of
the variable name is a convention used in this example to indicate the
variableisahandle.

The second line createsablock of memory in the data spacelarge enough to
hold asinglei nt 32. DSNewHandl e places the address of the memory
block as an entry in the master pointer list and returns the address of the
master pointer entry. Finally, thisline setsmyl nt 32Hto refer to the master
pointer.

The third line places the value 5 in the memory location to which
nyl nt 32H refers. Because myl nt 32His a handle, you use the * operator
twice to get to the data.

The fourth line sets x equal to the value referenced by ny | nt 32Hplus 7.
Thelast line frees the handle.

Thisexample shows only the simplest aspects of how to work with pointers
and handlesin C. Other examples throughout this manual show different
aspects of using pointers and handles. Refer to aC manual for alist of other
operators you can use with pointers and more information about how to
work with pointers.

© National Instruments Corporation 4-31 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

File Manager

The file manager supports routines for opening and creating files, reading
data from and writing datato files, and closing files. In addition, you can
manipulate the end-of-file mark of afile and position the current read or

Using External Code in LabVIEW 4-32 www.ni.com

Chapter 4 Programming Issues for CINs

perform an operation on the open file. Thefile descriptor isan identifier the
file manager associates with the file when you open it. When you close the
file, the file manager dissociates the file descriptor from the file.

Path Specifications

LabVIEW usesthree kinds of filepath specifications: conventional, empty,
and LabVIEW specifications.

Conventional

All platforms have a method for describing the paths for files and
directories. These path specifications are similar, but they are usually
incompatible from one platform to another. Y ou usually specify a path
as a series of names separated by separator characters. Typically, the first
nameisthetop level of the hierarchical specification of the path, and the
last name isthefile or directory the path identifies.

There are two types of paths: relative paths and absolute paths.

A relative path describes the location of afile or directory relative to

an arbitrary location in the file system. An absolute path describes the
location of afile or directory starting from the top level of the file system.

A path does not necessarily go from the top of the hierarchy down to the
target. You can often use a platform-specific tag in place of a name that
indicates the path should go up alevel from the current location.

For instance, in UNIX, you specify the path of afile or directory asaseries
of names separated by the slash (/) character. If the path isan absolute path,
you begin the specification with a slash. Indicate the path should move up
alevel using two periodsin arow (..). Thus, the following path specifiesa
file README relative to the top level of the file system.

[usr/ hone/ gr egg/ myapps/ READVE

The following paths are two relative paths to the same file.

gr egg/ nyapps/ READVE relativeto/ usr/ home
.. I nyapps/ READVE relativeto adirectory inside of thegr egg
directory

In Windows, you separate names in a path with a backslash (\) character.
If the path is an absolute path, you begin the specification with adrive

designation, followed by acolon (:), followed by the backslash. Indicate
the path should move up alevel using two periodsin arow (..). Thus, the

© National Instruments Corporation 4-33 Using External Code in LabVIEW

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW

following path specifies a file READVE relative to the top level of the file
system, on adrive named C.

C: \ HOVE\ GREGG MYAPPS\ READMVE

The following paths are two relative paths to the samefile.

GREGG\ MYAPPS\ READVE relative to the HOVE directory
.. \ MYAPPS\ READVE relativeto adirectory inside of the GREGG
directory

In Macintosh, you separate namesin a path with the colon (:) character. If
the path is an absolute path, you begin the specification with the name of
the volume containing the file. If an absolute path consists of only one
name (it specifies avolume), it must end with acolon. If the pathisa
relative path, it beginswith acolon. Thiscolonisoptional for arelative path
consisting of only one name. I ndi cate the path should move up alevel using
two colonsin arow (::). Thus, the following path specifies a file READVE
relative to the top level of the file system, on adrive named Hard Dri ve.

Hard Drive: Hone: Gr egg: MyApps: READVE
The following paths are two relative paths to the samefile.
: Gregg: MyApps: READVE relative to the Hone directory

.. MyApps: READVE relative to a directory inside of the
G egg directory

Empty

Y ou can define a path with no names, called an empty path. An empty path
is either absolute or relative. The empty absolute path is the highest point
you can specify in thefile hierarchy. The empty relative path is a path
relative to an arbitrary location in the file system to itself.

InUNIX, aslash (/) representsthe empty absol ute path. The slash specifies
theroot of thefile hierarchy. A period (.) representsthe empty relative path.

In Windows, you represent the empty absol ute path as an empty string.
It specifies the set of all volumes on the system. A period (.) represents
the empty relative path.

In Macintosh, the empty absolute path is represented as an empty string.
It specifiesthe set of all volumes on the system. A colon (:) representsthe
empty relative path.

4-34 www.ni.com

Chapter 4 Programming Issues for CINs

LabVIEW

In LabVIEW, you specify apath using a special LabVIEW datatype,
represented as Pat h. The exact structure of the Pat h datatypeisprivateto
the file manager. Y ou create and manipulate the Pat h datatype using file
manager routines.

A Pat h isadynamic data structure. Just as you use memory manager
routines to allocate and deall ocate handles and pointers, you usefile
manager routines to create and deallocate a Pat h. Just as with handles,
declaring a Pat h variable does not actually create aPat h. Before you
can use the Pat h to manipulate afile, you must dynamically allocate
the Pat h using file manager routines. When you are finished using the
Pat h variable, you should release the Pat h using file manager routines.

In addition to providing routinesfor the creation and elimination of aPat h,
the file manager provides routinesfor comparing, duplicating, determining
their characteristics, and converting them to and from other formats, such
as the platform-specific format for the system on which LabVIEW is
running.

File Descriptors

When you open afile, LabVIEW returns a file descriptor associated
with the file. A file descriptor is adatatype LabVIEW uses to identify
open files. All operations performed on an open file use the file
descriptor to identify thefile.

A file descriptor isvalid only while thefile is open. If you close thefile,
the file descriptor is no longer associated with thefile. If you open thefile
again, the new file descriptor is most likely different from the previousfile
descriptor.

File Refnums

In the file manager, LabVIEW accesses open files using file descriptors.
However, on the front panel and block diagram, LabVIEW accesses open
filesusing file refnums. A file refnum contains a file descriptor for use by

© National Instruments Corporation 4-35 Using External Code in LabVIEW

Advanced Applications

This chapter describes several options needed only in advanced
applications, including how to usetheCl NI ni t , Cl NDi spose, Cl NAbort,
Cl NLoad, CI Nunl oad, Cl NSave, and Cl NPr operti es routines. This
chapter also describes how global dataworkswithin CIN source code, and
how Windows users can call aDLL fromaCIN.

CIN Routines

A CIN consists of several routines, as described by the . c file LabVIEW
creates when you right-click the node on the block diagram and select
Create.c File. Previous chapters have described only the CI NRun routine.
Other routinesinclude Cl NLoad, CI NI ni t, Cl NAbort, Cl NSave,

Cl NDi spose, Cl NUnl oad, and CI NPr operti es.

For most CINs, you need to write only the CI NRun routine. The other
routines are supplied mainly for specia initialization needs, such as when
your CIN is going to maintain information across calls and you want to
preallocate or initialize global state information.

If you want to preallocate/initialize global state information, you need to
understand more of how LabVIEW manages data and CINs, as described
in the following sections.

Data Spaces and Code Resources

When you create a CIN, you compile your source into an object code file
and load the code into the node. At that point, LabVIEW loads a copy of
the code resource into memory and attaches it to the node. When you save
the VI, this code resource is saved along with the VI as an attached
component; the original object code fileis no longer needed.

When LabVIEW loads a V1, it allocates a data space, ablock of data
storage memory, for that V1. LabVIEW uses this data space to store
information such as the valuesin shift registers. If the VI is reentrant,
LabVIEW allocates a data space for each usage of the V1. Refer to
LabVIEW Help for moreinformation about reentrancy and other execution
properties.

© MNational Instruments Corporation 5-1 Using External Code in LabVIEW

Chapter 5 Advanced Applications

Using External Code in LabVIEW

Within your CIN code resource, you might have declared global data.
Global dataincludes variables declared outside of the scope of all routines
and variables declared as static variables within routines. LabVIEW
allocates space for this global data. Aswith the code itself, only one
instance of these globalsisin memory. Regardless of how many nodes
reference the code resource and regardless of whether the surrounding VI
isreentrant, only one copy of these global variablesis ever in memory and
their values are consistent.

When you create a CIN, LabVIEW allocates a CIN data space, a 4-byte
storagelocationinthe V1 dataspace(s), strictly for the use of the CIN. Each
CIN can have one or more CIN data spaces reserved for the node,
depending on how many timesthe node appearsinaV| or collection of Vls.
You can use this CIN data space to store global data on a per data space
basis, as described in the Code Globals and CIN Data Space Globals
section later in this chapter. The following illustration shows asimple
example of data storage spaces for one CIN.

\
M My ¥I Diagram
| — CIN
O [
[Tlte global storage
VI data space code resource
4-byte CIN (code globals)
data space
(data space globals)

A CIN referencesthe code resource by name, using the nameyou specified
when you created the code resource. When you load aV | containingaCIN,
LabVIEW looksin memory to seeif acode resource with the desired name
is already loaded. If so, LabVIEW linksthe CIN to the code resource for
execution purposes.

Thislinking behavesthe sameway aslinks between Visand subVIs. When
you try to reference asubVI and another VI with the same name already

existsin memory, LabVIEW references the one already in memory instead
of theoneyou selected. Inthe sameway, if you try toload referencesto two
different code resources having the same name, only one code resourceis

5-2 www.ni.com

Chapter 5 Advanced Applications

actually loaded into memory, and both references point to the same code.
However, LabVIEW can verify that a subV | call matches the subV1
connector paneterminal, but LabVIEW cannot verify that your source code
matches the CIN call.

One Reference to the CIN in a Single VI

The following section describes the standard case, in which you have a
code resource referenced by only one CIN, and the VI containing the CIN
isnon-reentrant. The other cases have slightly more complicated behavior,
described in later sections of this chapter.

Loading a VI

When you first load a V1, LabVIEW calls the Cl NLoad routines for any
CINs contained in that V1. This gives you a chance to load any file-based
resources at load time, because LabVIEW callsthis routine only when the
Vlisfirstloaded. Refer to the Loading a New Resourceinto the CIN section
that follows for an exception to this rule. After LabVIEW callsthe

Cl NLoad routine, it callsCl NI ni t . Together, these two routines perform
any initialization you need before the VI runs.

LabVIEW callsCl NLoad once for agiven code resource, regardless of the
number of data spaces and the number of referencesto that code resource.
For this reason, you should initialize code globalsin Cl NLoad.

LabVIEW callsCl NI ni t for agiven code resource atotal of onetime
for each CIN data space multiplied by the number of references to the
code resource in the VI corresponding to that data space. If you want

to use CIN data space globals, initialize themin CI NI ni t . Refer to the
Code Globalsand CIN Data Space Globals, Loading a New Resource into
the CIN, and Compiling a VI sections later in this chapter for more
information.

Unloading a VI

Whenyou closeaVI front panel, LabVIEW checkswhether any references
to that VI are in memory. If so, the VI code and data space remain in
memory. When all referencesto a VI are removed from memory and its
front panel is not open, that VI is unloaded from memory.

When a VI is unloaded from memory, LabVIEW calsthe

Cl NDi spose routine, giving you a chance to dispose of anything

you alocated earlier. Cl NDi spose iscalled for each CI NI ni t call. For
instance, if you used XXNewHandl e inyour CI NI ni t routine, you should

© National Instruments Corporation 5-3 Using External Code in LabVIEW

Chapter 5 Advanced Applications

Using External Code in LabVIEW

use XXDi sposeHand! e inyour Cl NDi spose routine. LabVIEW calls
Cl NDi spose for acode resource once for each individual CIN data space.

Asthe last reference to the code resource is removed from memory,
LabVIEW callsthe Cl NUnl oad routine for that code resource once,
giving you the chance to dispose of anything allocated in CI NLoad.
Aswith Cl NDi spose/ Cl NI ni t, Cl NUnl oad iscalled for each Cl NLoad.
For example, if you loaded someresourcesfrom afilein Cl NLoad, you can
freethe memory those resourcesare using in Cl NUnl oad. After LabVIEW
calls Cl NUnl oad, the code resource itself is unloaded from memory.

Loading a New Resource into the CIN

If you load a new code resource into a CIN, the old code resource isfirst
given achance to dispose of anything it needs to dispose. LabVIEW calls
Cl NDi spose for each CIN data space and each reference to the code
resource, followed by the Cl NUnl oad for the old resource. The new code
resource is then given a chance to perform any initialization it needsto
perform. LabVIEW callsthe Cl NLoad for the new code resource, followed
by theCl NI ni t routine, called oncefor each data space and each reference
to the code resource.

Compiling a VI

When you compile aV1, LabVIEW recreates the VI data space, including
resetting all uninitialized shift registersto their default values. In the same
way, your CIN is given achance to dispose or initialize any storage it
manages. Before disposing of the current data space, LabVIEW calls the
Cl NDi spose routine for each reference to the code resource within the
V1(s) being compiled to give the code resource a chance to dispose of any
old resultsit is managing. LabVIEW then compilesthe VI and creates a
new data space for the V1(s) being compiled (multiple data spaces for any
reentrant VI). LabVIEW then callsCI NI ni t for each referenceto the code
resource within the compiled VI(s) to give the code resource a chance to
create or initialize any data it wants to manage.

Running a VI

Click the Run buttoninaVI to run the V1. When LabVIEW encounters a
Code Interface Node, it calls the CI NRun routine for that node.

Saving a VI

When you save a VI, LabVIEW callsthe Cl NSave routine for that VI,
giving you the chance to save any resources, such as something you loaded

5-4 www.ni.com

Chapter 5 Advanced Applications

in Cl NLoad. Whenyou savea VI, LabVIEW creates a new version of the
file, evenif you are saving the VI with the same name. If the saveis
successful, LabVIEW deletesthe old file and renamesthe new filewith the
origina name. Therefore, you need to savein Cl NSave anything you
expect to be ableto load in Cl NLoad.

Aborting a VI

When you abort aVI, LabVIEW calsthe Cl NAbort routine for every
reference to a code resource contained in the VI being aborted. LabVIEW
aso callsthe Cl NAbor t routine of all actively running subVls. If aCIN is
inareentrant V1, it is called for each CIN data space aswell. CINsin VIs
not currently running are not notified by LabVIEW of the abort event.

CINs are synchronous, so when a CIN begins execution, it takes control
of its thread until the CIN completes. If your version of LabVIEW is
single-threaded, the user cannot abort the CIN, because no other LabVIEW
tasks can run while a CIN executes.

Multiple References to the Same CIN in a Single VI

If you loaded the same code resource into multiple CINSs, or you duplicated
agiven CIN, LabVIEW gives each reference to the code resource a chance
to perform initialization or deallocation. No matter how many references
you havein memory to agiven coderesource, LabVIEW callsthe Cl NLoad
routine only once when the resourceis first loaded into memory (though it
isalso called if you load a new version of the resource. When you unload
the VI, LabVIEW calls Cl Nunl oad once.

After LabVIEW calls Cl NLoad, it callsCl NI ni t once for each reference
to the CIN, because its CIN data space might need initialization. Thus, if
you have two nodes in the same VI, where both reference the same code,
LabVIEW callsthe Cl NLoad routineonceand CI NI ni t twice. If you later
load another VI referencing the same code resource, LabVIEW calls

Cl NI ni t againforthenew version. LabVIEW hasalready called Cl NLoad
once, and does not call it again for this new reference.

LabVIEW callsCl NDi spose and Cl NAbor t for each individual CIN data
space. LabVIEW calls Cl NSave only once, regardless of the number of
references to a given code resource within the V1 you are saving.

Thefollowing illustration shows an example of three CINs referencing the
same code resource.

© National Instruments Corporation 5-5 Using External Code in LabVIEW

Chapter 5 Advanced Applications

VI
Mo Wil Panol [1
My ¥I Dlagram |
global storage
CIN1 CINZ CINZ
itaata| [BATEATE] [BATEATE
1|13 [Tefre| [Taefiae
\ \ (code globals)
VI data space code resource
4-byte CIN »
data space
4-byte CIN
data space
4-byte CIN
data space
(data space globals)

Multiple References to the Same CIN in Different Vis

Using External Code in LabVIEW

Making multiple references to the same CIN in different Visis different
for single-threaded operating systems than for mutlithreaded

operating systems. To use multithreading, you must use LabVIEW on
Windows or Solaris 2.x.

Single-Threaded Operating Systems

When you makeaV| reentrant, LabVIEW creates a separate data space for
each instance of that V1. If you have aCIN dataspacein areentrant VI and
you call that V1 in seven places, LabVIEW allocates memory to store seven
CIN data spaces for that V1, each of which contains a unique storage
location for the CIN data space for that calling instance.

Aswith multipleinstances of the same node, LabVIEW callstheClI NI ni t ,
Cl NDi spose, and Cl NAbor t routines for each individual CIN data space.

If you have areentrant VI containing multiple copies of the same code
resource, LabVIEW callsthe CI NI ni t , Cl NDi spose, and Cl NAbor t
routines once for each use of the reentrant VI, multiplied by the number of
references to the code resource within that V1.

5-6 www.ni.com

Chapter 5 Advanced Applications

The following illustration shows an example of three VIsreferencing a
reentrant VI containing one CIN.

caller 1 caller 2 caller 3
Callari Panall 1 Callar? Panall 1 Callar= Ponall |
Callerl Diag | | ii[]_Caller2 Diag | Caller3 Diag |
12
O—] L {1pptn
X = iy

My VI | AYMYVI o . My VI

data space 1 data space 3
My Vi Panal | 1
My ¥I Magram |
4-byte CIN 4-byte CIN
data space CIN data space
T
(data space globals) - (data space globals)
My VI
data space 2 code resource global storage
4-byte CIN >
data space

(data space globals) (code globals)

Multithreaded Operating Systems

By default, CINs written before LabVIEW 5.0 run in asingle thread, the
user interfacethread. When you change aCIN to bereentrant (that is, torun
in multiple threads), more than one execution thread can call the CIN at the
sametime. If you want a CIN to run in the current execution thread of the
block diagram, add the following code to your . c file:

CIN MgErr ClI NProperties(int32 node, void *data)
{
switch (node) {
case kCl NI sReentrant:
*(Bool 32 *)data = TRUE;
return noErr;
br eak;

}

return ngNot Support ed;
}

© National Instruments Corporation 57 Using External Code in LabVIEW

Chapter 5 Advanced Applications

If you read and write aglobal or static variable or call a non-reentrant
function within your CINs, keep the execution of those CINsin asingle
thread. Even if aCIN is marked reentrant, the CIN functions other than

Cl NRun are called from the user interface thread. For example, CI NI ni t
and Cl NDi spose are never called from two different threads at the same
time, but CI NRun might be running when the user interfacethread iscalling
Cl NI ni t, Cl NAbor t , or any of the other functions.

To be reentrant, the CIN must be safe to call CI NRun from multiple

threads, and safeto call any of the other CI N proceduresand Cl NRun at the
same time. Other than CI NRun, you do not need to protect any of the CI N
procedures from each other, because callsto them are alwaysin one thread.

Code Globals and CIN Data Space Globals

Using External Code in LabVIEW

When you declare global or static local datawithin a CIN code resource,
LabVIEW allocatesstoragefor that data. LabV IEW maintainsyour globals
across calls to various routines.

When you allocate aglobal in a CIN code resource, LabVIEW creates
storage for only oneinstance of it, regardless of whether the V1 is reentrant
or whether you have multiple references to the same code resource in
memory.

In some cases, you might want globals for each reference to the code
resource multiplied by the number of usages of the VI (if the VI is
reentrant). For each instance of one of these globals, LabVIEW allocates
the CIN data space for the use of the CIN. Withinthe CI NI ni t ,

Cl NDi spose, Cl NAbort, and CI NRun routines you can call the

Cet DSSt or age routine to retrieve the value of the CIN data space for the
current instance. You also can call Set DSSt or age to set the value of the
CIN data space for this instance.

