
Using External Code
in LabVIEW
Using External Code in LabVIEW

July 2000 Edition
Part Number 370109A-01

Worldwide Technical Support and Product Information

www.ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521,
China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,
Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625,
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,
Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,
Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@ni.com

© Copyright 1993, 2000 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions,
due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media that do not execute programming
instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not
warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult
National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of
or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY

WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR

NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL

INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments
must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects,
malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks
CVI™, LabVIEW™, National Instruments™, and ni.com™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL
OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL
COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE
EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS
CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL
POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE
FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION,
INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR
FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC
SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF
THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH)
SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM
FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE
REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO
BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS
FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER
MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS
ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL
INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A
SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND
SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v Using External Code in LabVIEW

Contents

About This Manual
Conventions ...xiii
Related Documentation..xiv

Chapter 1
Introduction

Calling Code in Various Platforms..1-1
Characteristics of the Two Calling Approaches ..1-2

Details of Call Library Function..1-3
Details of a CIN...1-3

Chapter 2
Shared Libraries (DLLs)

Calling Shared Libraries ..2-1
Calling Conventions (Windows) ...2-3
Parameters ...2-3
Calling Functions That Expect Other Data Types...2-5

Building a Shared Library (DLL) ..2-6
Task 1: Build the Function Prototype in LabVIEW..2-6
Task 2: Complete the .c File..2-8
Task 3: Build a Library Project in an External IDE ..2-10

Calling External APIs ..2-14
Common Pitfalls with the Call Library Function ..2-14
Example 1: Call a Shared Library that You Built ...2-16
Example 2: Call a Hardware Driver API...2-17
Example 3: Call the Win32 API..2-19

Additional Examples of LabVIEW Calls to DLLs..2-25
Debugging DLLs and Calls to DLLs...2-26

Troubleshooting the Call Library Function...2-26
Troubleshooting your DLL..2-26
Troubleshooting Checklist...2-27

Module Definition Files...2-29
Array and String Options ...2-30

Arrays of Numeric Data ..2-30
String Data...2-31
Array and String Tip..2-33

Contents

Using External Code in LabVIEW vi www.ni.com

Chapter 3
CINs

Supported Languages .. 3-1
Macintosh.. 3-1
Microsoft Windows... 3-1
Solaris, Linux, and HP-UX ... 3-2

Resolving Multithreading Issues ... 3-2
Making LabVIEW Recognize a CIN as Thread Safe 3-2
Using C Code that is Thread Safe ... 3-3

Creating a CIN... 3-3
Step 1. Set Up Input and Output Terminals for a CIN.................................... 3-4
Step 2. Wire the Inputs and Outputs to the CIN ... 3-6
Step 3. Create a .c File .. 3-6
Step 4. Compile the CIN Source Code ... 3-8
Step 5. Load the CIN Object Code ... 3-16

LabVIEW Manager Routines .. 3-16
Pointers as Parameters .. 3-17

Debugging External Code ... 3-18
DbgPrintf... 3-19
Windows ... 3-19
UNIX... 3-21

Chapter 4
Programming Issues for CINs

Passing Parameters .. 4-1
Parameters in the CIN .c File .. 4-1
Passing Fixed-Size Data to CINs .. 4-2
Return Value for CIN Routines .. 4-3
Examples with Scalars .. 4-4
Creating a CIN That Multiplies Two Numbers .. 4-4

Passing Variably Sized Data to CINs.. 4-7
Resizing Arrays and Strings.. 4-9

SetCINArraySize .. 4-11
NumericArrayResize .. 4-12

Examples with Variably Sized Data ... 4-14
Manager Overview .. 4-21

Basic Data Types .. 4-23
Memory Manager.. 4-27

File Manager.. 4-32
Support Manager... 4-36

Contents

© National Instruments Corporation vii Using External Code in LabVIEW

Chapter 5
Advanced Applications

CIN Routines ...5-1
Data Spaces and Code Resources..5-1
One Reference to the CIN in a Single VI ..5-3
Multiple References to the Same CIN in a Single VI5-5
Multiple References to the Same CIN in Different VIs5-6
Code Globals and CIN Data Space Globals ..5-8

Chapter 6
Function Descriptions

Memory Manager Functions..6-1
Support Manager Functions...6-5

Mathematical Operations...6-8
Abs ...6-9
ASCIITime...6-10
AZCheckHandle/DSCheckHandle ..6-11
AZCheckPtr/DSCheckPtr ..6-12
AZDisposeHandle/DSDisposeHandle ...6-13
AZDisposePtr/DSDisposePtr...6-14
AZGetHandleSize/DSGetHandleSize ...6-15
AZHandAndHand/DSHandAndHand ...6-16
AZHandToHand/DSHandToHand ..6-17
AZHeapCheck/DSHeapCheck...6-18
AZHLock ...6-19
AZHNoPurge ...6-20
AZHPurge ..6-21
AZHUnlock ...6-22
AZMaxMem/DSMaxMem ..6-23
AZMemStats/DSMemStats ...6-24
AZNewHandle/DSNewHandle..6-25
AZNewHClr/DSNewHClr...6-26
AZNewPClr/DSNewPClr ..6-27
AZNewPtr/DSNewPtr ...6-28
AZPtrAndHand/DSPtrAndHand ...6-29
AZPtrToHand/DSPtrToHand ..6-30
AZPtrToXHand/DSPtrToXHand...6-31
AZRecoverHandle/DSRecoverHandle ..6-32
AZSetHandleSize/DSSetHandleSize...6-33
AZSetHSzClr/DSSetHSzClr..6-34
BinSearch...6-35
BlockCmp ..6-36

Contents

Using External Code in LabVIEW viii www.ni.com

Cat4Chrs .. 6-37
ClearMem.. 6-38
CPStrBuf.. 6-39
CPStrCmp.. 6-40
CPStrIndex .. 6-41
CPStrInsert .. 6-42
CPStrLen ... 6-43
CPStrRemove .. 6-44
CPStrReplace... 6-45
CPStrSize... 6-46
CToPStr ... 6-47
DateCString ... 6-48
DateToSecs.. 6-49
FAddPath... 6-50
FAppendName... 6-51
FAppPath... 6-52
FArrToPath.. 6-53
FCopy .. 6-54
FCreate .. 6-55
FCreateAlways .. 6-57
FDepth ... 6-59
FDirName .. 6-60
FDisposePath... 6-61
FDisposeRefNum .. 6-62
FEmptyPath ... 6-63
FExists ... 6-64
FFlattenPath... 6-65
FFlush .. 6-66
FGetAccessRights ... 6-67
FGetDefGroup... 6-68
FGetEOF.. 6-69
FGetInfo .. 6-70
FGetPathType.. 6-72
FGetVolInfo .. 6-73
FileNameCmp.. 6-74
FileNameIndCmp .. 6-75
FileNameNCmp... 6-76
FIsAPath .. 6-77
FIsAPathOfType.. 6-78
FIsAPathOrNotAPath.. 6-79
FIsARefNum ... 6-80
FIsEmptyPath .. 6-81
FListDir ... 6-82
FLockOrUnlockRange .. 6-84