You can use this storage location to store any 4-byte quantity you want to
have for each instance of one of these globals. If you need more than four
bytes of global data, store ahandle or pointer to astructure containing your
globals.

Thefollowing codeisan example of the exact syntax of these two routines,
defined in ext code. h.
e int32 GetDSStorage(void);

This routine returns the value of the 4-byte quantity in the CIN data
space LabVIEW allocates for each CIN code resource, or for each use

5-8 www.ni.com

Chapter 5 Advanced Applications

of the surrounding V1 (if the VI is reentrant). Call this routine only
from CI NI ni t, Cl NDi spose, Cl NAbor t, or CI NRun.

e int32 SetDSStorage(int32 newval);

Thisroutine setsthe value of the 4-byte quantity in the CIN data space
LabVIEW allocatesfor each CIN use of that code resource, or the uses
of thesurrounding VI (if the VI isreentrant). It returnsthe old value of
the 4-byte quantity in that CIN data space. Call this routine only from
CI NI ni t, Cl NDi spose, Cl NAbort, or Cl NRun.

Examples

Thefollowing examplesillustrate the differences between code globalsand
CIN data space globals. In both examples, the CIN takes a number and
returns the average of that number and the previous numbers passed to it.

(247

@E

When you write your application, decide whether it is appropriate to use
code globalsor data space globals. If you use code globals, calling the same
code resource from multiple nodes or different reentrant Vs affects the
same set of globals. In the code globals averaging example, the result
indicates the average of all values passed to the CIN.

If you use CIN data space globals, each CIN calling the same code resource
and each VI can have its own set of globals, if the VI isreentrant. In the
CIN data space averaging example, the results indicate the average of
values passed to a specific node for a specific data space.

If you have only one CIN referencing the code resource, and the V1
containing that CIN is not reentrant, choose either method.

Using Code Globals

The following code averages using code globals. The variables are
initialized in Cl NLoad. If the variables are dynamically created (if they are
pointers or handles), you can alocate the memory for the pointer or handle
in Cl NLoad and deallocate it in Cl NUnl oad. Y ou can do this because

Cl NLoad and Cl NUnl oad are called only once, regardless of the number
of references to the code resources and the number of data spaces. This
example does not use the UseDef aul t CI NLoad macro, because this. ¢
file hasa Cl NLoad function.

© National Instruments Corporation 5-9 Using External Code in LabVIEW

Chapter 5

Using External Code in LabVIEW

Advanced Applications

/*
* CIN source file
*/

#i ncl ude "extcode. h"

fl oat 64 gTot al ;
i nt 32 gNunEl enment s;

CIN MyErr CI NRun(fl oat64 *new num float64 *avg);

CIN MgErr CI NRun(fl oat64 *new_num fl oat64 *avg)
{

gTotal += *new_num
gNurEl ermrent s++;

*avg = gTotal / gNunEl enents;
return nokrr;
}
CIN MyErr ClI NLoad(RsrcFile rf)
{
gTot al =0;

gNurEl ermrent s=0;

return noErr;

}

Using CIN Data Space Globals

The following code averages using CIN data space globals. A handle for
the global dataisallocated in CI NI ni t , and stored in the CIN data space
storage using Set DSSt or age. When LabVIEW callstheClI NI ni t,

Cl NDi spose, Cl NAbor t, or Cl NRun routines, it makes sure

Cet DSSt or age and Set DSSt or age return the 4-byte CIN data space
value for that node or CIN data space.

When you want to access that data, use Get DSSt or age to retrieve the
handle and then dereference the appropriate fields. Finally, use the
Cl NDi spose routine you need to dispose of the handle.

/*
* CIN source file
*/

#i ncl ude "extcode. h"

typedef struct {
fl oat 64
int32

total;
nuntl enent s;

5-10 Www.ni.com

Chapter 5 Advanced Applications

} dsd obal Struct;

CIN MgErr CININnit() {
dsd obal Struct **dsd obal s;
MyErr err = noErr;

if (!(dsG obals = (dsd obal Struct **)

DSNewHand! e(si zeof (dsd obal Struct))))
{

/* if O, ran out of menory */
err = nFull Err;
goto out;

}

(*dsd obal s) —>nuntl enent s=0;
(*dsd obal s) —>t ot al =0;

Set DSSt or age((i nt 32) dsd obal s);
out:
return err;
}
CIN MgErr CI NDi spose()
{
dsd obal Struct **dsd obal s;
dsd obal s=(dsd obal Struct **) Get DSStorage();

if (dsd obal s)
DSDi sposeHandl e(dsd obal s) ;
return noErr;

}
CIN MgErr CI NRun(fl oat 64 *new_num fl oat64 *avg);

CIN MgErr CI NRun(fl oat 64 *new_num fl oat64 *avg)

{
dsd obal Struct **dsd obal s;

dsd obal s=(dsd obal Struct **) GetDSStorage();

if (dsd obals) {
(*dsd obal s)—>total += *new_num
(*dsd obal s) —>nunEl enent s++;
*avg = (*dsd obal s)—>total /
(*dsd obal s) —>nunEl enent s;

}

return noErr;

}

© MNational Instruments Corporation 5-11 Using External Code in LabVIEW

Function Descriptions

This chapter describesthe CIN functions you can use with LabVIEW. You
can use these functions to perform simple and complex operations. These
functions, organized into libraries called managers, range from low-level
byte manipulation to routines for sorting data and managing memory. All
CIN manager routines are platform-independent, so you can create CINs
that work on al platforms supported by LabVIEW.

Refer to the Manager Overview section in Chapter 4, Programming | ssues
for CINs, for general information about the manager routines.

Memory Manager Functions

The memory manager functions can dynamically allocate, manipulate, and
release memory.

To perform the following operations, use the functions listed:
» Handle and pointer verification:

— AZCheckHandl e/ DSCheckHandl e

— AZCheckPt r/ DSCheckPt r

» Handles, alocating and releasing:
— SetCI NArraySi ze
— Numeri cArrayResi ze
— AZDi spose Handl e/ DSDi sposeHand! e
— AZGet Handl eSi ze/ DSCGet Handl eSi ze
— AZNewHand!| e/ DSNewHand! e
— AZNewHC r / DSNewHCl r
— AZRecover Handl e/ DSRecover Handl e
— AZSet Handl eSi ze/ DSSet Handl eSi ze
— AZSet HSzOd r/ DSSet HSzd r

« Handles, manipulating properties:
— AZHLock
— AZHPur ge

© MNational Instruments Corporation 6-1 Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZHNoPur ge
AZHUnl ock

* Memory utilities:

AZHandAndHand/ DSHandAndHand
AZHandToHand/ DSHandToHand
AZPt r AndHand/ DSPt r AndHand
AZPt r ToHand/ DSPt r ToHand
AZPt r ToXHand/ DSPt r ToXHand

Cl ear Mem

MoveBl ock

SwapBl ock

« Memory zone utilities:

AZHeapCheck/ DSHeapCheck
AZMaxMem DSMaxMem
AZMentt at s/ DSMentt at s

« Pointers, alocating and releasing:

AZDi sposePt r/ DSDi sposePt r
AZNewPCl r / DSNewPCl r
AZNewPt r / DSNewPt r

File Manager Functions

Using External Code in LabVIEW

The file manager functions can create, open, and close files, write data to
files, and read data from files. In addition, file manager routines can create
directories, determine characteristicsof filesand directories, and copy files.

The file manager defines the Pat h datatype for use in describing paths to
files and directories. The data structure for the Pat h datatypeis private.
Use file manager routines to create and manipulate the Pat h datatype.

Thefile manager usesthei nt 32 datatypeto describe permissionsfor files
and directories. The manager uses only the least significant nine bits of the

int32.

In UNIX, the nine bits of permissions correspond exactly to nine UNIX
permission bits governing read, write, and execute permissions for user,
group, and others. The following illustration shows permission bitsin

UNIX.

6-2

www.ni.com

Chapter 6 Function Descriptions

user group others

permission (T AT T

| 1]
bit 31 576543210

r-read permission
Wiy - tite permission
¥ - BEECUtE permission

In Windows, permissions are ignored for directories. For files, only bit 7
(the UNIX user write permission bit) is used. If this bit isclear, thefileis
read-only. Otherwise, you can writeto thefile.

In Macintosh, al nine bitsare used for directories (folders). The bitswhich
control read, write, and execute permissions, respectively, in UNIX are
used to control See Files, Make Changes, and See Folders access rights,
respectively, in Macintosh.

To perform the following operations, use the functions listed:
e Current position mark, positioning:
— FMseek
— FMrel |
» Default accessrightsinformation, getting:
— FGet Def G oup
« Directory contents, creating and determining:
— FListDr
— FNewDir
e End-of-file mark, positioning:
— FGet EOF
— FSet ECF
» Filedatato disk, flushing:
— FFlush
» File operations, performing basic:
— FCreate
— FCreat eAl ways
- FMJ ose
— FMXpen

© MNational Instruments Corporation 6-3 Using External Code in LabVIEW

Chapter 6 Function Descriptions

Using External Code in LabVIEW

- FMread
- FMNite
File range, locking:
— FLockOr Unl ockRange
File refnums, manipulating:
— FDi sposeRef Num
— FI sARef Num
— FNewRef Num
— FRef NunToFD
— FRef NunToPat h

File, directory, and volume information determination:
— FExists

— FGet AccessRights

— FGetinfo

— FGetVollInfo

— FSet AccessRights

— FSetInfo

Filenames and patterns, matching:
— FStrFitsPat

Files and directories, moving and deleting:
— FMve

— FRenove

Files, copying:

- FCopy

Path type, determining:

— FGet Pat hType

— Fl sAPat hOf Type

— FSet Pat hType

Path, extracting information:

— FDepth

— FDirNane

— FNane

— FNanePtr

— FVol Nane

6-4 www.ni.com

e Paths, comparing:

Fl sAPat h

FI sAPat hOr Not APat h

Fl sEnpt yPat h
FPat hCmp

Chapter 6 Function Descriptions

* Paths, converting to and from other representations:

FArr ToPat h

FFl at t enPat h
FPat hToAr r

FPat hToAZSt ri ng
FPat hToDSSt ri ng
FStringToPat h
FText ToPat h
FUnFl att enPat h

e Paths, creating:

FAddPat h
FAppendName
FAppPat h
FEnpt yPat h
FMakePat h
FNot APat h
FRel Pat h

e Paths, disposing:

FDi sposePat h

e Paths, duplicating:

FPat hCpy
FPat hToPat h

Support Manager Functions

You can use the support manager functions for bit or byte manipulation of
data, string manipulation, mathematical operations, sorting, searching, and

determining the current time and date.

To perform the following operations, use the functions listed:

» Byte manipulation operations:

© MNational Instruments Corporation

Cat 4Chr s
Cet ALong

Using External Code in LabVIEW

Chapter 6

Function Descriptions

Using External Code in LabVIEW

- H 16

— HiByte

— H N bble

— Lolé

— LoByte

— Long

— LoN bble

- Ofset

— Set ALong

- Wird
Mathematical operations:
— Abs

- Max

- Mn

— Pin

— Randonten
String manipulation:
— Bl ockCmp

— CPstrBuf

— CPStrCnp

— CPStrl ndex

— CPStrinsert
— CPStrLen

— CPStrRenove
— CPStrRepl ace
— CPStrSize

— CToPStr

— Fil eNameCmp
— Fil eNanel ndCnp
— Fil eNameNCmp
— FPrintf

— HexChar

— IsAl pha

— IsDhigit

— |IsLower

— | sUpper

— LStrBuf

www.ni.com

© MNational Instruments Corporation

Chapter 6

— LStrCmp
— LStrLen

— LStrPrintf
— LToPStr

— PPrintf

— PPrintfp

— PPStr CaseCmp
— PPStrCnp

— PStrBuf

— PStrCaseCmp
— PStrcCat

— PStrCmp

— PStrCpy

— PStrLen

— PStr NCpy

— PToCstr

— PTolLStr

— SPrintF

— SPrintfp

— StrCat

- StrOmp

— StrCpy

— StrlLen

— StrNCaseCmp
— StrNCmp

— StrNCpy

— ToLower

— ToUpper
Utility functions:

— BinSearch

- QSort

— Unused

Time functions:

— ASCIITime

— DateCstring
— DateToSecs
- MIliSecs

Function Descriptions

6-7 Using External Code in LabVIEW

Chapter 6 Function Descriptions

Mathematical Operations

SecsToDat e
Ti meCString
Ti mel nSecs

In addition to the mathematical operationsin the previous list, LabVIEW
supports a number of other mathematical functions. The following
functions areimplemented as defined in The C Programming Language by
Brian W. Kernighan and Dennis M. Ritchie.

doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e

Using External Code in LabVIEW

at an(doubl e) ;
cos(doubl e);
exp(doubl e);
f abs(doubl e);
| og(doubl e);
si n(doubl e);
sqrt (doubl e);
tan(doubl e);
acos(doubl e);

asi n(doubl e) ;

at an2(doubl e, doubl e);
cei |l (doubl e);
cosh(doubl e);

fl oor (doubl e);

f mod(doubl e, doubl e);
frexp(double, int *);
| dexp(doubl e, int);

| 0g10(doubl e);

nmodf (doubl e, double *);
pow(doubl e, doubl e);
si nh(doubl e) ;

tanh(doubl e);

6-8

www.ni.com

Chapter 6 Function Descriptions

Abs
int32 Abs(n);
Purpose

Returnsthe absolute value of n, unlessn is—231, in which case the function returnsthe number

unmodified.
Parameters

Name Type Description
n i nt 32 i nt 32 whose absolute value you want to
determine.

© MNational Instruments Corporation

Using External Code in LabVIEW

Chapter 6 Function Descriptions

ASCIITime

CStr ASCI | Ti ne(secs);

Purpose

Returns a pointer to a string representing the date and time of day corresponding to t seconds
after January 1, 1904, 12:00 AM, GMT. This function uses the same date format as that
returned by the Dat eCSt ri ng function using amode of 2. The date is followed by a space,
and thetimeisin the same format as that returned by the Ti meCSt r i ng function using a

mode of 0. For example, this function might return Tuesday,

Dec 22, 1992 5:30.In

SPARCstation, this function accounts for international conventions for representing dates.

Parameters

Name

Type

Description

ul nt 32

Seconds since January 1, 1904, 12:00 AM,

GMT.

Return Value

The date and time as a C string.

Using External Code in LabVIEW

6-10

www.ni.com

Chapter 6 Function Descriptions

AZCheckHandle/DSCheckHandle

MgEr r AZCheckHandl e(h);
MygEr r DSCheckHandl e(h) ;

Purpose
Verifies that the specified handle is ahandle. If it is not a handle, this function returns
mzZonekErr.
Parameters
Name Type Description
h Uhandl e Handle you want to verify.

Return Value
ngEr r, which can contain the following errors:

NoEr r No error.
nmzZoneEr r Handle or pointer not in specified zone.

© National Instruments Corporation 6-11 Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZCheckPtr/DSCheckPtr

MyErr AZCheckPtr (p);
MyErr DSCheckPtr (p);

Purpose

Verifies that the specified pointer is allocated with XXNewPt r or XXNewPdl r. If itisnot a
pointer, this function returns nzonekr r.

Parameters

Name Type Description

Return Value
ngEr r, which can contain the following errors:

NoEr r No error.
nZonekr r Handle or pointer not in specified zone.

Using External Code in LabVIEW 6-12 www.ni.com

Chapter 6 Function Descriptions

AZDisposeHandle/DSDisposeHandle

MyErr AZDi sposeHandl e(h);
MyErr DSDi sposeHandl e(h);

Purpose
Rel eases the memory referenced by the specified handle.

Parameters

Name Type Description

h UHandl e Handle you want to dispose of.

Return Value
ngEr r, which can contain the following errors:

NoEr r No error.
nmzZoneEr r Handle or pointer not in specified zone.

© National Instruments Corporation 6-13 Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZDisposePtr/DSDisposePtr

MyErr AZDi sposePtr(p);
MyErr DSDi sposePtr(p);

Purpose

Releases the memory referenced by the specified pointer.

Parameters

Name

Type

Description

UPt r

Pointer you want to dispose of.

Return Value

ngEr r, which can contain the following errors:

NoEr r
mzZonekr r

Using External Code in LabVIEW

No error.

Handle or pointer not in specified zone.

6-14

www.ni.com

AZGetHandleSize/DSGetHandleSize

Chapter 6 Function Descriptions

i nt 32 AZGet Handl eSi ze(h);
i nt 32 DSGet Handl eSi ze(h);

Purpose

Returns the size of the block of memory referenced by the specified handle.

Parameters

Name

Type

Description

UHandl e

Handle whose size you want to determine.

Return Value

The size in bytes of the relocatable block referenced by the handle h. If an error occurs, this
function returns a negative number.

© National Instruments Corporation

6-15

Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZHandAndHand/DSHandAndHand

MyErr AZHandAndHand(h1,
MyEr r DSHandAndHand(h1,

Purpose

h2);
h2);

Appends the data referenced by h1 to the end of the memory block referenced by h2.

The function resizes handle h2 to hold h1 and h2 data. If hlisan AZ handle, lock it, because
this routine can move memory.

Parameters
Name Type Description
hl UHandl e Source of data you want to append to h2.
h2 UHandl e Initial handle, to which the dataof hlis
appended.

Return Value

ngEr r, which can contain the following errors:

NoEr r

MFul | Err
mZonekErr

Using External Code in LabVIEW

No error.

Not enough memory to perform the operation.

Handle or pointer not in specified zone.

6-16

www.ni.com

Chapter 6 Function Descriptions

AZHandToHand/DSHandToHand

MyEr r AZHandToHand(hp) ;
MgEr r DSHandToHand(hp) ;

Purpose

Copies the datareferenced by the handle to which hp pointsinto anew handle, and returns a
pointer to the new handlein hp.

Use this routine to copy an existing handle into a new handle. The old handle remains

allocated. Thisroutine writes over the pointer that is passed in, so you should maintain a copy
of the original handle.

Parameters

Name Type Description

hp UHandl e Pointer to handle you want to duplicate. A
pointer to the resulting handle isreturned in
this parameter. Refer to the Pointers as
Parameters section in Chapter 3, CINSs, for
moreinformation about using this parameter.

Return Value
ngEr r, which can contain the following errors:

NoEr r No error.
MFul | Err Not enough memory to perform the operation.
nZonekr r Handle or pointer not in specified zone.

© National Instruments Corporation 6-17 Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZHeapCheck/DSHeapCheck

i nt 32 AZHeapCheck(Bool 32 d);
i nt 32 DSHeapCheck(Bool 32 d);

Purpose

Verifiesthat the specified heap is not corrupt. Thisfunction returns 0 for an intact heap and a
nonzero value for a corrupt heap.

Parameters

Name

Type

Description

Bool 32

Heap you want to verify.

Return Value

i nt 32, which can contain the following errors:

NoOEr r
MCor r upt Er r

Using External Code in LabVIEW

The heap isintact.

The heap is corrupt.

6-18

www.ni.com

AZHLock

Chapter 6 Function Descriptions

MyErr AZHLock(h);

Purpose

Locks the memory referenced by the application zone handle h so the memory cannot move.
This means the memory manager cannot move the block of memory to which the handle

refers.

Do not lock handles more than necessary; it interferes with efficient memory management.

Also, do not enlarge alocked handle.

Parameters

Name

Type

Description

UHandl e

Application zone handle you want to lock.

Return Value

ngEr r, which can contain the following errors:

NoEr r
mzZoneEr r

© National Instruments Corporation

No error.

Handle or pointer not in specified zone.

6-19

Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZHNoPurge

voi d AZHNoPur ge(h);

Purpose

Marks the memory referenced by the application zone handle h as not purgative.

Parameters

Name

Type

Description

UHandl e

Application zone handle you want to mark as

not purgative.

Using External Code in LabVIEW

6-20

www.ni.com

AZHPurge

Chapter 6 Function Descriptions

voi d AZHPur ge(h);

Purpose

Marks the memory referenced by the application zone handle h as purgative. This means that
in tight memory conditions the memory manager can perform an AZEnpt yHandl e onh. Use

AZReal | ocHandl e to reuse a handle if the manager purgesit.

If you mark a handle as purgative, check the handle before using it to determine whether it
has become an empty handle.

Parameters

Name

Type

Description

UHandl e

Application zone handle you want to mark as

purgative.

© National Instruments Corporation

6-21

Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZHUnlock

MyErr AZHUnl ock(h);

Purpose

Unlocks the memory referenced by the application zone handle h so it can be moved. This
means that the memory manager can move the block of memory to which the handlerefersif

other memory operations need space.

Parameters

Name

Type

Description

UHandl e

Application zone handle you want to unlock.

Return Value

ngEr r, which can contain the following errors:

NoEr r
mzZonekr r

Using External Code in LabVIEW

No error.

Handle or pointer not in specified zone.

6-22

www.ni.com

Chapter 6 Function Descriptions

AZMaxMem/DSMaxMem

i nt 32 AZvaxMem() ;
i nt 32 DSMaxMen() ;

Purpose
Returns the size of the largest block of contiguous memory available for allocation.

Return Value

i nt 32, the size of the largest block of contiguous memory available for allocation.

© National Instruments Corporation 6-23 Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZMemStats/DSMemStats

voi d AZMentt at s(Mentt at Rec *nsrp) ;
voi d DSMentt at s(Mentt at Rec *nsrp) ;

Purpose
Returns various statistics about the memory in azone.

Parameters

Name Type Description

msrp Menft at Rec Statistics about the zone's free memory in a
MemStatRec structure. Refer to the Pointers
as Parameters section in Chapter 3, CINS,
for more information about using this
parameter.

A Menst at Rec structure is defined as follows:

typedef struct {
int32 totFreeSize, maxFreeSi ze, nFreeBl ocks;
int32 totAllocSize, maxAl | ocSi ze;
i nt 32 nPoi nters, nUnl ockedHdl s, nLockedHdl s;
int32 reserved [4];

}

The free memory in a zone consists of a number of blocks of contiguous memory. In the
MenSt at Rec structure, totFreeSize is the sum of the sizes of these blocks, maxFreeSizeis
the largest of these blocks (as returned by XXvaxMem), and nFreeBlocks is the number of
these blocks.

Similarly, the allocated memory in a zone consists of anumber of blocks of contiguous
memory. In the MenSt at Rec structure, totAllocSize is the sum of the sizes of these blocks
and maxAllocSize is the largest of these blocks.

Because there are three different varieties of allocated blocks, the numbers of blocks of each
typeisreturned separately.

nPointers (i nt 32) isthe number of pointers, nUnlockedHdls (i nt 32) isthe number of
unlocked handles, and nL ockedHdls (i nt 32) is the number of locked handles. Add these
three values together to find the total number of alocated blocks.

The four reserved fields are reserved for use by National Instruments.

Using External Code in LabVIEW 6-24 www.ni.com

AZNewHandle/DSNewHandle

Chapter 6 Function Descriptions

UHandl e AZNewHandl| e(si ze);
UHandl e DSNewHand! e(si ze) ;

Purpose

Creates a new handle to arelocatable block of memory of the specified size. The routine
alignsall handles and pointersin DSto accommodate the largest possible datarepresentations

for the platform in use.

Parameters

Name

Type

Description

size

i nt32

Size, in bytes, of the handle you want to

create.

Return Value

A handle of the specified size. If an error occurs, this function returns NULL.

© National Instruments Corporation

6-25

Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZNewHCIr/DSNewHCIr

UHandl e AZNewHd r (si ze);
UHandl e DSNewHd r (si ze) ;

Purpose
Creates anew handleto arel ocatable block of memory of the specified size and initializesthe
memory to zero.
Parameters
Name Type Description
size i nt32 Size, in bytes, of the handle you want to
create.

Return Value

A handle of the specified size, where the block of memory isset to all zeros. If an error occurs,
this function returns NULL.

Using External Code in LabVIEW

6-26

www.ni.com

AZNewPClr/DSNewPClIr

Chapter 6 Function Descriptions

UPtr AZNewPd r (si ze);
UPtr DSNewPC r (si ze);

Purpose

Creates anew pointer to a non-relocatable block of memory of the specified size and
initializes the memory to zero.

Parameters

Name

Type

Description

size

i nt32

Size, in bytes, of the pointer you want to

create.

Return Value

A pointer to ablock of size bytesfilled with zeros. If an error occurs, this function returns

NULL.

© National Instruments Corporation

6-27

Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZNewPtr/DSNewPtr

UPtr AZNewPtr (si ze);
UPtr DSNewPtr (si ze);

Purpose

Creates a new pointer to a non-relocatable block of memory of the specified size.

Parameters

Name

Type

Description

size

int32

Size, in bytes, of the pointer you want to

create.

Return Value

A pointer to ablock of size bytes. If an error occurs, this function returns NULL.

Using External Code in LabVIEW

6-28

www.ni.com

AZPtrAndHand/DSPtrAndHand

Chapter 6 Function Descriptions

MyEr r AZPt r AndHand(p, si ze);
MyEr r DSPt r AndHand(p, size);
Purpose
Appends size bytes from the address referenced by p to the end of the memory block
referenced by h.
Parameters
Name Type Description
p UPt r Source of data you want to append to h.
h UHandl e Handle to which the data of p is appended.
size i nt 32 Number of bytes to copy from p.

Return Value

myEr r, which can contain the following errors:

NoEr r
MFul | Err
mZonekEr r

© National Instruments Corporation

No error.

Not enough memory to perform the operation.

Handle or pointer not in specified zone.

6-29

Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZPtrToHand/DSPtrToHand

MyErr AZPtrToHand(p, hp, size);
MyErr DSPtrToHand(p, hp, size);
Purpose
Creates a new handle of size bytes and copies size bytes from the address referenced by p to
the handle.
Parameters
Name Type Description
p UPt r Source of datayou want to copy tothehandle
pointed to by hp.
hp UHandl e Pointer to handle you want to duplicate. A
pointer to the resulting handle is returned in
this parameter. Refer to the Pointers as
Parameters section in Chapter 3, CINSs, for
more information about using this parameter.
size i nt 32 Number of bytesto copy from p to the new
handle.

Return Value

ngEr r, which can contain the following errors:

NoEr r

MFul | Err

Using External Code in LabVIEW

No error.

Not enough memory to perform the operation.

6-30

www.ni.com

AZPtrToXHand/DSPtrToXHand

Chapter 6 Function Descriptions

MyEr r AZPt r ToXHand(p,
MyErr DSPt r ToXHand(p,

Purpose

h,
h,

si ze);
size);

Copies size bytes from the address referenced by p to the existing handle h, resizing h,
if necessary, to hold the results.

Parameters
Name Type Description
p UPt r Source of datayou want to copy tothehandle
h.
h UHandl e Destination handle.
size i nt 32 Number of bytes to copy from p to the
existing handle.

Return Value

myEr r, which can contain the following errors:

NoEr r

MFul | Err
nZonekEr r

© National Instruments Corporation

No error.

Not enough memory to perform the operation.
Handle or pointer not in specified zone.

6-31

Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZRecoverHandle/DSRecoverHandle

UHandl e AZRecover Handl e(p);
UHandl e DSRecover Handl e(p);

Purpose

Given a pointer to a block of memory that was originally declared as a handle, this function
returns a handle to the block of memory.

This function is useful when you have the address of a block of memory that you know isa
handle, and you need to get atrue handle to the block of memory.

Parameters

Name Type Description

p UPt Pointer to arelocatable block of memory.

Return Value

A handle to the block of memory to which p refers. If an error occurs, this function returns
NULL.

Using External Code in LabVIEW 6-32 www.ni.com

Chapter 6 Function Descriptions

AZSetHandleSize/DSSetHandleSize

MyErr AZSet Handl eSi ze(h, size);
MyEr r DSSet Handl eSi ze(h, size);

Purpose
Changes the size of the block of memory referenced by the specified handle.

While LabVIEW arrays are stored in DS handles, do not use this function to resize array
handles. Many platforms have memory alignment requirements that make it difficult to
determine the correct size for the resulting array. Instead, use either Nuner i cArr ayResi ze
or Set Cl NArr aySi ze, described in the Resizing Arrays and Strings section in Chapter 4,
Programming Issues for CINs. Do not use these functions on alocked handle.

Parameters
Name Type Description
h UHandl e Handle you want to resize.
size i nt 32 New size, in bytes, of the handle.

Return Value
ngEr r, which can contain the following errors:

NoEr r No error.
MFul | Err Not enough memory to perform the operation.
nZonekEr r Handle or pointer not in specified zone.

© National Instruments Corporation 6-33 Using External Code in LabVIEW

Chapter 6 Function Descriptions

AZSetHSzClr/DSSetHSzClr

MyErr AZSet HSzd r (h,
MyErr DSSet HSzd r (h,

Purpose

si ze);
si ze);

Changesthe size of the block of memory referenced by the specified handle and sets any new
memory to zero. Do not use this function on alocked handle.

Parameters
Name Type Description
h UHandl e Handle you want to resize.
size i nt32 New size, in bytes, of the handle.

Return Value

ngEr r, which can contain the following errors:

NoEr r

MFul | Err
mzZoneErr

Using External Code in LabVIEW

No error.

Not enough memory to perform the operation.

Handle or pointer not in specified zone.

6-34

www.ni.com

Chapter 6 Function Descriptions

BinSearch

i nt 32 Bi nSearch(arrayp, n, elntSize, key, conpareProcP);

Purpose

Searches an array of an arbitrary data type using the binary search algorithm. In addition to
passing the array you want to search to thisroutine, you also pass acomparison procedure that
this sort routine then uses to compare elementsin the array.

The comparison routine should return a number lessthan zero if aislessthan b, zeroif ais
equal to b, and anumber greater than zero if ais greater than b.

You should declare the comparison routine to have the following parameters and return type.
i nt32 compareProcP(UPtr a, UPtr b);

Parameters
Name Type Description

arrayp Upt r Pointer to an array of data.

n i nt 32 Number of elementsin the array you want to
search.

emtSize i nt 32 Sizein bytes of an array element.

key Upt r Pointer to the data for which you want to
search.

compar eProcP ProcPtr Comparison routineyouwant Bi nSear ch to
use to compare array elements. Bi nSear ch
passes this routine the addresses of two
elements that it needs to compare.

Return Value
The position in the array where the data is found, with 0 being the first element of the array,
if itisfound. If thedataisnot found, Bi nSear ch returns—i —1, wherei isthe position where
x should be placed.

© National Instruments Corporation 6-35 Using External Code in LabVIEW

Chapter 6 Function Descriptions

BlockCmp
i nt32 Bl ockCnp(pl, p2, nunBytes);
Purpose
Compares two blocks of memory to determine whether one is less than, equal to, or greater
than the other.
Parameters
Name Type Description
pl UPt r Pointer to ablock of memory.
p2 UPt r Pointer to a block of memory.
numBytes i nt 32 Number of bytes you want to compare.

Return Value

A negative number, zero, or apositive number if plislessthan, equal to, or greater than p2,

respectively.

Using External Code in LabVIEW

6-36

www.ni.com

Cat4Chrs

Macro

Chapter 6 Function Descriptions

int32 Cat4Chrs(a,b,c,d);

Purpose

Constructsan i nt 32 parameter from four ul nt 8 parameters, with the first parameter asthe
high byte and the last parameter as the low byte.

Parameters
Name Type Description

a ulnt8 High order byte of the high word of the
resultingi nt 32.

b ulnt8 Low order byte of the high word of the
resultingi nt 32.

c ulnt8 High order byte of the low word of the
resultingi nt 32.

d ulnt8 Low order byte of the low word of the
resulting i nt 32.

Return Value
Theresulting i nt 32.

© National Instruments Corporation

6-37

Using External Code in LabVIEW

Chapter 6 Function Descriptions

ClearMem

voi d C ear Men(p,

Purpose

si ze);

Sets size bytes starting at the address referenced by p to 0.

Parameters
Name Type Description
p UPt r Pointer to block of memory you want to
clear.
size i nt 32 Number of bytes you want to clear.

Using External Code in LabVIEW

6-38

www.ni.com

CPStrBuf

Macro

Chapter 6 Function Descriptions

uChar *CPStr Buf (sp);

Purpose

Returns the address of the first string in a concatenated list of Pascal strings, that is, the

address of sp->str.

Parameters

Name

Type

Description

sp

CPStrPtr

Pointer to a concatenated list of Pascal

strings.

Return Value

The address of the first string of the concatenated list of Pascal strings.

© National Instruments Corporation

6-39

Using External Code in LabVIEW

Chapter 6 Function Descriptions

CPStrCmp

int32 CPStrCnp(sip,

Purpose

Lexically compares two concatenated lists of Pascal strings to determine whether oneisless
than, equal to, or greater than the other. This comparison is case sensitive, and the function

compares the lists asif they were one string.

Parameters
Name Type Description
slp CPStrPtr Pointer to a concatenated list of Pascal
strings.
s2p CPStrPtr Pointer to a concatenated list of Pascal
strings.

Return Value

<0, 0, or >0 if slp islessthan, equal to, or greater than s2p, respectively. Returns<0 if slp is
an initial substring of s2p.

Using External Code in LabVIEW

6-40

www.ni.com

CPStrindex

Chapter 6 Function Descriptions

PStr CPStrlndex(slh,

Purpose

i ndex) ;

Returns a pointer to the Pascal string denoted by index in alist of strings. If index is greater
than or equal to the number of stringsin the list, this function returns the pointer to the last

string.
Parameters
Name Type Description
slh CPSt r Handl e Handle to a concatenated list of Pascal
strings.
index i nt 32 Number of the string you want, with 0 asthe
first string.

Return Value

A pointer to the specified Pascal string.

© National Instruments Corporation

6-41

Using External Code in LabVIEW

Chapter 6 Function Descriptions

CPStrinsert

MyErr CPStrlnsert(slh,

Purpose

s2, index);

Inserts anew Pascal string before the index numbered Pascal string in a concatenated list of
Pascal strings. If index isgreater than or equal to the number of stringsinthelist, thisfunction
places the new string at the end of the list. The function resizes the list to make room for the

new string.
Parameters
Name Type Description

slh CPSt r Handl e Handle to a concatenated list of Pascal
strings.

s2 PStr Pointer to a Pascal string.

index i nt 32 Position you want the new Pascal string to
haveinthelist of Pascal strings, with 0 asthe
first string.

Return Value

ngEr r, which can contain the following errors:
nmFul | Err

Using External Code in LabVIEW

Insufficient memory.

6-42

www.ni.com

CPStrLen

Macro

Chapter 6 Function Descriptions

int32 CPStrLen(sp);

Purpose

Returnsthe number of Pascal stringsin aconcatenated list of Pascal strings, that is, sp- >cnt .
Usethe CPSt r Si ze function to get the total number of charactersin thelist.

Parameters

Name

Type

Description

sp

CPStrPtr

Pointer to a concatenated list of Pascal

strings.

Return Value

The number of strings in the concatenated list of Pascal strings.

© National Instruments Corporation

6-43

Using External Code in LabVIEW

Chapter 6 Function Descriptions

CPStrRemove

voi d CPStrRenove(slh,

Purpose

i ndex) ;

Removes a Pascal string from alist of Pascal strings. If index is greater than or equal to the
number of stringsin thelist, thisfunction removesthelast string. Thefunction resizesthelist
after removing the string.

Parameters
Name Type Description
slh CPSt r Handl e Handle to a concatenated list of Pascal
strings.
index i nt 32 Number of the string you want to remove,
with 0 asthefirst string.

Using External Code in LabVIEW

6-44

www.ni.com

CPStrReplace

Chapter 6 Function Descriptions

MyErr CPStr Repl ace(slh,

Purpose

s2,

i ndex) ;

Replaces a Pascal string in a concatenated list of Pascal strings with a new Pascal string.

Parameters
Name Type Description
slh CPSt r Handl e Handle to a concatenated list of Pascal
strings.
s2 PSt r Pointer to a Pascal string.
index i nt 32 Number of the string you want to replace,
with 0 asthefirst string.

Return Value

myEr r, which can contain the following errors:
nFul | Err

© National Instruments Corporation

Insufficient memory.

6-45

Using External Code in LabVIEW

Chapter 6 Function Descriptions

CPStrSize

int32 CPStrSize(sp);

Purpose

Returns the number of charactersin a concatenated list of Pascal strings. Usethe CPSt r Len
function to get the number of Pascal strings in the concatenated list.

Parameters

Name

Type

Description

sp

CPStrPtr

Pointer to a concatenated list of Pascal

strings.

Return Value

The number of charactersin the concatenated list of Pascal strings.

Using External Code in LabVIEW

6-46

www.ni.com

CToPStr

Chapter 6 Function Descriptions

int32 CToPStr(cstr,

Purpose

pstr);

Converts a C string to a Pascal string, even if the pointers cstr and pstr refer to the same
memory location. If the length of cstr is greater than 255 characters, this function converts
only the first 255 characters. The function assumes pstr is large enough to contain cstr.

Parameters
Name Type Description
cstr CStr Pointer to a C string.
pstr PSt r Pointer to a Pascal string.

Return Value

The length of the string, truncated to a maximum of 255 characters.

© National Instruments Corporation

6-47

Using External Code in LabVIEW

Chapter 6 Function Descriptions

DateCString

CStr DateCString(secs, fnt);

Purpose

Returns a pointer to a string representing the date corresponding to t seconds after January 1,
1904, 12:00 AM, GMT. In SPARCsdtation, this function accounts for international
conventions for representing dates.

P Note Thisfunction was formerly called Dat eStri ng.
Parameters
Name Type Description
secs ul nt 32 Seconds since January 1, 1904, 12:00 AM,
GMT.
fmt i nt32 Indicates the format of the returned date

string, using the following values:

e 0—Short date format, mm dd/ yy,
where nmis a number between 1
and 12 representing the current
month, dd is the current day of the
month (1 through 31), and yy isthe
last two digits of the corresponding
year. For example, 12/ 31/ 92.

e 1—Long date format, dayNane,
Mont hNane, DayCOf Mont h,
LongYear . For example,

Thur sday, Decenber 31,
1992.

e 2—Abbreviated date format,
Abbr evDayNane,
Abbr eviMont hNane,
DayOf Mont h, LongYear. For
example, Thu, Dec 31, 1992.

Return Value
The date asa C string.

Using External Code in LabVIEW 6-48 www.ni.com

DateToSecs

Chapter 6 Function Descriptions

ui nt 32 Dat eToSecs(dat eRecor dP)

Purpose

Converts from atime described using the Dat eRec data structure to the number of seconds
since January 1, 1904, 12:00 AM, GMT.

Parameters

Name

Type

Description

dateRecordP

Dat eRec *

Pointer to a Dat eRec structure.

Dat eToSecs storesthe converted dateinthe
fields of the date structure referred to by
dateRecor dP. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Return Value

The corresponding number of seconds since January 1, 1904, 12:00 AM, GMT.

© National Instruments Corporation

6-49

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FAddPath

MyErr FAddPat h(basePat h,

Purpose

r el Pat h,

newPat h) ; FAddPat h

Creates an absolute path by appending arelative path to an absolute path. You can pass the
same path variable for the new path that you use for basePath or relPath. Therefore, you can
call thisfunction in the following three ways:

e FAddPat h(basePat h,

e FAddPat h(pat h,

rel Pat h,

rel Path, path);
/* the new path writes over the old base path */
e FAddPat h(basepat h, path,
/* the new path writes over the old relative path */

path);

newPat h) ;
/* the new path is returned in a third path variable */

Parameters
Name Type Description
basePath Pat h Absolute path to which you want to append a
relative path.
relPath Pat h Relative path you want to append to the
existing base path.
newPath Pat h Path returned by FAddPat h.