Contents

© National Instruments Corporation ix Using External Code in LabVIEW

FMakePath ...6-86
FMClose...6-87
FMOpen ...6-88
FMove..6-91
FMRead ...6-92
FMSeek..6-93
FMTell ...6-94
FMWrite...6-95
FName..6-96
FNamePtr ...6-97
FNewDir ..6-98
FNewRefNum..6-99
FNotAPath ...6-100
FPathCmp ..6-101
FPathCpy ...6-102
FPathToArr ..6-103
FPathToAZString...6-104
FPathToDSString...6-105
FPathToPath...6-106
FRefNumToFD..6-107
FRefNumToPath ..6-108
FRelPath...6-109
FRemove..6-110
FSetAccessRights ..6-111
FSetEOF...6-112
FSetInfo ...6-113
FSetPathType...6-115
FStrFitsPat ...6-116
FStringToPath ..6-117
FTextToPath ..6-118
FUnFlattenPath ..6-119
FVolName..6-120
GetALong ..6-121
HexChar ...6-122
Hi16 ...6-123
HiByte ..6-124
HiNibble...6-125
IsAlpha...6-126
IsDigit ..6-127
IsLower ..6-128
IsUpper...6-129
Lo16 ...6-130
LoByte ...6-131
Long ...6-132

Contents

Using External Code in LabVIEW x www.ni.com

LoNibble.. 6-133
LStrBuf .. 6-134
LStrCmp .. 6-135
LStrLen.. 6-136
LToPStr ... 6-137
Max.. 6-138
MilliSecs.. 6-139
Min .. 6-140
MoveBlock .. 6-141
NumericArrayResize ... 6-142
Offset ... 6-143
Pin.. 6-144
PPStrCaseCmp .. 6-145
PPStrCmp .. 6-146
PStrBuf .. 6-150
PStrCaseCmp... 6-151
PStrCat... 6-152
PStrCmp .. 6-153
PStrCpy.. 6-154
PStrLen .. 6-155
PStrNCpy... 6-156
PToCStr ... 6-157
PToLStr ... 6-158
QSort.. 6-159
RandomGen... 6-160
SecsToDate.. 6-161
SetALong... 6-162
SetCINArraySize... 6-163
StrCat ... 6-164
StrCmp... 6-165
StrCpy.. 6-166
StrLen .. 6-167
StrNCaseCmp.. 6-168
StrNCmp.. 6-169
StrNCpy... 6-170
SwapBlock... 6-171
TimeCString .. 6-172
TimeInSecs .. 6-173
ToLower .. 6-174
ToUpper... 6-175
Unused... 6-176
Word .. 6-177

Contents

© National Instruments Corporation xi Using External Code in LabVIEW

Appendix A
Common Questions

Appendix B
Technical Support Resources

Glossary

© National Instruments Corporation xiii Using External Code in LabVIEW

About This Manual

This manual describes the LabVIEW programming objects that you use to
call compiled code from text-based programming languages: the Call
Library Function and the Code Interface Node. This manual includes
reference information about libraries of functions, memory and file
manipulation routines, and diagnostic routines that you can use with calls
to external code.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

About This Manual

Using External Code in LabVIEW xiv www.ni.com

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

Related Documentation
The following document contains information that you might find helpful
as you read this manual:

• LabVIEW User Manual

Sun users might also find the following document helpful:

• Sun Workshop CD-ROM, Sun Microsystems, Inc., U.S.A.

Linux users might also find the following document helpful:

• The GNU C Compiler Reference Manual, Free Software Foundation,
1989-2000.

Windows users might also find the following documents helpful:

• Microsoft Windows documentation set, Microsoft Corporation,
Redmond, WA, 1992-1995

• Microsoft Windows Programmer’s Reference, Microsoft Corporation,
Redmond, WA, 1992-1995

• Win32 Programmer’s Reference, Microsoft Corporation,
Redmond, WA, 1992-1995

• Microsoft Visual C++ CD-ROM, Microsoft Corporation,
Redmond, WA, 1997

© National Instruments Corporation 1-1 Using External Code in LabVIEW

1
Introduction

This manual discusses several methods in LabVIEW to call code written in
other languages.

• Use platform-specific protocols.

• Use Call Library Function to call the following types of shared
libraries:

– Dynamic Link Libraries (DLL) in Windows

– Code Fragments on the Macintosh

– Shared Libraries on UNIX

• Create a Code Interface Node to call code written specifically to link
to VIs.

Also, to convert an instrument driver written in LabWindows/CVI you can
select Tools»Instrumentation»Import CVI Instrument Driver and
invoke the LabWindows/CVI Function Panel Converter. Refer to
LabVIEW Help for more information about this converter.

Calling Code in Various Platforms
This section describes the differences between running Windows and
UNIX applications from within your VIs and running Macintosh
applications from within your VIs.

(Windows and UNIX) Use the System Exec VI. Use the simple System Exec
VI on the Functions»Communication palette to run a command line from
your VI. The command line can include any parameters supported by
the application you want to launch.

If you can access the application through TCP/IP, you might be able to pass
data or commands to the application. Refer to the documentation for the
application for a description of its communication capability. If you are a
LabVIEW user, refer to the Using LabVIEW with TCP/IP and UDP
Application Note for more information about techniques for using
networking VIs to transfer information to other applications. You also can
use many ActiveX LabVIEW tools to communicate with other
applications.

Chapter 1 Introduction

Using External Code in LabVIEW 1-2 www.ni.com

(Macintosh) Use the Apple Event VIs. Apple Events are a
Macintosh-specific protocol through which applications communicate with
each other. You can use them to send commands between applications or to
launch other applications. If you are a LabVIEW user, refer to the Using
Apple Events and the PPC Toolbox to Communicate with LabVIEW
Applications on the Macintosh Application Note for information about
different methods for using Apple Event VIs to launch and control other
applications.

Characteristics of the Two Calling Approaches

Note In most cases, Call Library Function is easier to use than a Code Interface Node.

The LabVIEW Call Library Function and the Code Interface Node (CIN)
are block diagram objects that link source code written in a conventional
programming language to LabVIEW. They appear on the block diagram as
icons with input and output terminals. Linking external code to LabVIEW
includes the following steps:

1. You compile the source code and link it to form executable code. If you
already have a compiled DLL, this step is not necessary.

2. LabVIEW calls the executable code when the node executes.

3. LabVIEW passes input data from the block diagram to the executable
code.

4. LabVIEW returns data from the executable code to the block diagram.

The LabVIEW compiler can generate code fast enough for most
programming tasks. Call CINs and shared libraries from LabVIEW to
accomplish tasks a text-based language can accomplish more easily, such
as time-critical tasks. Also use CINs and shared libraries for tasks you
cannot perform directly from the block diagram, such as calling system
routines for which no corresponding LabVIEW functions exist. CINs and
shared libraries also can link existing code to LabVIEW, although you
might need to modify the code so it uses the correct LabVIEW data types.

CINs and shared libraries execute synchronously, so LabVIEW cannot use
the execution thread used by these objects for any other tasks. When a VI
runs, LabVIEW monitors the user interface, including the menus and
keyboard. In multithreaded applications, LabVIEW uses a separate thread
for user interface tasks. In single-threaded applications, LabVIEW
switches between user interface tasks and running VIs.

Chapter 1 Introduction

© National Instruments Corporation 1-3 Using External Code in LabVIEW

When CIN or shared library object code executes, it takes control of its
execution thread. If an application has only a single thread of control, the
application waits until the object code returns. In single-threaded operating
systems such as Macintosh, these objects even prevent other applications
from running.

LabVIEW cannot interrupt object code that is running, so you cannot reset
a VI that is running a CIN or shared library until execution completes. If
you want to write a CIN or shared library that performs a long task, be
aware that LabVIEW cannot perform other tasks in the same thread while
these objects executes.

Details of Call Library Function
You can call most standard shared libraries with Call Library Function. In
Windows these libraries are DLLs, on the Macintosh they are Code
Fragments, and on UNIX they are Shared Libraries. Call Library Function
includes a large number of data types and calling conventions. You can use
it to call functions from most standard and custom-made libraries.

Call Library Function is most appropriate when you have existing code you
want to call, or if you are familiar with the process of creating standard
shared libraries. Because a library uses a format standard among several
development environments, you can use almost any development
environment to create a library that LabVIEW can call. Refer to the
documentation for your compiler to determine whether you can create
standard shared libraries. Refer to the Chapter 2, Shared Libraries (DLLs),
for more information about Call Library Function.