Return Value

ngEr r, which can contain the following errors:
A bad argument was passed to the function. Verify the path.
Insufficient memory.

nmgAr gEr r
nmFul | Err

Using External Code in LabVIEW

6-50

www.ni.com

FAppendName

Chapter 6 Function Descriptions

MyEr r FAppendNane(pat h,

Purpose

nane) ;

Appends afile or directory name to an existing path.

Parameters
Name Type Description
path Pat h Base path to which you want to append anew
fileor directory name. FAppendNamne returns
the resulting path in this parameter.
name PSt r File or directory name you want to append to
the existing path.

Return Value

myEr r, which can contain the following errors:
A bad argument was passed to the function. Verify the path.

ngAr gEr r
nful | Err

© National Instruments Corporation

I nsufficient memory.

6-51

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FAppPath

MyErr FAppPat h(p);

Purpose

Indicates the path to the LabVIEW application currently running.

Parameters

Name

Type

Description

Pat h

Path in which FAppPat h storesthe path to
the current application. p must already be an

allocated path.

Return Value

ngEr r, which can contain the following errors:
A bad argument was passed to the function. Verify the path.
Insufficient memory.

nmgAr gErr
nful | Err
FNot Found
FI Cerr

Using External Code in LabVIEW

File not found.

Unspecified I/O error.

6-52

www.ni.com

FArrToPath

Chapter 6 Function Descriptions

MyErr FArrToPat h(arr,

Purpose

relative,

pat h);

Converts aone-dimensional LabVIEW array of strings to a path of the type specified by
relative. Each string inthe array is converted in order into acomponent name of the resulting

path.

If no error occurs, path is set to a path whose component names arethe stringsin arr. If an
error occurs, path is set to the canonica invalid path.

Parameters
Name Type Description

arr UHandl e DS handle containing the array of stringsyou
want to convert to a path.

relative Bool 32 If TRUE, the resulting path is relative.
Otherwise, the resulting path is absolute.

path Pat h Path where FAr r ToPat h storestheresulting
path. This path must already have been
allocated.

Return Value

nmgEr r, which can contain the following errors:

ngAr gEr r
nFul | Err

© National Instruments Corporation

A bad argument was passed to the function. Verify the path.

I nsufficient memory.

6-53 Using External Code in LabVIEW

Chapter 6 Function Descriptions

FCopy

MyErr FCopy(ol dPat h,

Purpose

newPat h) ;

Copiesafile, preserving the type, creator, and accessrights. The file to be copied must not be
open. If an error occurs, the new fileis not created.

Parameters
Name Type Description
oldPath Pat h Path of thefile or directory you want to copy.
newPath Pat h Path, including filename, where you want to
store the new file.

Return Value

ngEr r, which can contain the following errors:
A bad argument was passed to the function. Verify the path.
File not found.

nmgAr gErr
f Not Found
f NoPer m

f Di skFul |
f DupPat h
f1sQpen
f TMFOpen
nfFul | Err
flCerr

Using External Code in LabVIEW

Access was denied; the file, directory, or disk islocked or

protected.
Disk isfull.

The new file already exists.
The origina fileis open for writing.

Too many files are open.

Insufficient memory.

Unspecified I/O error.

6-54

www.ni.com

FCreate

Chapter 6 Function Descriptions

MyErr FCreate(fdp, path, perm ssions,

Purpose

openhMbde, denyMode, group);

Creates afile with the name and location specified by path and with the specified
per missions, and opensit for writing and reading, as specified by openMode. If thefile
already exists, the function returns an error.

You can use denyM ode to control concurrent access to the file from within LabVIEW. You
can use the group parameter to assign the fileto a UNIX group; in Windows or Macintosh,

group isignored.

If the function creates thefile, the resulting file descriptor is stored in the address referred to
by fdp. If an error occurs, the function stores 0 in the address referred to by fdp and returns

an error.

@ Note Beforeyou cal this function, make sure that you understand how to use the fdp
parameter. Refer to the Pointers as Parameters section in Chapter 3, CINs, for more
information about using this parameter.

Parameters

Name

Type

Description

fdp

File *

Address at which FCr eat e stores thefile
descriptor for the new file. If FCr eat e fails,
it stores 0 in the address fdp. Refer to the
Pointersas Parameter s section in Chapter 3,
CINs, for more information about using this
parameter.

path

Pat h

Path of the file you want to create.

permissions

int32

Permissionsto assign to the new file.

openMode

int32

Access mode to use in opening thefile. The
following values are defined in thefile
ext code. h:

e openReadOnl y—Open for reading.
e openWiteOnl y—Open for writing.

¢ openReadW it e—Open for both
reading and writing.

© National Instruments Corporation

6-55

Using External Code in LabVIEW

Chapter 6 Function Descriptions

Name

Type

Description

denyMode

int32

Mode that determines what level of
concurrent access to the fileis allowed.
The following values are defined in the file
ext code. h:

» denyReadW it e—Preventsothers
from reading from and writing to
the filewhileit is open.

* denyWit eOnl y—Preventsothers
fromwriting to thefileonly whileit
isopen.

* denyNei t her —Allows othersto
read from and write to thefilewhile
it isopen.

group

PStr

UNIX group you want to assign to the new
file.

Return Value

ngEr r, which can contain the following errors:
A bad argument was passed to the function. Verify the path.

Fileis aready open for writing. Thiserror isreturned only in
Macintosh and Solaris. Windowsreturnsf | OEr r when thefileis
aready open for writing.

nmgAr gEr r
f1sOpen

f NoPer m
f DupPat h
f TMFOpen
fl1CErr

Using External Code in LabVIEW

Access was denied, because the fileis locked or protected.
A file of that name already exists.
Too many files are open.

Unspecified 1/O error.

6-56

www.ni.com

Chapter 6 Function Descriptions

FCreateAlways

MJErr FCreat eAl ways(fdp, path, perm ssions, openMbde, denyMbde, group);

Purpose

Creates afile with the name and location specified by path and with the specified
per missions, and opensthefilefor writing and reading, as specified by openM ode. If thefile
already exists, this function opens and truncates the file.

You can use denyM ode to control concurrent access to the file from within LabVIEW. You
can use the group parameter to assign the fileto a UNIX group; in Windows or Macintosh,
group isignored.

If the function creates thefile, the resulting file descriptor is stored in the address referred to
by fdp. If an error occurs, the function stores 0 in the address referred to by fdp and returns
an error.

@ Note Beforeyou cal this function, make sure that you understand how to use the fdp
parameter. Refer to the Pointers as Parameters section in Chapter 3, CINs, for more
information about using this parameter.

Parameters

Name Type Description

fdp File * Address at which FCr eat eAl ways stores
the file descriptor for the new file. If

FCr eat eAl ways fails, it stores0 in the
address fdp. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

path Pat h Path of the file you want to create.

permissions i nt32 Permissionsto assign to the new file.

openMode i nt 32 Access mode to use in opening thefile.
The following values are defined in the file
ext code. h:

e openReadOnl y—Open for reading.
e openWiteOnl y—Open for writing.

¢ openReadW it e—Open for both
reading and writing.

© National Instruments Corporation 6-57 Using External Code in LabVIEW

Chapter 6 Function Descriptions

Name

Type

Description

denyMode

int32

Mode that determines what level of
concurrent access to the fileis allowed.
The following values are defined in the file
ext code. h:

» denyReadW it e—Preventsothers
from reading from and writing to
the filewhileit is open.

* denyWit eOnl y—Preventsothers
fromwriting to thefileonly whileit
isopen.

* denyNei t her —Allows othersto
read from and write to thefilewhile
it isopen.

group

PStr

UNIX group you want to assign to the new
file.

Return Value

ngEr r, which can contain the following errors:
A bad argument was passed to the function. Verify the path.

Fileis aready open for writing. Thiserror isreturned only in
Macintosh and Solaris. Windowsreturnsf | OEr r when thefileis
aready open for writing.

nmgAr gEr r
f1sOpen

f NoPer m
f DupPat h
f TMFOpen
fl1CErr

Using External Code in LabVIEW

Access was denied, because the fileis locked or protected.
A file of that name already exists.
Too many files are open.

Unspecified 1/O error.

6-58

www.ni.com

Chapter 6 Function Descriptions

Chapter 6 Function Descriptions

FDirName

MyErr FDi r Name(path, dir);

Purpose

Creates apath for the parent directory of aspecified path. You can passthe same path variable
for the parent path that you usefor path. Therefore, you can call thisfunctionin thefollowing
two ways:

d err

/* the parent

hd err

/* the parent

= FDirName(path, dir);
path is returned

= FDi r Name(pat h, path);

path wites over

in a second path variable */

the existing path */

Parameters
Name Type Description
path Pat h Path whose parent path you want to
determine.
dir Pat h Parameter in which FDi r Nane storesthe
parent path.

Return Value

ngEr r, which can contain the following errors:

nmgAr gErr

Using External Code in LabVIEW

A bad argument was passed to the function. Verify the path.

6-60

www.ni.com

FDisposePath

Chapter 6 Function Descriptions

MJErr FDi sposePat h(p);

Purpose
Disposes of a path.

Parameters

Name

Type

Description

p

Pat h

Path you want to dispose of .

Return Value

nmgEr r, which can contain the following errors:

mZonekEr r

© National Instruments Corporation

Invalid path.

6-61

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FDisposeRefNum

MyErr FDi sposeRef Nun{ref Nunj;

Purpose

Disposes of the specified file refNum.

Parameters

Name Type

Description

refNum LVRef Num

File refnum of which you want to dispose.

Return Value

ngEr r, which can contain the following errors:

nmgAr gErr

Using External Code in LabVIEW

6-62

File refnum is not valid.

www.ni.com

FEmptyPath

Chapter 6 Function Descriptions

Pat h FEnpt yPat h(p);

Purpose

Makes an empty absolute path, which is not the same as disposing the path.

Parameters

Name

Type

Description

Pat h

Path allocated by FEnpt yPat h. If NULL,
FEnpt yPat h allocates a new path and
returnsthevalue. If p isapath, FEnpt yPat h
sets the existing path to an empty path and
returns the new p.

Return Value

The resulting path; if p was not NULL, the return value is the same empty absolute path as p.

If an error occurs, this function returns NULL.

© National Instruments Corporation

6-63

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FEXists

i nt 32 FExi sts(path);

Purpose

Returns information about the specified file or directory. It returns less information than
FGet I nf o, but it is much quicker on most platforms.

Parameters

Name

Type

Description

path

Pat h

Path of the file or directory about which you
want information.

Return Value

i nt 32, which can contain the following values:

kFl sFil e
kFl sFol der
kFNot Exi st

Using External Code in LabVIEW

Specified item is afile.
Specified item is adirectory or folder.

Specified item does not exist.

6-64

www.ni.com

FFlattenPath

Chapter 6 Function Descriptions

i nt32 FFl attenPat h(p,

Purpose

Convertsapath into aflat form that you can useto write the path asinformationto afile. This
function storestheresulting flat path in a pre-allocated buffer and returns the number of bytes.

To determine the size needed for the flattened path, passNULL for fp. Thefunction returnsthe
necessary size without writing anything into the location pointed to by fp.

Parameters
Name Type Description
path Pat h Path you want to flatten.
fp UPt r Addressinwhich FFI at t enPat h storesthe

resulting flattened path. If NULL,

FFI at t enPat h does not write anything to
this address, but does return the size that the
flattened path would require. Refer to the
Pointersas Parameterssectionin Chapter 3,
CINSs, for more information about using this
parameter.

Return Value

i nt 32, indicating the number of bytes required to store the flattened path.

© National Instruments Corporation

6-65

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FFlush

MyErr FFl ush(fd);

Purpose

Writes any buffered data for the specified file out to the disk.

Parameters

Name

Type

Description

fd

File

File descriptor associated with thefile.

Return Value

ngEr r, which can contain the following errors:

nmgAr gErr

flCErr

Using External Code in LabVIEW

Not avalid file descriptor.

Unspecified I/O error.

6-66

www.ni.com

Chapter 6 Function Descriptions

FGetAccessRights

MJErr FGet AccessRi ghts(path, owner, group, pernPtr);

Purpose
Returns access rights information about the specified file or directory.

Parameters

Name Type Description

path Pat h Path of the file or directory about which you
want access rights information.

owner PStr Address at which FGet AccessRi ght's
stores the owner of the file or directory.

group PSt r Address at which FGet AccessRi ght s
stores the group of the file or directory.

permPtr int32 * Address at which FGet AccessRi ght's
storesthe permissions of thefile or directory.
Refer to the Pointers as Parameters section
in Chapter 3, CINs, for more information
about using this parameter.

Return Value
ngEr r, which can contain the following errors:

myAr gEr r A bad argument was passed to the function. Verify the path.
FNot Found File not found.
fl1CErr Unspecified 1/0 error.

© National Instruments Corporation 6-67 Using External Code in LabVIEW

Chapter 6 Function Descriptions

FGetDefGroup

LSt r Handl e FGet Def G oup(gr oupHandl e) ;

Purpose

Gets the LabVIEW default group for afile or directory.

Parameters

Name

Type

Description

groupHandle

LSt r Handl e

Handle that representsthe LabVIEW default
group for afileor directory. If groupHandle
iSNULL, FGet Def G oup allocates a new
handle and returns the default group init. If
groupHandleisahandle, FGet Def Gr oup
returnsit, and groupHandle resizes to hold
the default group.

Return Value

Theresulting LSt r Handl e. If groupHandle was not NULL, the return value is the same
LSt r Handl e as groupHandle. If an error occurs, this function returns NULL.

Using External Code in LabVIEW

6-68

www.ni.com

FGetEOF

Chapter 6 Function Descriptions

MyErr FGet EOF(fd, sizep);

Purpose
Returns the size of the specified file.

Parameters
Name Type Description
fd File File descriptor associated with thefile.
sizep int32 * Address at which FGet ECF stores the size of

thefilein bytes. If an error occurs, *sizep is
undefined. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Return Value

myEr r, which can contain the following errors:

ngAr gEr r
flCErr

© National Instruments Corporation

6-69

Not avalid file descriptor.
Unspecified 1/0 error.

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FGetinfo

MyErr FGetlInfo(path, infop);

Purpose

Returns information about the specified file or directory.

Parameters
Name Type Description
path Pat h Path of the file or directory about which you
want information.
infop FI nfoPtr Address where FGet | nf o stores

information about the file or directory. If an
error occurs, infop isundefined. Refer to the
Pointersas Parameterssectionin Chapter 3,
CINSs, for more information about using this
parameter.

FI nf oPt r isadatastructure that defines the attributes of afile or directory. The following
code lists the file/directory information record, FI nf oPt r.

typedef struct {
i nt 32

int32

int32

int32

int32

ui nt 32

ui nt 32

Using External Code in LabVIEW

type;

creator;

per m ssi ons;

si ze;

rfSize;

cdat e;

ndat e;

6-70

* systemspecific file type--
O for directories */

* systemspecific file
creator-- 0 for folders (on
Mac only)*/

* gystemspecific fil e access
rights */

/* file size in bytes (data
fork on Mac) or entries in
directory*/

/* resource fork size (on Mac
only) */

/* creation date: seconds
since systemreference tine
*/

/* last nodification date:
seconds since systemref tine
*/

www.ni.com

Bool 32

Bool 32

Poi nt

Str 255

Str255

Return Value

f ol der;

i sl nvisible;

| ocati on;

owner ;

group;

Chapter 6 Function Descriptions

/* indicates whether path
refers to a folder */

/* indicates whether fileis
visible in File Dialog (on
Mac only)*/

/* system specific desktop
geogr aphi cal | ocation (on Mac
only)*/

/* owner (in pascal string
form of file or folder */
/* group (in pascal string
form of file or folder */

FI nfoRec, *FInfoPtr;

ngEr r, which can contain the following errors:

ngAr gEr r A bad argument was passed to the function. Verify the path.
FNot Found File not found.
f1CErr Unspecified 1/O error.

© National Instruments Corporation

6-71

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FGetPathType

MyErr FGet Pat hType(pat h,

Purpose

typePtr)

Returns the type (relative, absolute, or not a path) of a path.

Parameters
Name Type Description
path Pat h Path whose type you want to determine.
typePtr int32 * Address at which FGet Pat hType stores

the type. *typePtr can have the following
values:

» f AbsPat h—The path is absolute.
» f Rel Pat h—The path is relative.

» f Not APat h—The path isthe
canonical invalid path or an error
occurred.

Refer to the Pointers as Parameters section
in Chapter 3, CINSs, for more information
about using this parameter.

Return Value

ngEr r, which can contain the following errors:

nmgAr gErr

Using External Code in LabVIEW

A bad argument was passed to the function. Verify the path.

6-72

www.ni.com

Chapter 6 Function Descriptions

FGetVolinfo

MyErr FGet Vol | nfo(path, vinfo);

Purpose
Gets a path specification and information for the volume containing the specified file or
directory.

Parameters

Name Type Description

path Pat h Path of afile or directory contained on the
volume from which you want to get
information. This path is overwritten with a
path specifying the volume containing the
specified file or directory. If an error occurs,
path is undefined.

vinfo VI nf oRec * Address at which Fget Vol | nf o storesthe
information about the volume. If an error
occurs, vinfo is undefined. Refer to the
Pointersas Parameterssectionin Chapter 3,
CINSs, for more information about using this
parameter.

The following code describes the volume information record, VI nf oRec:
typedef struct {

ui nt 32 si ze; /* size in bytes of a
vol une */

ui nt 32 used; /* nunber of bytes used on
vol unme */

ui nt 32 free; /* nunber of bytes avail abl e

for use on volune */

} VI nf oRec;

Return Value
ngEr r, which can contain the following errors:

myAr gEr r A bad argument was passed to the function. Verify the path.
fl1CErr Unspecified 1/O error.

© National Instruments Corporation 6-73 Using External Code in LabVIEW

Chapter 6 Function Descriptions

FileNameCmp
Macro

int32 Fil eNameCmp(sl, s2);

Purpose

Lexically comparestwo file names, to determine whether oneislessthan, equal to, or greater
than the other. This comparison uses the same case sensitivity as the file system, that is,
case-insensitive for Macintosh and Windows, case-sensitive for SPARCstation.

Parameters
Name Type Description
sl PStr Pointer to a Pascal string.
s2 PStr Pointer to a Pascal string.

Return Value

<0, 0, or >0 if slislessthan, equal to, or greater than s2, respectively. Returns <0 if slisan

initial substring of s2.

Using External Code in LabVIEW

6-74

www.ni.com

FileNamelndCmp

Macro

Chapter 6 Function Descriptions

i nt32 Fil eNamel ndCnp(slp,

Purpose

s2p);

Thisfunctionissimilar to Fi | eNameCnp, except you pass the function handles to the string
datainstead of pointers. Use thisfunction to compare two file names lexically and determine
whether oneisless than, equal to, or greater than the other. This comparison uses the same
case sensitivity asthefile system, that is, case-insensitive for Macintosh and Windows,
case-sensitive for SPARCstation.

Parameters
Name Type Description
slp PStr * Pointer to a Pascal string.
s2p PStr * Pointer to a Pascal string.

Return Value

<0, 0, or >0 if slp islessthan, equal to, or greater than s2p, respectively. Returns <0 if slp is
aninitial substring of s2p.

© National Instruments Corporation

6-75

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FileNameNCmp

Macro

i nt32 Fi |l eNameNCnp(s1,

Purpose

s2,

n);

Lexically compares two file names to determine whether one islessthan, equal to, or greater
than the other, limiting the comparison to n characters. This comparison uses the same case
sengitivity as the file system, that is, case-insensitive for Macintosh and Windows,

case-sensitive for SPARCstation.

Parameters
Name Type Description
sl CStr Pointer to a C string.
s2 CStr Pointer to a C string.
n ul nt 32 Maximum number of charactersyou want to
compare.

Return Value

<0, 0, or >0 if sl islessthan, equal to, or greater than s2, respectively. Returns <0 if slisan

initial substring of s2.

Using External Code in LabVIEW

6-76

www.ni.com

FIsAPath

Chapter 6 Function Descriptions

Bool 32 Fl sAPat h(pat h);

Purpose

Determines whether path isavalid path.

Parameters

Name

Type

Description

path

Pat h

Path you want to verify.

Return Value

Bool 32, which can contain the following values:

TRUE
FALSE

© National Instruments Corporation

Path is well formed and type is absolute or relative.
Path is not valid.

6-77

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FIsAPathOfType

Bool 32 Fl sAPat hOF Type(pat h,

Purpose

of Type) ;

Determines whether apath isavalid path of the specified type (relative or absolute).

Parameters
Name Type Description
path Pat h Path you want to compare to the specified
type.
of Type i nt 32 Typeyou want to compare to the path’stype.

of Type can have the following values:

» f AbsPat h—Compare the path’'s
type to absolute.

» f Rel Pat h—Comparethe path’'s
typeto relative.

Return Value

Bool 32, which can contain the following values:
Path iswell formed and type isidentical to of Type.

TRUE

FALSE

Using External Code in LabVIEW

Otherwise.

6-78

www.ni.com

FIsAPathOrNotAPath

Chapter 6 Function Descriptions

Bool 32 FI sAPat hOr Not APat h(pat h) ;

Purpose

Determines whether path isavalid path or the canonical invalid path.

Parameters

Name

Type

Description

path

Pat h

Path you want to verify.

Return Value

Bool 32, which can contain the following values:

TRUE
FALSE

© National Instruments Corporation

Path iswell formed and type is absolute, relative, or not a path.
Path is not valid.

6-79

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FIsARefNum

Bool 32FI sARef Nun{ref Nunj ;

Purpose

Determines whether refNum isavalid file refnum.

Parameters

Name

Type

Description

refNum

LVRef Num

File refnum you want to verify.

Return Value

Bool 32, which can contain the following values:

TRUE
FALSE

Using External Code in LabVIEW

File refnum has been created and not yet disposed.

File refnum isnot valid.

6-80

www.ni.com

FISEmptyPath

Chapter 6 Function Descriptions

Bool 32 FI sEnpt yPat h(pat h) ;

Purpose

Determines whether path isavalid empty path.

Parameters

Name

Type

Description

path

Pat h

Path you want to verify.

Return Value

Bool 32, which can contain the following values:

TRUE
FALSE

© National Instruments Corporation

Path is well formed and empty and type is absolute or relative.

Path is not avalid empty path.

6-81

Using External Code in LabVIEW

Chapter 6

Function Descriptions

FListDir

MyErr FListDir(path, list, typeH);

Purpose

Determines the contents of adirectory.

The function fillsthe Az handle passed in list with a CPSt r, where the cnt field specifies the
number of concatenated Pascal stringsthat follow inthest r [] field. Refer to the Basic Data
Types sectionin Chapter 4, Programming I ssuesfor CINSs, for adescription of the CPSt r data
type. If typeH isnot NULL, the function fillsthe AZ handle passed in typeH with thefile type
information for each file name or directory name stored in list.

Parameters

Name Type Description

path Pat h Path of the directory whose contents you
want to determine.

list CPSt r Handl e Application zonehandleinwhich FLi st Di r
storesaseriesof concatenated Pascal strings,
preceded by a 4-byte integer field, cnt, that
indicates the number of itemsin the buffer.

typeH Fi | eType Application zonehandleinwhich FLi st Di r
storesaseries of Fi | eType records. If
typeH isnot NULL, FLi st Di r storesone

Fi | eType record in typeH for each Pascal
string in list. The nt" Fi | eType in typeH
denotes the file type information about the
fileor directory namedinthe nth stringiin list.

Thefiletyperecordis:
typedef struct {
int32 flags;
int32 type;
} FileType;
Only the least significant four bits of f | ags contain useful information. The remaining bits
arereserved for use by LabVIEW. You can test these four bits using the following four masks:
#define klsFile 0x01
#defi ne kRecogni zedType 0x02

Using External Code in LabVIEW 6-82 www.ni.com

Chapter 6 Function Descriptions

#defi ne klsLink 0x04
#defi ne kFl sl nvisible 0x08

Thekl sFi | e bit isset if the item described by the file type record is afile; otherwise, it is
clear. ThekRecogni zedType bit isset if theitem described is afile for which you can
determine a 4-character file type; otherwise, itisclear. Thekl sLi nk bitisset if theitem
described isa UNIX link or Macintosh alias; otherwise, itisclear. The kFI sI nvi si bl e bit
isset if the item described does not appear in afile dialog; otherwise, it is clear.

Thevaue of t ype isdefined only if the kRecogni zedType bitissetinf | ags. Inthiscase,
t ype isthe 4-character file type of the file described by the file type record. This 4-character
file typeis provided by the file system in Macintosh and is computed by examining the file
name extension on other systems.

Return Value
ngEr r, which can contain the following errors:

myAr gEr r A bad argument was passed to the function. Verify the path.

FNot Found The directory was not found.

FNoPer m Access was denied; the file, directory, or disk islocked or
protected.

MFul | Err I nsufficient memory.

f1CErr Unspecified 1/O error.

© National Instruments Corporation 6-83 Using External Code in LabVIEW

Chapter 6

FLockOrUnlockRange

Function Descriptions

MyErr FLockOr Unl ockRange(fd, node,

Purpose

Locks or unlocks a section of afile.

Parameters

of f set,

count, |ock);

Name

Type

Description

fd

File

File descriptor associated with thefile.

mode

int32

Position in the file relative to which
FLockOr Unl ockRange determinesthefirst
byte to lock or unlock, using the following
values:

» fStart—Thefirst bytetolock or
unlock is located offset bytes from
the start of the file (offset must be
greater than or equal to 0).

» fCurrent—Thefirst byteto lock
or unlock is located offset bytes
from the current position mark
(offset can be positive, 0, or
negative).

e fEnd—Thefirst byteto lock or
unlock is located offset bytes from

the end of thefile (offset must be
less that or equal to 0).

offset

int32

The position of thefirst byteto lock or
unlock. The position is the number of bytes
from the beginning of the file, the current
position mark, or the end of thefile, as
determined by mode.

count

int32

Number of bytesto lock or unlock starting at
the location specified by mode and offset.

lock

Bool 32

Indicates whether FLockOr Unl ockRange
locksor unlocksarange of bytes. If TRUE the
functionlocksarange; if FALSE thefunction
unlocks arange.

Using External Code in LabVIEW

6-84

www.ni.com

Chapter 6 Function Descriptions

Return Value
ngEr r, which can contain the following errors:

f1CErr Unspecified 1/O error.

© National Instruments Corporation 6-85 Using External Code in LabVIEW

Chapter 6 Function Descriptions

FMakePath

Pat h FMakePat h(path, type, [volune, directory, directory, ..., name,] NULL);

The brackets indicate that the volume, directory, and name parameters are optional.

Purpose

Createsanew path. If path isNULL, thisfunction allocates and returnsanew path. Otherwise,
path is set to the new path and this function returns path. If an error occurs, or path is not
specified correctly, the function returns NULL.

When you finish using a path, dispose of it using FDi sposePat h.

Parameters

Name Type Description

path Pat h Parameter in which FMakePat h returnsthe
new path if path isnot NULL.

type i nt32 Type of path you want to create. If
f AbsPat h, the new path is absolute. If
f Rel Pat h, the new path is relative.

volume PStr (Optional) Pascal string containing a legal
volume name. An empty string indicates to
go up alevel in the path hierarchy. This
parameter is used only for absolute pathsin
Macintosh or Windows.

directory PStr (Optional) Pascal string containing a legal
directory name. An empty string indicatesto
go up alevel in the path hierarchy.

name PStr (Optional) File or directory name. An empty
string indicates to go up alevel in the path
hierarchy.

NULL PStr Marker indicating the end of the path.

Return Value

The resulting path; if you specified path, the return value is the same as path. If an error
occurs, this function returns NULL.

Using External Code in LabVIEW 6-86 www.ni.com

FMClose

Chapter 6 Function Descriptions

MyErr FMC ose(fd);

Purpose

Closes the file associated with the file descriptor fd.

Parameters

Name

Type

Description

fd

File

File descriptor associated with thefile you

want to close.

Return Value

nmgEr r, which can contain the following errors:

ngAr gEr r

flCErr

© National Instruments Corporation

Not avalid file descriptor.

Unspecified 1/O error.

6-87

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FMOpen

MyErr FMOpen(fdp, path,

Purpose

openhbde,

denyMbde) ;

Opensafilewith the name and location specified by path for writing and reading, as specified

by openM ode.

You can use denyM ode to control concurrent access to the file from within LabVIEW.

If the function opens the file, the resulting file descriptor is stored in the address referred to
by fdp. If an error occurs, the function stores 0 in the address referred to by fdp and returns

an error.

@ Note Before you call this function, make sure that you understand how to use the fdp
parameter. Refer to the Pointers as Parameters section in Chapter 3, CINs, for more
information about using this parameter.

Parameters

Name

Type

Description

fdp

File *

Address at which FMOpen stores the file
descriptor for the new file. If FMOpen fails,
it stores 0 in the address fdp. Refer to the
Pointersas Parameter s sectionin Chapter 3,
CINSs, for more information about using this
parameter.

path

Pat h

Path of the file you want to create.

Using External Code in LabVIEW

6-88

www.ni.com

Chapter 6 Function Descriptions

Name

Type

Description

openMode

int32

Access mode to use in opening the file.
The following values are defined in thefile
ext code. h:

* openReadOnl y—Open for
reading.

e openWiteOnl y—Open for
writing; fileisnot truncated (datais
not removed). In Macintosh, this
mode provides true write-only
accessto files. In Windows or
UNIX, LabVIEW 1/O functions are
built in the C standard 1/0 library,
with which you have write-only
accessto afileonly if you are
truncating the file or making the
access append-only. Therefore, this
mode actually allows both read and
write access to filesin Windows or
UNIX.

e openReadW it e—Open for both
reading and writing.

e openWiteOnl yTruncat e—Open
for writing; truncates thefile.

denyMode

i nt32

Mode that determines what level of
concurrent accessto the fileis allowed.
The following values are defined in the file
ext code. h:

e denyReadW it e—Preventsothers
from reading from and writing to
thefilewhileit is open.

e denyWit eOnl y—Preventsothers
from writing to thefile only whileit
is open.

e denyNei t her —Allows othersto
read from and writeto thefilewhile
itisopen.

© National Instruments Corporation

Using External Code in LabVIEW

Chapter 6 Function Descriptions

Return Value

ngEr r, which can contain the following errors:

ngAr gErr
f1sOpen

f Not Found
f TMFOpen
flCerr

Using External Code in LabVIEW

A bad argument was passed to the function. Verify the path.

Fileis aready open for writing. Thiserror isreturned only in
Macintosh and Solaris. Windowsreturnsf | OEr r when thefileis
aready open for writing.

File not found.
Too many files are open.
Unspecified I/O error.

6-90 www.ni.com

FMove

Chapter 6 Function Descriptions

MyErr FMove(ol dPat h, newPat h);

Purpose

Moves afile or renamesit if the new path indicates the file isto remain in the same directory.

Parameters
Name Type Description
oldPath Pat h Path of the file or directory you want to
move.
newPath Pat h Path, including the name of thefile or
directory, where you want to move thefile or
directory.

Return Value

myEr r, which can contain the following errors:

ngAr gEr r
f Not Found
f NoPer m

f Di skFul |
f DupPat h
f1sOpen
f TMFOpen
nFul | Err
flCErr

© National Instruments Corporation

A bad argument was passed to the function. Verify the path.

File not found.

Access was denied; the file, directory, or disk islocked or

protected.
Disk isfull.

The new file aready exists.
The original fileis open for writing.

Too many files are open.

I nsufficient memory.

Unspecified 1/O error.

6-91

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FMRead

MyErr FMRead(fd, inCount, outCountp, buffer);

Purpose
ReadsinCount bytes from the file specified by the file descriptor fd. The function starts from
the current position mark and reads the data into memory, starting at the address specified by
buffer. Refer to the FMseek and FMTel | functions for more information about the current
position mark.

Thefunction stores the actual number of bytesread in * outCountp. The number of bytescan
belessthaninCount if the function encounters end-of-file before reading inCount bytes. The
number of bytesis zero if any other error occurs.

Parameters
Name Type Description

fd File File descriptor associated with the file from
which you want to read.

inCount i nt32 Number of bytes you want to read.

outCountp int32 * Address at which FMRead stores the number
of bytesread. FMRead does not store any
valueif NULL ispassed. Refer to the Pointers
as Parameters section in Chapter 3, CINS,
for more information about using this
parameter.

buffer Uptr Address where FMRead stores the data.

Return Value
ngEr r, which can contain the following errors:

ngAr gEr r Not avalid file descriptor or inCount < 0.
FECF EOF encountered.
f1CErr Unspecified 1/O error.

Using External Code in LabVIEW 6-92 www.ni.com

Chapter 6 Function Descriptions

FMTell

MyErr FMTel | (fd,

Purpose

of stp);

Returns the position of the current position mark in thefile.

Parameters
Name Type Description
fd File File descriptor associated with thefile.
ofstp int32 * Addressat which FMTel | storesthe position

of the current position mark, in terms of
bytes relative to the beginning of thefile. If
an error occurs, ofstp is undefined. Refer to
the Pointers as Parameters section in
Chapter 3, CINs, for moreinformation about
using this parameter.

Return Value

ngEr r, which can contain the following errors:

nmgAr gErr

flOerr

Using External Code in LabVIEW

Thefile descriptor is not valid.

Unspecified I/O error.

6-94

www.ni.com

FMWrite

Chapter 6 Function Descriptions

MJErr FMWNite(fd,

Purpose

i nCount ,

out Count p,

buffer);

WritesinCount bytes from memory, starting at the address specified by buffer, to thefile
specified by the file descriptor fd, starting from the current position mark. Refer to the
FMSeek and FMTel | functions for more information about the current position mark.

The function stores the actual number of byteswritten in * outCountp. The number of bytes
stored can be lessthan inCount if anf Di skFul | error occurs before the function writes
inCount bytes. The number of bytes stored is zero if any other error occurs.

Parameters
Name Type Description

fd File File descriptor associated with the file from
which you want to write.

inCount i nt 32 Number of bytes you want to write.

outCountp int32 * Address at which FMw i t e stores the
number of byteswritten. FMW i t e does not
storeany valueif NULL ispassed. Refer tothe
Pointersas Parameterssectionin Chapter 3,
CINSs, for more information about using this
parameter.

buffer Upt r Address of the data you want to write.

Return Value

ngEr r, which can contain the following errors:
Not avalid file descriptor or inCount < 0.

ngAr gEr r

f Di skFul |
f NoPer m
flOErr

© National Instruments Corporation

Out of space.
Access was denied.
Unspecified 1/O error.

6-95 Using External Code in LabVIEW

Chapter 6 Function Descriptions

FName

MJErr FNane(pat h,

Purpose
Copiesthe last component name of aspecified path into astring handle and resizes the handle
as necessary.
Parameters
Name Type Description
path Pat h Path whose last component name you want
to determine.
name StringHandl e Handle in which FNane returns the last
component name as a Pascal string.

Return Value

ngEr r, which can contain the following errors:
Badly formed path or path is root directory.

nmgAr gErr
nmFul | Err

Using External Code in LabVIEW

Insufficient memory.

6-96

www.ni.com

Chapter 6 Function Descriptions

FNamePtr

MyErr FNanePtr (path, nane);

Purpose

Copiesthelast component name of apath to the address specified by name. Thisroutine does
not allocate space for the returned data, so name must specify allocated memory of sufficient
size to hold the component name.

Parameters
Name Type Description
path Pat h Path whose last component name you want
to determine.
name PSt r Address at which FNanePt r storesthe last

component name as a Pascal string. This
address must specify allocated memory of
sufficient size to hold the name. Refer to the
Pointersas Parameterssectionin Chapter 3,
CINSs, for more information about using this
parameter.

Return Value
myEr r, which can contain the following errors:

mgAr gEr r Badly formed path or path is root directory.
nFul | Err I nsufficient memory.

© National Instruments Corporation 6-97 Using External Code in LabVIEW

Chapter 6 Function Descriptions

FNewDir

MYErr FNewDi r (path, permni ssions);

Purpose

Creates anew directory with the specified permissions. If an error occurs, the function does

not create the directory.

Parameters
Name Type Description
path Pat h Path of the directory you want to create.
per missions i nt 32 Permissions for the new directory.

Return Value

ngEr r, which can contain the following errors:

nmgAr gErr
f NoPer m

f DupPat h
flCerr

Using External Code in LabVIEW

A bad argument was passed to the function. Verify the path.

Access was denied; thefile, directory, or disk islocked or

protected.

Directory already exists.

Unspecified 1/O error.

6-98

www.ni.com

FNewRefNum

Chapter 6 Function Descriptions

MJEr r FNewRef Nun{ pat h,

Purpose

fd,

ref NumPtr);

Creates anew file refnum for an open file with the name and location specified by path and

the file descriptor fd.

If the file refnum is created, the resulting file refnum is stored in the address referred to by
refNumPtr. If an error occurs, NULL is stored in the address referred to by refNumPtr and

the error is returned.

Parameters

Name

Type

Description

path

Pat h

Path of the open file for which you want to
create afile refnum.

fd

File

File descriptor of the open filefor which you
want to create a file refnum.

refNumPtr

LVRef Num *

Address at which FNewRef Numstores the
new file refnum. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Return Value

nmgEr r, which can contain the following errors:

ngAr gEr r
nful | Err

© National Instruments Corporation

A bad argument was passed to the function. Verify the path.

I nsufficient memory.

6-99

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FNotAPath

Pat h FNot APat h(p) ;

Purpose

Creates a path that is the canonical invalid path.

Parameters

Name

Type

Description

Pat h

Path allocated by FNot APat h. If NULL,
FNot APat h allocates a new canonical
invalid path and returnsthe value. If pisa
path, FNot APat h setstheexisting pathtothe
canonica invalid path and returns the new p.

Return Value

The resulting path; if p was not NULL, the return value is the same canonical invalid path as
p. If an error occurs, this function returns NULL.

Using External Code in LabVIEW

6-100

www.ni.com

FPathCmp

Chapter 6 Function Descriptions

i nt 32 FPat hCnp(| spl,

Purpose

Compares two paths.

I'sp2);

Parameters
Name Type Description
Ispl Pat h First path you want to compare.
Isp2 Pat h Second path you want to compare.

Return Value

i nt 32, which can contain the following values:

-1

n+1

© MNational Instruments Corporation

Paths are of different types (for example, one is absolute and the
other isrelative).

Paths are identical.

Paths have the same first n components, but are not identical.

6-101

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FPathCpy

MyErr FPat hCpy(dst,

Purpose

Duplicates the path specified by src and stores the resulting path in the existing path, dst.

Parameters
Name Type Description
dst Pat h Path where FPat hCpy places the resulting
duplicate path. This path must aready have
been created.
src Pat h Path you want to duplicate.

Return Value

ngEr r, which can contain the following errors:

nmgAr gErr

Using External Code in LabVIEW

A bad argument was passed to the function. Verify the path.

6-102

www.ni.com

FPathToArr

Chapter 6 Function Descriptions

MyErr FPat hToArr (pat h,

Purpose

relativePtr,

arr);

Converts apath to a one-dimensional LabVIEW array of strings and determines whether the
path isrelative. Each component name of the path is converted in order into a string in the

resulting array.

If no error occurs, arr is set to an array of strings containing the component names of
path. If an error occurs, arr is set to an empty array.

Parameters

Name

Type

Description

path

Pat h

Path you want to convert to an array of
strings.

relativePtr

Bool 32 *

Address at which to store a Boolean value
indicating whether the specified path is
relative. Refer to the Pointers as Parameters
section in Chapter 3, CINs, for more
information about using this parameter.

UHandl e

DS handle where FPat hToAr r storesthe
resulting array of strings. This handle must
aready have been allocated.

Return Value

nmgEr r, which can contain the following errors:
Badly formed path or unallocated array.
I nsufficient memory.

ngAr gEr r
nful | Err

© MNational Instruments Corporation

6-103

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FPathToAZString

MyErr FPat hToAZStri ng(p,

Purpose

txt);

Convertsapath to an LSt r and stores the string as an application zone handle. The LSt r
contains the platform-specific syntax for the path.

Parameters
Name Type Description
p Pat h Path you want to convert to a string.
txt LstrHandl e * Addressat which FPat hToAZSt ri ng stores

the resulting string. If nonzero, the function
assumesitisavalid handle, resizesthe
handle, fillsinitsvalue, and storesthe handle
at the address referred to by txt. Refer to the
Pointersas Parameterssectionin Chapter 3,
CINSs, for more information about using this
parameter.

Return Value

ngEr r, which can contain the following errors:

nmgAr gErr
nmFul | Err

flCErr

Using External Code in LabVIEW

A bad argument was passed to the function. Verify the path.

Insufficient memory.

Unspecified 1/O error.

6-104

www.ni.com

FPathToDSString

Chapter 6 Function Descriptions

MyErr FPat hToDSStri ng(p,

Purpose

txt);

Convertsapath to an LSt r and stores the string as a data space zone handle. The LSt r
contains the platform-specific syntax for the path.

Parameters
Name Type Description
p Pat h Path you want to convert to a string.
txt LstrHandl e * Addressat which FPat hToDSSt r i ng stores

the resulting string. If nonzero, the function
assumesit isavalid handle, resizes the
handle, fillsinitsvalue, and storesthe handle
at the address referred to by txt. Refer to the
Pointersas Parameterssectionin Chapter 3,
CINSs, for more information about using this
parameter.

Return Value

myEr r, which can contain the following errors:

ngAr gEr r
nful | Err

flCErr

© MNational Instruments Corporation

A bad argument was passed to the function. Verify the path.
I nsufficient memory.
Unspecified 1/O error.

6-105

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FPathToPath

MyErr FPat hToPat h(p) ;

Purpose

Duplicates a path and returns the new path in the same variable.

Parameters

Name

Type

Description

Pat h *

Address of the path you want to duplicate.
Variable to which FPat hToPat h returnsthe
resulting path. Refer to the Pointers as
Parameters section in Chapter 3, CINSs, for
more information about using this parameter.

Return Value

ngEr r, which can contain the following errors:

nmgAr gErr

Using External Code in LabVIEW

A bad argument was passed to the function. Verify the path.

6-106

www.ni.com

Chapter 6 Function Descriptions

FRefNumToFD

MyEr r FRef NumroFD(r ef Num fdp);

Purpose
Gets the file descriptor associated with the specified file refnum.

If no error occurs, the resulting file descriptor is stored in the address referred to by fdp. If an
error occurs, NULL is stored in the address referred to by fdp and the error is returned.

Parameters
Name Type Description
refNum LVRef Num The file refnum whose associated file
descriptor you want to get.
fdp File * Address at which FRef NuniToFD stores the

file descriptor associated with the specified
file refnum. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Return Value
ngEr r, which can contain the following errors:

ngAr gEr r File refnum is not valid.

© MNational Instruments Corporation 6-107 Using External Code in LabVIEW

Chapter 6 Function Descriptions

FRefNumToPath

MyErr FRef NunifoPat h(ref Num path);

Purpose

Gets the path associated with the specified file refnum, and stores the resulting path in the
existing path.

If no error occurs, path is set to the path associated with the specified file refnum. If an error
occurs, path is set to the canonical invalid path.

Parameters
Name Type Description
refNum LVRef Num The file refnum whose associated path you
want to get.
path Pat h Path where FRef NuniloPat h storesthe path
associated with the specified file refnum.
This path must already have been created.

Return Value

ngEr r, which can contain the following errors:
A bad argument was passed to the function. Verify the path.

nmgAr gErr
nful | Err

Using External Code in LabVIEW

Insufficient memory.

6-108

www.ni.com

FRelPath

Chapter 6 Function Descriptions

MJErr FRel Pat h(start Pat h,

Purpose

endPat h,

rel Pat h) ;

Computes arelative path between two absol ute paths. You can pass the same path variable for

the new path that you use for startPath or relPath. Therefore, you can call thisfunction in

the following three ways:

* FRel Pat h(start Pat h,
/* the relative path is returned in a third path variable */

* FRel Pat h(start Pat h,
/* the new path wites over the old startPath */

* FRel Pat h(start Pat h,
/* the new path wites over the old endPath */

endPat h,

endPat h,

endPat h,

rel Pat h) ;

start Path);

endPat h) ;

Parameters
Name Type Description
startPath Pat h Absolute path from which you want the
relative path to be computed.
endPath Pat h Absolute path to which you want the rel ative
path to be computed.
relPath Pat h Path returned by f AddPat h.

Return Value

myEr r, which can contain the following errors:
A bad argument was passed to the function. Verify the path.
I nsufficient memory.

ngAr gEr r
nFul | Err

© MNational Instruments Corporation

6-109

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FRemove

MJErr FRenove(path);

Purpose
Deletes afile or adirectory. If an error occurs, this function does not remove the file or
directory.
Parameters
Name Type Description
path Pat h Path of the file or directory you want to
delete.

Return Value

ngEr r, which can contain the following errors:
A bad argument was passed to the function. Verify the path.
File not found.

nmgAr gErr
f Not Found
f NoPer m

f1sOpen
flCerr

Using External Code in LabVIEW

Access was denied; the file, directory, or disk islocked or

protected.

File is open or directory is not empty.

Unspecified I/O error.

6-110

www.ni.com

Chapter 6 Function Descriptions

FSetAccessRights

MyErr FSet AccessRi ghts(path, owner, group, pernPtr);

Purpose
Sets access rights information for the specified file or directory. If an error occurs, no
information changes.

Parameters
Name Type Description

path Pat h Path of the file or directory for which you
want to set access rights information.

owner PStr New owner that FSet AccessRi ght s sets
for thefile or directory if owner isnot NULL.

group PSt r New group that FSet AccessRi ght s sets
for thefile or directory if group isnot NULL.

permPtr int32 * Address of new permissions that
FSet AccessRi ght s setsfor thefile or
directory if permPtr isnot NULL.

Return Value
ngEr r, which can contain the following errors:

myAr gEr r A bad argument was passed to the function. Verify the path.
FNot Found File not found.
fl1CErr Unspecified 1/0 error.

© MNational Instruments Corporation 6-111 Using External Code in LabVIEW

Chapter 6 Function Descriptions

FSetEOF

MyErr FSet EOF(fd,

Purpose

Sets the size of the specified file. If an error occurs, the file size does not change.

Parameters
Name Type Description
fd File File descriptor associated with thefile.
size int32 * New file sizein bytes.

Return Value

ngEr r, which can contain the following errors:

nmgAr gErr
f Di skFul |
f NoPer m

flCerr

Using External Code in LabVIEW

Not avalid file descriptor or size < 0.

Disk isfull.

Access was denied; the file already exists or the disk is locked or

protected.

Unspecified 1/O error.

6-112

www.ni.com

FSetInfo

Chapter 6 Function Descriptions

MyErr FSet|nfo(path, infop);

Purpose

Setsinformation for the specified file or directory. If an error occurs, no information changes.

Parameters
Name Type Description
path Pat h Path of the file or directory for which you
want to set information.
infop FI nf oPtr Address of information FSet | nf o setsfor
thefile or directory.

FI nf oPt r isadata structure that defines the attributes of afile or directory. The following
code lists the file/directory information record, FI nf oPt r.

typedef struct {

© MNational Instruments Corporation

i nt 32

i nt 32

i nt32

i nt 32

i nt 32

ui nt 32

ui nt 32

Bool 32

type;

creator;

per ni ssi ons;

si ze;

rfSize;

cdat e;

ndat e;

f ol der;

6-113

* systemspecific file type--
0 for directories */

* system specific file
creator-- 0 for folders (on
Mac only)*/

* systemspecific fil e access
rights */

/* file size in bytes (data
fork on Mac) or entries in
di rectory*/

/* resource fork size (on Mac
only) */

/* creation date: seconds
since systemreference tine
*/

/* last nodification date:
seconds since systemref tine
*/

/* indicates whether path
refers to a folder */

Using External Code in LabVIEW

Chapter 6 Function Descriptions

Bool 32 i slnvisible; /* indicates whether fileis
visible in File Dialog (on

Mac only)*/

Poi nt | ocation; /* system specific desktop
geogr aphi cal | ocation (on Mac
only)*/

Str255 owner; /* owner (in pascal string
form of file or folder */

Str255 group; /* group (in pascal string
form of file or folder */

} FI nfoRec, *FInfoPtr;

Return Value
ngEr r, which can contain the following errors:
ngAr gEr r A bad argument was passed to the function. Verify the path.
FNot Found File not found.
f1CErr Unspecified 1/O error.

Using External Code in LabVIEW 6-114 www.ni.com

Chapter 6 Function Descriptions

FSetPathType
MyErr FSet Pat hType(path, type);
Purpose
Changes the type of apath (which must be avalid path) to the specified type (relative or
absolute).
Parameters
Name Type Description
path Pat h Path whose type you want to change.
Type i nt 32 New typeyou want the path to have. type can

have the following values:
» f AbsPat h—The path is absolute.
* f Rel Pat h—The path is relative.

Return Value

ngEr r, which can contain the following errors:
Badly formed path or invalid type.

mgAr gEr r

© MNational Instruments Corporation

6-115

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FStrFitsPat

Bool 32FSt r Fi t sPat (pat,

Purpose

str, pLen,

Determines whether afilename, str, matches a pattern, pat.

Parameters

Name

Type

Description

pat

uChar *

Pattern (string) to which filenameisto be
compared. The following characters have
special meanings in the pattern.

\ isliteral, not treated as having a special
meaning. A singlebackslash at theend of pat
is the same as two backslashes.

? matches any one character.

* matches zero or more characters.

Str

uChar *

Filename (string) to compare to pattern.

pLen

int32

Number of charactersin pat.

sLen

int32

Number of charactersin str.

Return Value

Bool 32, which can contain the following values:

TRUE
FALSE

Using External Code in LabVIEW

Filename fits the pattern.

Filename does not match the pattern.

www.ni.com

Chapter 6 Function Descriptions

FStringToPath

MyErr FStringToPat h(text, p);

Purpose
Createsapath froman LSt r. The LSt r contains the platform-specific syntax for a path.

Parameters
Name Type Description
text LstrHandl e String that contains the path in
platform-specific syntax.
p Path * Address at which Fst ri ngToPat h stores

the resulting path. If non-zero, the function
assumesit isavalid path, resizes the path,
and fillsin itsvalue. If NULL, the function
creates anew path, fillsin its value, and
storesthe path at the addressreferred to by p.
Refer to the Pointers as Parameters section
in Chapter 3, CINs, for more information
about using this parameter.

Return Value
myEr r, which can contain the following errors:

nFul | Err I nsufficient memory.

© MNational Instruments Corporation 6-117 Using External Code in LabVIEW

Chapter 6 Function Descriptions

FTextToPath
MyErr FText ToPat h(text, tlen, *p);
Purpose
Createsapath from astring (at the addresstext) that represents a path in the platform-specific
syntax for a path.
Parameters
Name Type Description
text UPt r String that contains the path in
platform-specific syntax.
tlen i nt 32 Number of charactersin text.
p Path * Address at which FText ToPat h storesthe

resulting path. If non-zero, the function
assumesit isavalid path, resizes the path,
andfillsinitsvaue. If NULL, the function
creates anew path, fillsinitsvalue, and
storesthe path at the addressreferred to by p.
Refer to the Pointers as Parameters section
in Chapter 3, CINSs, for more information
about using this parameter.

Return Value
ngEr r, which can contain the following errors:

nFul | Err Insufficient memory.

Using External Code in LabVIEW 6-118 www.ni.com

FUnFlattenPath

Chapter 6 Function Descriptions

i nt 32 FUNnFl att enPat h(fp,

Purpose

pPtr);

Converts aflattened path (created using FFI at t enPat h) into a path.

Parameters
Name Type Description

fp UPt r Pointer to the flattened path you want to
convert to a path.

pPtr Path * Address at which FUnFI at t enPat h stores
the resulting path. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Return Value

Number of bytes the function interpreted as a path.

© MNational Instruments Corporation

6-119

Using External Code in LabVIEW

Chapter 6 Function Descriptions

FVolName

MyErr FVol Name(pat h,

Purpose

vol);

Creates a path for the volume of an absolute path by removing all but the first component
name from path. You can pass the same path variable for the volume path that you use for
path. Therefore, you can call thisfunction in the following two ways:

d err

hd err

/* the parent

= FVol Nane(pat h,
/* the parent

vol) ;

= FVol Narme(pat h, path);

path is returned in a second path variable */

path wites over the existing path */

Parameters
Name Type Description
path Pat h Path whose volume path you want to
determine.
vol Pat h Parameter in which FVol Nane storesthe
volume path.

Return Value

ngEr r, which can contain the following errors:

nmgAr gErr

Using External Code in LabVIEW

A bad argument was passed to the function. Verify the path.

6-120

www.ni.com

Chapter 6 Function Descriptions

GetALong

Macro

i nt32 Get ALong(p);

Purpose

Retrievesani nt 32 from avoi d pointer. In SPARCstation, this function can retrieve an
i nt 32 at any address, even if thei nt 32 isnot long word aligned.

Parameters

Name Type Description

p void * Address from which you want to read an
i nt32.

Return Value
i nt 32 stored at the specified address.

© MNational Instruments Corporation 6-121 Using External Code in LabVIEW

Chapter 6 Function Descriptions

HexChar

i nt 32 HexChar (n);

Purpose

Returns the ASCII character in hex that represents the specified valuen, 0 < n < 15.

Parameters

Name

Type

Description

int32

Decimal value between 0 and 15.

Return Value

The corresponding ASCI| hex character. If n isout of range, the function returns the ASCI|
character corresponding to n modulo 16.

Using External Code in LabVIEW

6-122

www.ni.com

Hil6

Macro

Chapter 6 Function Descriptions

intl6 Hi 16(x);

Purpose

Returns the high order i nt 16 of ani nt 32.

Parameters

Name

Type

Description

int32

i nt 32 for which you want to determine the

highi nt 16.

© MNational Instruments Corporation

6-123

Using External Code in LabVIEW

Chapter 6 Function Descriptions

HiByte

Macro

int8 Hi Byte(x);

Purpose

Returns the high order i nt 8 of ani nt 16.

Parameters

Name

Type

Description

intl6

i nt 16 for which you want to determine the

highi nt 8.

Using External Code in LabVIEW

6-124

www.ni.com

HiNibble

Macro

Chapter 6 Function Descriptions

ul nt8 Hi Ni bbl e(x);

Purpose

Returns the value stored in the high four bits of an ul nt 8.

Parameters

Name

Type

Description

ulnt8

ul nt 8 whose high four bits you want to

extract.

© MNational Instruments Corporation

6-125

Using External Code in LabVIEW

Chapter 6 Function Descriptions

IsAlpha

Bool 32 I sAl pha(c);

Purpose

Returns TRUE if the character ¢ is alowercase or uppercase letter, that is, inthe set a to z or
Ato Z. In SPARCstation, this function also returns TRUE for international characters, such as

a, &4, A, and soon.

Parameters

Name

Type

Description

uChar

Character you want to analyze.

Return Value

Bool 32, which can contain the following values:
The character is aphabetic.

TRUE
FALSE

Using External Code in LabVIEW

Otherwise.

6-126

www.ni.com

IsDigit

Chapter 6 Function Descriptions

Bool 32 IsDigit(c);

Purpose

Returns TRUE if the character c is between 0 and 9.

Parameters

Name

Type

Description

uChar

Character you want to analyze.

Return Value

Bool 32, which can contain the following values:

TRUE
FALSE

© MNational Instruments Corporation

Character isanumerical digit.

Otherwise.

6-127

Using External Code in LabVIEW

Chapter 6 Function Descriptions

IsLower

Bool 32 IsLower(c);

Purpose

Returns TRUE if the character cisalowercaseletter, that is, inthe set a toz. In SPARCstation,
this function also returns TRUE for lowercase international characters, such asé, 6, and so on.

Parameters

Name

Type

Description

uChar

Character you want to analyze.

Return Value

Bool 32, which can contain the following values:

TRUE
FALSE

Using External Code in LabVIEW

Character is alowercase | etter.

Otherwise.

6-128

www.ni.com

IsUpper

Chapter 6 Function Descriptions

Bool 32 | sUpper(c);

Purpose

Returns TRUE if the character c is between an uppercase letter, that is, inthe set Ato Z. In
SPARCstation, thisfunction also returns TRUE for uppercase international characters, such as

O, A, and so on.

Parameters

Name

Type

Description

uChar

Character you want to analyze.

Return Value

Bool 32, which can contain the following values:

TRUE
FALSE

© MNational Instruments Corporation

Character is an uppercase | etter.

Otherwise.

6-129

Using External Code in LabVIEW

Chapter 6 Function Descriptions

Lol6

Macro

int1l6 Lol6(x);

Purpose

Returnsthe low order i nt 16 of ani nt 32.

Parameters

Name

Type

Description

int32

i nt 32 for which you want to determine the

low i nt 16.

Using External Code in LabVIEW

6-130

www.ni.com

LoByte

Macro

Chapter 6 Function Descriptions

int8 LoByte(x);

Purpose

Returnsthelow order i nt 8 of ani nt 16.

Parameters

Name

Type

Description

intl6

i nt 16 for which you want to determine the

low i nt 8.

© MNational Instruments Corporation

6-131

Using External Code in LabVIEW

Chapter 6 Function Descriptions

Long

Macro

int32 Long(hi, 10);

Purpose

Createsani nt 32 fromtwo i nt 16 parameters.

Parameters
Name Type Description
hi int16 Highi nt 16 for theresultingi nt 32.
lo int16 Low i nt 16 for theresultingi nt 32.

Return Value
Theresulting i nt 32.

Using External Code in LabVIEW

6-132

www.ni.com

LoNibble

Macro

Chapter 6 Function Descriptions

ul nt 8 LoNi bbl e(x);

Purpose

Returns the value stored in the low four bits of an ul nt 8.

Parameters

Name

Type

Description

ulnt8

ul nt 8 whose low four bits you want to

extract.

© MNational Instruments Corporation

6-133

Using External Code in LabVIEW

Chapter 6 Function Descriptions

LStrBuf

Macro

uChar *LStrBuf(s);

Purpose

Returns the address of the string data of along Pascal string, that is, the address of s- >str.

Parameters

Name

Type

Description

LStrPtr

Pointer to along Pascal string.

Return Value

The address of the string data of the long Pascal string.

Using External Code in LabVIEW

6-134

www.ni.com

LStrCmp

Chapter 6 Function Descriptions

LStrPtr LStrCap(lip, |2p);

Purpose

Lexically comparestwo long Pascal stringsto determine whether oneislessthan, equal to, or
greater than the other. This comparison is case sensitive.

Parameters
Name Type Description
I1p LStrPtr Pointer to along Pascal string.
12p LStrPtr Pointer to along Pascal string.

Return Value

<0, 0, or >0 if I1p islessthan, equal to, or greater than 12p, respectively. Returns <0 if I1p is
aninitial substring of 12p.

© MNational Instruments Corporation

6-135

Using External Code in LabVIEW

Chapter 6 Function Descriptions

LStrLen

Macro

int32 LStrLen(s);

Purpose

Returns the length of along Pascal string, that is, s- >cnt .

Parameters

Name

Type

Description

LStrPtr

Pointer to along Pascal string.

Return Value

The number of charactersin the long Pascal string.

Using External Code in LabVIEW

6-136

www.ni.com

LToPStr

Chapter 6 Function Descriptions

int32 LToPStr (I strp,

Purpose

pstr);

Converts along Pascal string to a Pascal string. If the long Pascal string is more than

255 characters, this function converts only the first 255 characters. The function works even
if the pointers|Istrp and pstr refer to the same memory location. The function assumes pstr
is large enough to contain Istrp.

Parameters
Name Type Description
Istrp LStrptr Pointer to along Pascal string.
pstr PSt r Pointer to a Pascal string.

Return Value

The length of the string, truncated to a maximum of 255 characters.

© MNational Instruments Corporation

6-137

Using External Code in LabVIEW

Chapter 6 Function Descriptions

Max

int32 Max(n,n;

Purpose

Returns the maximum of two i nt 32 parameters.

Parameters
Name Type Description
n, m int32 i nt 32 parameters whose maximum value
you want to determine.

Using External Code in LabVIEW

6-138

www.ni.com

Chapter 6 Function Descriptions

MilliSecs

uint32 MIIliSecs();

Return Value

The time in milliseconds since an undefined system time. The actual resolution of thistimer
is system dependent.

© MNational Instruments Corporation 6-139 Using External Code in LabVIEW

Chapter 6 Function Descriptions

Min
int32 Mn(n, m;
Purpose
Returns the minimum of two i nt 32 parameters.
Parameters
Name Type Description
n,m int32 i nt 32 parameters whose minimum value

you want to determine.

Using External Code in LabVIEW

6-140

www.ni.com

Chapter 6 Function Descriptions

MoveBlock
voi d MoveBl ock(ps, pd, size);
Purpose
Moves size bytesfrom one address to another. The source and destination memory blocks can
overlap.
Parameters
Name Type Description
ps UPt r Pointer to source.
pd UPt r Pointer to destination.
size i nt 32 Number of bytes you want to move.

© MNational Instruments Corporation

6-141

Using External Code in LabVIEW

Chapter 6 Function Descriptions

NumericArrayResize

MJErr Nunmeri cArrayResi ze (int32 typeCode,

Purpose

i nt 32 nunDi ns, Uhandl e *dat aHP,

i nt 32 total NewSi ze)

Resizes adata handle that refersto a numeric array. Thisroutine also accounts for alignment
issues. It does not set the array dimension field. If *dataHP isNULL, LabVIEW allocates a
new array handlein *dataHP.

Parameters
Name Type Description

typeCode i nt32 Datatype for the array you want to resize.

numDims i nt32 Number of dimensionsin the data structure
to which the handle refers.

*dataHP UHandl e Pointer to the handle you want to resize.

totalNewSize i nt 32 New number of elementsto whichthehandle
should refer.

Return Value

ngEr r, which can contain the following errors:

NoEr r
MFul | Err
nZoneEr r

Using External Code in LabVIEW

No error.

Not enough memory to perform the operation.

Handle or pointer not in specified zone.

6-142

www.ni.com

Offset

Macro

Chapter 6 Function Descriptions

intle Ofset(type, field);

Purpose

Returns the offset of the specified field within the structure called type.

Parameters
Name Type Description
type — Structure that contains field.
field — Field whose offset you want to determine.
Return Value
Anoffset asani nt 16.
© MNational Instruments Corporation 6-143 Using External Code in LabVIEW

Chapter 6 Function Descriptions

Pin
int32 Pin(i, low high);
Purpose
Returnsi coerced to fall within the range from low to high inclusive.
Parameters
Name Type Description
i i nt32 Value you want to coerce to the specified
range.
low i nt 32 Low value of the range to which you want to
coercei.
high i nt 32 High value of the range to which you want to
coercei.
Return Value
i coerced to the specified range.
Using External Code in LabVIEW 6-144 www.ni.com

Chapter 6 Function Descriptions

PPStrCaseCmp

i nt32 PPStrCaseCnp(slp, s2p);

Purpose
Thisfunction issimilar to PSt r CaseCnp, except you pass the function handles to the string
datainstead of pointers. Use this function to compare two Pascal strings lexically and
determine whether one isless than, equal to, or greater than the other. This comparison
ignores differencesin case.

Parameters
Name Type Description
slp PStr * Pointer to a Pascal string.
s2p PStr * Pointer to a Pascal string.

Return Value
<0, 0, or >0 if slp islessthan, equal to, or greater than s2p, respectively. Returns <0 if slp is
an initial substring of s2p.

© MNational Instruments Corporation 6-145 Using External Code in LabVIEW

Chapter 6 Function Descriptions

PPStrCmp

int32 PPStrCnp(sip,

Purpose

This function issimilar to PSt r Cnp, except you pass the function handles to the string data
instead of pointers. Use this function to compare two Pascal strings lexically and determine
whether oneislessthan, equal to, or greater than the other. This comparison is case sensitive.

Parameters
Name Type Description
slp PStr * Pointer to a Pascal string.
s2p PStr * Pointer to a Pascal string.

Return Value

<0, 0, or >0 if slp islessthan, equal to, or greater than s2p, respectively. Returns<0 if slp is
an initial substring of s2p.

Using External Code in LabVIEW

6-146

www.ni.com

Printf

Chapter 6 Function Descriptions

SPrintf, SPrintfp, PPrintf, PPrintfp, FPrintf, LStrPrintf

i nt32
i nt 32
int32
int32
i nt32

MyEr r

SPrintf(CStr destCSt, CStr cfmt, ...);
SPrintfp(CStr destCSt, PStr pfnt, ...)
PPrintf(PStr destPSt, CStr cfnt, ...);
PPrintfp(PStr destPSt, PStr pfnmt, ...)
FPrintf(File destFile, CStr cfnt, ...)
LStrPrintf(LStrHandl e destLsh, CStr cfnt,...);

Purpose

These functions format datainto an ASCII format to a specified destination. A format string
describes the desired conversions. These functions take a variable number of arguments, and
each argument follows the format string paired with a conversion specification embedded in
the format string. The second parameter, cfmt or pfmt, must be cast appropriately to either
typeCStr or PStr.

SPrintf printstoaC string, just likethe C library function spri nt f.spri nt f returnsthe
actual character count and appends aNULL byte to the end of the destination C string.

SPrintfpisthesameasSPri nt f, except the format string is a Pascal string instead of
aC string. Aswith SPri nt f, SPri nt f p appends a NULL byte to the end of the destination
C string.

If you passNULL for destCStr, SPri nt f and SPri nt f p do not write datato memory, and
they return the number of characters required to contain the resulting data, not including the
terminating NULL character.

PPri nt f printstoaPascal string with amaximum of 255 characters. PPr i nt f setsthelength
byte of the Pascal string to reflect the size of the resulting string. PPr i nt f does not append a
NULL byte to the end of the string.

PPrintfpisthesameasPPri nt f, except the format string is a Pascal string instead of a
C string. Aswith PPri nt f, PPri nt f p setsthe length byte of the Pascal string to reflect the
size of the resulting string.

FPrintf printsto afile specified by the refnum in fd. FPri nt f does not embed alength
count or aterminating NULL character in the data written to thefile.

LStrPrintf printstoalLabVIEW string specified by destL sh. Becausethestringisahandle
that may beresized, LSt r Pri nt f canreturn memory errorsjust asDSSet Handl eSi ze does.
These functions accept the following special characters:

\'b Backspace

\ f Form feed

© MNational Instruments Corporation 6-147 Using External Code in LabVIEW

Chapter 6 Function Descriptions

\'n New line (inserts the system-dependent end-of-line char(s); for
example, CR on Macintosh, NL on UNIX, CRNL on DOS)

\r Carriage return

\'s Space

\'t Tab

%% Percentage character (to print %)

These functions accept the following formats:
% -] [field size] [.precision] [argunent size] [conversion]

[-] Left-justifies what is printed; if not specified, the datais
right-justified.
[field size] Indicates the minimum width of the field to print into. If not

specified, the default is 0. If less than the specified number of

Using External Code in LabVIEW 6-148 www.ni.com

Chapter 6 Function Descriptions

Conversion
Specifier Description

f Fixed-point format

H String handle (LSt r Handl e)

0 Octd
Pascal string

P Long Pascal string (LStr Ptr)

q Print a point (passed by value) as %, %a
representing horizontal, vertical coordinates

Q Print a point (passed by value) as
hv(%, %) representing horizontal,
vertical coordinates

r Print arectangle (passed by reference) as
9%, %, %, %a representing top, |eft,
bottom, right coordinates

R Print arectangle (passed by reference) as
t1br (%, %, %d, %d) representing top,
|eft, bottom, right coordinates

s String

u Unsigned decimal

X Hex

z Path

© MNational Instruments Corporation 6-149 Using External Code in LabVIEW

Chapter 6 Function Descriptions

PStrBuf

Macro

uChar *PStrBuf (s);

Purpose
Returns the address of the string data of a Pascal string, that is, the address following the
length byte.
Parameters
Name Type Description
S PStr Pointer to a Pascal string.

Using External Code in LabVIEW

6-150

www.ni.com

PStrCaseCmp

Chapter 6 Function Descriptions

int32 PStrCaseCmp(sl,

Purpose

s2);

Lexically compares two Pascal strings to determine whether oneisless than, equal to, or
greater than the other. This comparison ignores differencesin case.

Parameters
Name Type Description
sl PStr Pointer to a Pascal string.
s2 PSt r Pointer to a Pascal string.

Return Value

<0, 0, or >0 if slislessthan, equal to, or greater than s2, respectively. Returns <0 if slisan
initial substring of s2.

© MNational Instruments Corporation

6-151

Using External Code in LabVIEW

Chapter 6 Function Descriptions

PStrCat

int32 PStrCat(sl,

Purpose

Concatenates a Pascal string, s2, to the end of another Pascal string, s, and returns the result
in sl. Thisfunction assumes sl islarge enough to contain the resulting string. If the resulting
string is larger than 255 characters, the function limits the resulting string to 255 characters.

Parameters
Name Type Description
sl PStr Pointer to a Pascal string.
s2 PStr Pointer to a Pascal string.

Return Value

The length of the resulting string.

Using External Code in LabVIEW

6-152

www.ni.com

PStrCmp

Chapter 6 Function Descriptions

int32 PStrCnp(sl,

Purpose

Lexically compares two Pascal strings to determine whether oneisless than, equal to, or
greater than the other. This comparison is case sensitive.

Parameters
Name Type Description
sl PStr Pointer to a Pascal string.
s2 PSt r Pointer to a Pascal string.

Return Value

<0, 0, or >0 if slislessthan, equal to, or greater than s2, respectively. Returns <0 if slisan

initial substring of s2.

© MNational Instruments Corporation

6-153

Using External Code in LabVIEW

Chapter 6 Function Descriptions

PStrCpy

PStr PStr Cpy(dst,

Purpose

src);

Copiesthe Pascal string src to the Pascal string dst. Thisfunction assumesdst islarge enough
to contain src.

Parameters
Name Type Description
dst PStr Pointer to a Pascal string.
src PStr Pointer to a Pascal string.

Return Value

A copy of the destination Pascal string pointer.

Using External Code in LabVIEW

6-154

www.ni.com

PStrLen

Macro

Chapter 6 Function Descriptions

ulnt8 PStrLen(s);

Purpose

Returnsthe length of aPascal string, that is, the value at thefirst byte at the specified address.

Parameters

Name

Type

Description

PStr

Pointer to a Pascal string.

© MNational Instruments Corporation

6-155

Using External Code in LabVIEW

Chapter 6 Function Descriptions

PStrNCpy

PStr PStr NCpy(dst,

Purpose

n);

Copiesthe Pascal string src to the Pascal string dst. If the source string is greater than n, this
function copies only n bytes. The function assumes dst is large enough to contain src.

Parameters
Name Type Description
dst PStr Pointer to a Pascal string.
src PStr Pointer to a Pascal string.
n i nt 32 Maximum number of bytesyou want to copy,
including the length byte.

Return Value
A copy of the destination Pascal string pointer.

Using External Code in LabVIEW

6-156

www.ni.com

PToCStr

Chapter 6 Function Descriptions

int32 PToCStr (pstr,

Purpose

cstr);

Converts a Pascal string to a C string. This function works even if the pointers pstr and cstr
refer to the same memory location. The function assumes cstr islarge enough to contain pstr.

Parameters
Name Type Description
pstr PStr Pointer to a Pascal string.
cstr CStr Pointer to a C string.

Return Value

The length of the string.

© MNational Instruments Corporation

6-157

Using External Code in LabVIEW

Chapter 6 Function Descriptions

PToLStr

int32 PToLStr(pstr,

Purpose

Istrp);

Converts aPascal string to along Pascal string. Thisfunction works even if the pointers pstr
and Istrp refer to the same memory location. The function assumes Istrp is large enough to

contain pstr.
Parameters
Name Type Description
pstr PStr Pointer to a Pascal string.
Istrp LStrPtr Pointer to along Pascal string.

Return Value

The length of the string.

Using External Code in LabVIEW

6-158

www.ni.com

Chapter 6 Function Descriptions

QSort

void QSort(arrayp, n, elntSize, conpareProcP());

Purpose

Sorts an array of an arbitrary data type using the QuickSort algorithm. In addition to passing
the array you want to sort to thisroutine, you also pass a comparison procedure that this sort
routine then uses to compare elements in the array.

The comparison routine should return a number lessthan zero if aislessthan b, zeroif ais
equal to b, and anumber greater than zero if ais greater than b.

You should declare the comparison routine to have the following parameters and return type.
i nt32 compareProcP(UPtr a, UPtr b);

Parameters
Name Type Description

arrayp Upt r Pointer to an array of data.

n i nt 32 Number of elementsin the array you want to
sort.

emtSize i nt 32 Sizein bytes of an array element.

compar eProcP Conpar eProcPtr | Comparison routine you want QSort to use
to compare array elements. QSor t passes
this routine the addresses of two elements
that it needs to compare.

© MNational Instruments Corporation 6-159 Using External Code in LabVIEW

Chapter 6 Function Descriptions

RandomGen

voi d RandonmGen(xp);

Purpose

Generates arandom number between 0 and 1 and stores it at xp.

Parameters

Name

Type

Description

Xp

float64 *

Location to store the resulting
double-precision floating-point random
number. Refer to the Pointers as Parameters
section in Chapter 3, CINs, for more
information about using this parameter.

Using External Code in LabVIEW

6-160

www.ni.com

Chapter 6 Function Descriptions

SecsToDate

voi d SecsToDat e(secs, dateRecordP);

Purpose

Convertsthe seconds since January 1, 1904, 12:00 AM, GMT into a data structure containing
numerical information about the date, including the year (1904 through 2040), the month
(1 through 12), the day asit corresponds to the current year (1 through 366), month

(1 through 31), and week (1 through 31), hour (0 through 23), the hour (0 through 23),
minute (0 through 59), and second (0 through 59) of that day, and a value indicating whether
the time specified uses daylight savings time.

Parameters
Name Type Description
secs ul nt 32 Seconds since January 1, 1904, 12:00 AM,
GMT.
dateRecordP Dat eRec * Pointer to a Dat eRec structure.

SecsToDat e storesthe converted datein the
fields of the date structure referred to by
dateRecor dP. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

© MNational Instruments Corporation 6-161 Using External Code in LabVIEW

Chapter 6 Function Descriptions

SetALong

Macro

voi d Set ALong(p, X);

Purpose

Storesani nt 32 at the address specified by avoid pointer. In SPARCstation, thisfunction can
retrieve ani nt 32 at any address, even if it is not long word aligned.

Parameters
Name Type Description

p void * Address at which you want to store an
i nt 32. Refer to the Pointers as Parameters
section in Chapter 3, CINs, for more
information about using this parameter.

X i nt 32 Value you want to store at the specified
address.

Using External Code in LabVIEW

6-162

www.ni.com

SetCINArraySize

Chapter 6 Function Descriptions

MyErr Set CI NArraySi ze (Unhandl e dat aH,

Purpose

int32 paranNum int32 newNunEl nts)

Resizes a data handle based on the data structure of an argument that you pass to the CIN.
This function does not set the array dimension field.

Parameters
Name Type Description
dataH UHandl e Handle you want to resize.
paramNum i nt 32 Number for this parameter in the argument
list to the CIN.
newNumEImts int32 New number of elementsto which thehandle

refers.

Return Value

myEr r, which can contain the following errors:

NoEr r

MFul | Err
nZonekEr r

© MNational Instruments Corporation

No error.

Not enough memory to perform the operation.

Handle or pointer not in specified zone.

6-163

Using External Code in LabVIEW

Chapter 6 Function Descriptions

StrCat

int32 StrCat(sl, s2);

Purpose

Concatenates a C string, s2, to the end of another C string, sl, returning theresult in s1. This
function assumes sl is large enough to contain the resulting string.

Parameters
Name Type Description
sl CStr Pointer to a C string.
s2 CStr Pointer to a C string.

Return Value

The length of the resulting string.

Using External Code in LabVIEW

6-164

www.ni.com

Chapter 6 Function Descriptions

StrCmp
int32 StrCnp(sl, s2);
Purpose
Lexically comparestwo strings to determine whether oneislessthan, equal to, or greater than
the other.
Parameters
Name Type Description
sl CStr Pointer to a C string.
s2 CStr Pointer to a C string.

Return Value

<0, 0, or >0 if slislessthan, equal to, or greater than s2, respectively. Returns <0 if slisan

initial substring of s2.

© MNational Instruments Corporation

6-165

Using External Code in LabVIEW

Chapter 6 Function Descriptions

StrCpy
CStr StrCpy(dst, src);
Purpose
Copiesthe C string src to the C string dst. This function assumes dst is large enough to
contain src.
Parameters
Name Type Description
dst CStr Pointer to a C string.
src CStr Pointer to a C string.

Return Value

A copy of the destination C string pointer.

Using External Code in LabVIEW

6-166

www.ni.com

StrLen

Chapter 6 Function Descriptions

int32 StrLen(s);

Purpose

Returns the length of a C string.

Parameters

Name

Type

Description

Pointer to a C string.

Return Value

The number of charactersin the C string, not including the NULL terminating character.

© MNational Instruments Corporation

6-167

Using External Code in LabVIEW

Chapter 6 Function Descriptions

StrNCaseCmp

int32 StrNCaseCnp(sli,

Purpose

n);

Lexically comparestwo stringsto determine whether oneislessthan, equal to, or greater than
the other, limiting the comparison to n characters. This comparison ignores differencesin

case.
Parameters
Name Type Description
sl CStr Pointer to a C string.
s2 CStr Pointer to a C string.
n ul nt 32 Maximum number of characters you want to
compare.

Return Value

<0, 0, or >0 if slislessthan, equal to, or greater than s2, respectively. Returns <0 if slisan

initial substring of s2.

Using External Code in LabVIEW

6-168

www.ni.com

StrNCmp

Chapter 6 Function Descriptions

int32 StrNCnp(sl,

Purpose

Lexically comparestwo strings to determine whether oneislessthan, equal to, or greater than
the other, limiting the comparison to n characters.

Parameters
Name Type Description
sl CStr Pointer to a C string.
2 CStr Pointer to a C string.
n ul nt 32 Maximum number of charactersyou want to
compare.

Return Value

<0, 0, or >0 if slislessthan, equal to, or greater than s2, respectively. Returns <0 if slisan

initial substring of s2.

© MNational Instruments Corporation

6-169

Using External Code in LabVIEW

Chapter 6 Function Descriptions

StrNCpy

CStr StrNCpy(dst,

Purpose

Copiesthe C string src to the C string dst. If the source string is less than n characters, the
function pads the destination with NULL characters. If the source string is greater than n, only
n characters are copied. This function assumes dst is large enough to contain src.

Parameters
Name Type Description
dst CStr Pointer to a C string.
src CStr Pointer to a C string.
n i nt 32 Maximum number of characters you want to
copy.

Return Value

A copy of the destination C string pointer.

Using External Code in LabVIEW

6-170

www.ni.com

SwapBlock

Chapter 6 Function Descriptions

voi d SwapBIl ock(ps,

Purpose

si ze);

Swaps size bytes between the section of memory referred to by ps and pd. The source and
destination memory blocks should not overlap.

Parameters
Name Type Description
ps UPt r Pointer to source.
pd UPt r Pointer to destination.
size i nt 32 Number of bytes you want to move.

© MNational Instruments Corporation

6-171

Using External Code in LabVIEW

Chapter 6 Function Descriptions

TimeCString

CStr TinmeCString(secs, fnt);

Purpose
Returns a pointer to a string representing the time of day corresponding to t seconds after
January 1, 1904, 12:00 AM, GMT. In SPARCstation, this function accounts for international
conventions for representing dates.

@ Note This function was formerly called Ti meSt ri ng.

Parameters
Name Type Description
secs ul nt 32 Seconds since January 1, 1904, 12:00 AM,
GMT.
fmt i nt32 Indicates the format of the returned time

string, using the following values:

* 0—hh: mmformat, where hh isthe
hour (0 through 23, with 0 as
midnight), and the nmisthe minute
(0 through 59).

e 1—hh: mm ss format, where hh
isthe hour, nmis the minute
(0 through 59), ands s isthe second
(0 through 59).

Return Value
ThetimeasaC string.

Using External Code in LabVIEW 6-172 www.ni.com

Chapter 6 Function Descriptions

TimelnSecs

ui nt 32 Ti nel nSecs();

Return Value
The current date and time in seconds relative to January 1, 1904, 12:00 AM, GMT.

© MNational Instruments Corporation 6-173 Using External Code in LabVIEW

Chapter 6 Function Descriptions

ToLower

uChar TolLower(c);

Purpose

Returns the lowercase value of c if ¢ is an uppercase a phabetic character. Otherwise, this
function returns ¢ unmodified. In SPARCstation, this function also works for international
characters (Ato 4, and so on).

Parameters

Name

Type

Description

int32

Character you want to analyze.

Return Value

The lowercase value of c.

Using External Code in LabVIEW

6-174

www.ni.com

ToUpper

Chapter 6 Function Descriptions

uChar ToUpper (c);

Purpose

Returns the uppercase value of cif cisalowercase alphabetic character. Otherwise, this
function returns ¢ unmodified. In SPARCstation, this function also works for international
characters (4 to A, and so on).

Parameters

Name

Type

Description

i nt32

Character you want to analyze.

Return Value

The uppercase value of c.

© MNational Instruments Corporation

6-175

Using External Code in LabVIEW

Chapter 6 Function Descriptions

Unused
Macro

voi d Unused(x)

Purpose

Indicatesthat afunction parameter or local variableis not used by that function. Thisisuseful
for suppressing compiler warnings for many compilers. This macro does not use a semicolon.

Parameters

Name

Type

Description

Unused parameter or local variable.

Using External Code in LabVIEW

6-176

www.ni.com

Chapter 6 Function Descriptions

Word

Macro

intl6 Wrd(hi, 10);

Purpose
Createsani nt 16 from two i nt 8 parameters.

Parameters
Name Type Description
hi int8 Highi nt 8 for theresulting i nt 16.
lo int8 Low i nt 8 for theresulting i nt 16.

Return Value
Theresulting i nt 16.

© MNational Instruments Corporation 6-177 Using External Code in LabVIEW

Common Questions

What languages can | usetowrite DLLS?

Any language can be used to write DLLs aslong asthe DLL can be called
using one of the calling conventionsthat LabVIEW supports (stdcall or C).

Why isit nolonger possibleto build external subroutinesin
LabVIEW?

External subroutines provided a solution for users who wanted to share
code among multiple CINs. At the time that LabVIEW first provided for
external subroutines, shared libraries (DLLs) were not yet commonplace.
Since shared libraries are now widely used, and since they provide all the
functionality that external subroutinesdid, National Instrumentsdecided to
drop support for the creation of external subroutines. Users who want to
share code among multiple CINs should use shared libraries.

Why doesthe*® Function Name” ring contain an empty list of functions
for certain DLLS?

On Windows platforms, the most likely reason is that the DLL is 16-bit.
LabVIEW cannot call 16-bit DLLSs. Itisalso possible, though unlikely, that
the DLL hasno exported functions. The UNIX platforms do not implement
this functionality.

Why doesthe function | wish to call not appear in the* Function
Name” ring of the Call Library Function configuration dialog?

The most likely reason is that the function has not been exported. See the
documentation for your compiler for information about how to mark
functions for export.

Why does L abVIEW crash when | call afunctionin my DLL?

The most likely causes are: 1) an error in the calling convention you have
specified inthe Call Library Function configuration dialog; 2) one of the
function parameters being of incorrect type; and 3) an error in the code of
the DLL, such as dereferencing a null pointer.

© MNational Instruments Corporation A-1 Using External Code in LabVIEW

Chapter A Common Questions

Using External Code in LabVIEW

In the Function Prototype section of the Call Library Function
configuration dialog, why does the function name have unusual
characters appended?

The function name that appearsin the function prototype section will have
characterssuch as“@" appended if the function was“ decorated” when the
DLL was built. Thisis most common with C++ compilers. Thisis normal
and not a cause for concern. The undecorated name will appear in the
Function Name ring of the configuration dialog.

Why do | receive memory.cpp errorswhen | call afunction in my
DLL?

The causeisalmost awaysan error in the code of the DLL, such aswriting
past the end of the memory allocated for an array. Note that these kinds of
crashes may or may not occur at thetimethe DLL call actually executeson
the block diagram.

Isit possibleto return a pointer from a call to afunctioninaDLL?

Strictly speaking, thisis not possible, because there are no pointer typesin
LabVIEW. However, you can specify the return type to be an integer that is
the same size as the pointer. LabVIEW will then treat the address as a
simple integer.

Isit possible to allocate memory using malloc insidea CIN?

Yes, but the pointer that results from the malloc call should be assigned to
avariablethat islocal tothe CIN code, rather than to avariable passed from
the LabVIEW diagram. You should use LabVIEW memory manager
functionsif you wish to create or resize memory associated with avariable
passed from the LabVIEW diagram.

Can CINsbewritten in alanguage other than C?

Thisistechnically possibleif the CIN entry points (i.e. CINRun, CINLoad,
etc.) aredeclared asext ern " C'. However, National Instruments
recommends using a DLL rather than a CIN if you wish to use alanguage
other than C or C++.

What arethe advantages of using a CIN rather than aDLL?

The advantages are: 1) the CIN codeis integrated into the code of the VI,
so there is no extrafile to maintain when the VI is distributed; 2) CINs
provide certain special entry points (CINLoad, CINSave, etc.).

A-2 www.ni.com

Chapter A Common Questions

What arethe advantages of usinga DL L rather than a CIN?

The advantages are: 1) you can change the DLL without changing any of
the Visthat link to the DLL (provided you do not modify the function
prototypes); 2) Practically all modern devel opment environments provide
excellent support for creating DLLs, while LabVIEW supportsonly a
subset of development environments for creating CINS.

Isit possibleto call the LabVIEW manager functionsfroma DLL?

Yes. You need to #include extcode.hin any filesthat use manager functions,
and you must link to | abvi ew. | i b. You should also set your compiler's
structure alignment to 1 byte. Note that some of the manager functions,
such asSet Cl NAr r aySi ze, are CIN-specific and may not be called from
aDLL.

Isit faster tocall aDLL or aCIN, assuming theunderlying codeisthe
same?

Thereis no difference in speed.

Oneor more of the parameters of the function | wishtocall inaDLL
areof typesthat do not exist in LabVIEW. Can | still call thisfunction
from LabVIEW?

You can call thefunction, but you must ensure that each parameter ispassed
to the function in away that allowsthe DLL to correctly interpret the data.
Starting in LabVIEW 6.0, the Call Library Function allows you to create a
skeleton . ¢ filefrom its current configuration. By viewing this C file, you
can determinewhether LabVIEW will passthe datain amanner compatible
with the DLL function, and make necessary adjustments.

© MNational Instruments Corporation A-3 Using External Code in LabVIEW

Technical Support Resources

Web Support

National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
guestions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of www. ni . com

NI Developer Zone

The NI Developer Zone at zone. ni . comisthe essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as acommunity of developers ready to
share their own techniques.

Customer Education

National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of www. ni . comfor online course schedules,
syllabi, training centers, and class registration.

System Integration

If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of ww. ni . com

© MNational Instruments Corporation B-1 Using External Code in LabVIEW

Appendix B Technical Support Resources

Worldwide Support

National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of www. ni . com Branch office web sites
provide up-to-date contact information, support phone numbers, e-mail
addresses, and current events.

If you have searched the technical support resources on our Web site and
till cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.

Using External Code in LabVIEW B-2 www.ni.com

Glossary

A
ANSI
application zone

asynchronous
execution

AZ (application zone)

B

Bundle node

C

C string (CStr)

CIN source code

Code Interface Node
code resource
concatenated Pascal string

(CPStr)

CPStr

© MNational Instruments Corporation

American National Standards Institute.
See AZ.

M odeinwhich multiple processes share processor time, one executing
whilethe others, for example, wait for interrupts, aswhile performing
device I/O or waiting for a clock tick.

Memory allocation section that holds all datain aV1 except execution
data.

Function that creates clusters from various types of elements.

A series of zero or more unsigned characters, terminated by a zero,
used in the C programming language.

Original, uncompiled text code. See object code. See Code Interface
Node.

Special block diagram node through which you can link conventional,
text-based codeto a VI.

Resource containing executable machine code. You link code
resourcesto LabVIEW through a CIN.

A list of Pascal-type strings concatenated into a single block of
memory.

See concatenated Pascal string (CPStr).

G-1 Using External Code in LabVIEW

Glossary

D

data type descriptor
diagram window

dimension

E

executable

icon pane

IDE

inplace

L

LabVIEW string

M

MB
MPW

MSB

0

object code

Using External Code in LabVIEW

Codethat identifies datatypes, used in data storage and representation.
VI window containing the VI's block diagram code.

Size and structure attribute of an array.

A stand-alone piece of code that will run, or execute.

Region in the upper right-hand corner of the front panel and block
diagram windows that displaysthe VI icon.

Integrated development environment for devel oping computer
applications, for example, Visual Basic, Visual C++, and LabVIEW.

When the input and output data of an operation use the same memory
space.

The string data type (L Str) that LabVIEW block diagrams use.

M egabytes of memory.
Macintosh Programmer’s Workshop.

Most significant bit.

Compiled version of source code. Object code is not standalone
because you must load it into LabVIEW to runiit.

G-2 www.ni.com

P

Pascal string (PStr)

portable

private data structures

R
RAM

reentrant execution

relocatable

S

sink terminal

shortcut menu

source code

source terminal

T

type descriptor

© National Instruments Corporation

Glossary

A series of unsigned characters, with the value of the first character
indicating the length of the string. Used in the Pascal programming
language.

Able to compile on any platform that supports LabVIEW.

Data structures whose exact format is not described; usually subject to
change.

Random Access Memory.

Mode in which calls to multiple instances of asubVI can execute in
parallel with distinct and separate data storage.

Ableto be moved by the memory manager to anew memory location.

Terminal that absorbs data. Also called a destination terminal.

Menu that you access by right-clicking an object. Menu options
pertain to that object specifically.

Original, uncompiled text code.

Terminal that emits data.

See data type descriptor.

G-3 Using External Code in LabVIEW

	Using External Code in�LabVIEW
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction
	Calling Code in Various Platforms
	Characteristics of the Two Calling Approaches
	Details of Call Library Function
	Details of a CIN

	Chapter 2 Shared Libraries (DLLs)
	Calling Shared Libraries
	Figure 2-1. Call Library Function Dialog Box
	Calling Conventions (Windows)
	Parameters
	Calling Functions That Expect Other Data Types

	Building a Shared Library (DLL)
	Task 1: Build the Function Prototype in LabVIEW
	Task 2: Complete the .c File
	Required Libraries

	Task 3: Build a Library Project in an External IDE
	Microsoft Visual C++ 6.0 on 32-bit on Windows Platforms
	Figure 2-2. Creating a Project in Visual C++
	Figure 2-3. Setting the Use run-time library control, Microsoft Visual C++
	Gnu C or C++ Compilers on Solaris, Linux, or HP-UX
	Metrowerks CodeWarrior on Power Macintosh

	Calling External APIs
	Common Pitfalls with the Call Library Function
	Incorrect Function Name
	Data Types
	Constants
	Calling Conventions

	Example 1: Call a Shared Library that You Built
	Configuration of Call Library Function
	Create Front Panel
	Create the Block Diagram

	Example 2: Call a Hardware Driver API
	Figure 2-4. VI That Calls Hardware

	Example 3: Call the Win32 API
	Table 2-1. Mapping Win32 Data Types to Standard C Data Types
	Table 2-2. Mapping Win32 Data Types to LabVIEW Data Types
	Constants
	Table 2-3. Selected Constants for MessageBox
	Figure 2-5. Combining Function Constants in LabVIEW
	Determining the Proper Library and Function Name
	Unicode Versions and ANSI Versions of Functions
	Configuring a Call to the Win32 API
	Figure 2-6. Configuring Call Library Function to call the Win32 API
	Figure 2-7. Block Diagram for a Call to the Win32 API
	Figure 2-8. Running a LabVIEW Call to the Win32 API

	Additional Examples of LabVIEW Calls to DLLs
	Debugging DLLs and Calls to DLLs
	Troubleshooting the Call Library Function
	Troubleshooting your DLL
	Troubleshooting Checklist

	Module Definition Files
	Array and String Options
	Arrays of Numeric Data
	String Data
	Figure 2-9. The LabVIEW String Format
	Figure 2-10. The Pascal String Format
	Figure 2-11. The C String Format

	Array and String Tip

	Chapter 3 CINs
	Supported Languages
	Macintosh
	Microsoft Windows
	Solaris, Linux, and HP-UX

	Resolving Multithreading Issues
	Making LabVIEW Recognize a CIN as Thread Safe
	Using C Code that is Thread Safe

	Creating a CIN
	Step 1. Set Up Input and Output Terminals for a CIN
	Input-Output Terminals
	Output-Only Terminals

	Step 2. Wire the Inputs and Outputs to the CIN
	Step 3. Create a .c File
	Step 4. Compile the CIN Source Code
	Compile on Macintosh
	Microsoft Windows
	Solaris 2.x
	HP-UX and Linux
	gcc Compiler

	Step 5. Load the CIN Object Code

	LabVIEW Manager Routines
	Pointers as Parameters

	Debugging External Code
	DbgPrintf
	Windows
	UNIX

	Chapter 4 Programming Issues for CINs
	Passing Parameters
	Parameters in the CIN .c File
	Passing Fixed-Size Data to CINs
	Scalar Numerics
	Scalar Booleans
	Refnums
	Clusters of Scalars

	Return Value for CIN Routines
	Examples with Scalars
	Creating a CIN That Multiplies Two Numbers
	Comparing Two Numbers, Producing a Boolean Scalar

	Passing Variably Sized Data to CINs
	Alignment Considerations
	Arrays and Strings
	Paths
	Clusters Containing Variably Sized Data
	Resizing Arrays and Strings
	SetCINArraySize
	NumericArrayResize

	Examples with Variably Sized Data
	Concatenating Two Strings
	Computing the Cross Product of Two Two�Dimensional Arrays
	Working with Clusters

	Manager Overview
	Basic Data Types
	Scalar
	char
	Dynamic
	Memory-Related
	Constants

	Memory Manager
	Memory Allocation
	Memory Zones
	Using Pointers and Handles

	File Manager
	Identifying Files and Directories
	Path Specifications
	File Descriptors
	File Refnums
	Support Manager

	Chapter 5 Advanced Applications
	CIN Routines
	Data Spaces and Code Resources
	One Reference to the CIN in a Single VI
	Loading a VI
	Unloading a VI
	Loading a New Resource into the CIN
	Compiling a VI
	Running a VI
	Saving a VI
	Aborting a VI

	Multiple References to the Same CIN in a Single VI
	Multiple References to the Same CIN in Different VIs
	Single-Threaded Operating Systems
	Multithreaded Operating Systems

	Code Globals and CIN Data Space Globals
	Examples

	Chapter 6 Function Descriptions
	Memory Manager Functions
	Support Manager Functions
	Mathematical Operations

	Abs
	ASCIITime
	AZCheckHandle/DSCheckHandle
	AZCheckPtr/DSCheckPtr
	AZDisposeHandle/DSDisposeHandle
	AZDisposePtr/DSDisposePtr
	AZGetHandleSize/DSGetHandleSize
	AZHandAndHand/DSHandAndHand
	AZHandToHand/DSHandToHand
	AZHeapCheck/DSHeapCheck
	AZHLock
	AZHNoPurge
	AZHPurge
	AZHUnlock
	AZMaxMem/DSMaxMem
	AZMemStats/DSMemStats
	AZNewHandle/DSNewHandle
	AZNewHClr/DSNewHClr
	AZNewPClr/DSNewPClr
	AZNewPtr/DSNewPtr
	AZPtrAndHand/DSPtrAndHand
	AZPtrToHand/DSPtrToHand
	AZPtrToXHand/DSPtrToXHand
	AZRecoverHandle/DSRecoverHandle
	AZSetHandleSize/DSSetHandleSize
	AZSetHSzClr/DSSetHSzClr
	BinSearch
	BlockCmp
	Cat4Chrs
	ClearMem
	CPStrBuf
	CPStrCmp
	CPStrIndex
	CPStrInsert
	CPStrLen
	CPStrRemove
	CPStrReplace
	CPStrSize
	CToPStr
	DateCString
	DateToSecs
	FAddPath
	FAppendName
	FAppPath
	FArrToPath
	FCopy
	FCreate
	FCreateAlways
	FDepth
	FDirName
	FDisposePath
	FDisposeRefNum
	FEmptyPath
	FExists
	FFlattenPath
	FFlush
	FGetAccessRights
	FGetDefGroup
	FGetEOF
	FGetInfo
	FGetPathType
	FGetVolInfo
	FileNameCmp
	FileNameIndCmp
	FileNameNCmp
	FIsAPath
	FIsAPathOfType
	FIsAPathOrNotAPath
	FIsARefNum
	FIsEmptyPath
	FListDir
	FLockOrUnlockRange
	FMakePath
	FMClose
	FMOpen
	FMove
	FMRead
	FMSeek
	FMTell
	FMWrite
	FName
	FNamePtr
	FNewDir
	FNewRefNum
	FNotAPath
	FPathCmp
	FPathCpy
	FPathToArr
	FPathToAZString
	FPathToDSString
	FPathToPath
	FRefNumToFD
	FRefNumToPath
	FRelPath
	FRemove
	FSetAccessRights
	FSetEOF
	FSetInfo
	FSetPathType
	FStrFitsPat
	FStringToPath
	FTextToPath
	FUnFlattenPath
	FVolName
	GetALong
	HexChar
	Hi16
	HiByte
	HiNibble
	IsAlpha
	IsDigit
	IsLower
	IsUpper
	Lo16
	LoByte
	Long
	LoNibble
	LStrBuf
	LStrCmp
	LStrLen
	LToPStr
	Max
	MilliSecs
	Min
	MoveBlock
	NumericArrayResize
	Offset
	Pin
	PPStrCaseCmp
	PPStrCmp
	Printf
	PStrBuf
	PStrCaseCmp
	PStrCat
	PStrCmp
	PStrCpy
	PStrLen
	PStrNCpy
	PToCStr
	PToLStr
	QSort
	RandomGen
	SecsToDate
	SetALong
	SetCINArraySize
	StrCat
	StrCmp
	StrCpy
	StrLen
	StrNCaseCmp
	StrNCmp
	StrNCpy
	SwapBlock
	TimeCString
	TimeInSecs
	ToLower
	ToUpper
	Unused
	Word

	Appendix A Common Questions
	Appendix B Technical Support Resources
	Glossary
	A-C
	D-O
	P-T