Details of a CIN
The CIN is a general method for calling C code from LabVIEW. You can
pass arbitrarily complex data structures to and from a CIN. In some cases,
you might have higher performance using CINs because data structures
pass to the CIN in the same format that they are stored in LabVIEW.

In some cases, you might want a CIN to perform additional tasks at
certain execution times. For example, you might want to initialize data
structures at load time or free private data structures when the user
closes the VI containing the CIN. For these situations, you can write
routines that LabVIEW calls at predefined times or when the node
executes. Specifically, LabVIEW calls certain routines when the VI
containing the CIN is loaded, saved, closed, aborted, or compiled. You
generally use these routines in CINs that perform an ongoing task, such as
accumulating results from call to call, so you can allocate, initialize,

Chapter 1 Introduction

Using External Code in LabVIEW 1-4 www.ni.com

and deallocate resources at the correct time. Most CINs perform a
specific action at run-time only.

To create a CIN, you must be an experienced C developer. Also, because
CINs are tightly coupled with LabVIEW, there are restrictions on which
compilers you can use.

After you write your first CIN as described in this manual, writing new
CINs is relatively easy. The work involved in writing new CINs is mostly
in coding the algorithm, because the interface to LabVIEW remains the
same, regardless of the development system.

© National Instruments Corporation 2-1 Using External Code in LabVIEW

2
Shared Libraries (DLLs)

This chapter describes how to call shared libraries—called DLLs on the
Windows platform—from LabVIEW. Examples and troubleshooting
information appear later in the chapter to help you build and use DLLs and
configure LabVIEW’s Call Library Function successfully. The general
methods described here for DLLs also apply to other types of shared
libraries.

Calling Shared Libraries
Use Call Library Function to call a 32-bit Windows DLL, a Macintosh
Code Fragment, or a UNIX Shared Library function directly.

The diagram on the left shows the Call Library Function object on the block
diagram. You access this function on the Functions»Advanced palette.

Right-click the icon and select Configure in the shortcut menu to access
the Call Library Function dialog box where you specify the library,
function, parameters, return value for the object, and calling conventions in
Windows. When you click OK in the dialog box, LabVIEW updates the
icon according to your settings, displaying the correct number of terminals
and setting the terminals to the correct data types. The following figure
shows the Call Library Function dialog box.

Note The shortcut menu for the Call Library Function object also contains the Create .c
File item, which creates a .c prototype file that contains C declarations for the parameters
that you are passing.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-2 www.ni.com

Figure 2-1. Call Library Function Dialog Box

As you configure parameters, the Function Prototype area displays the C
prototype for the function you are building. This area is a read-only display.

The return value for the function returns to the right terminal of the top pair
of terminals of the object. If there is no return value, this pair of terminals
is unused. Each additional pair of terminals corresponds to a parameter in
the functions parameter list. To pass a value to the function, wire to the left
terminal of a terminal pair. To read the value of a parameter after the
function call, wire from the right terminal of a terminal pair.

In a multithreaded operating system, you can make multiple calls to a
DLL or shared library simultaneously. By default, all call library objects
run in the user interface thread. The control below the Browse button in the
Call Library Function dialog box reflects your selection of Run in UI
Thread or Reentrant.

Before you configure a Call Library Function object to be reentrant, make
sure that multiple threads can call the function(s) simultaneously. The
following list shows the basic characteristics of thread safe code in a shared
library.

• The code is thread safe when it stores no global data (for example,
no global variables, no files on disk, and so on); does not access any

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-3 Using External Code in LabVIEW

hardware (in other words, does not contain register-level
programming); and makes no calls to any functions, shared libraries,
or drivers that are not thread safe.

• The code is thread safe when it uses semaphores or mutexes to protect
access to global resources.

• The code is thread safe when it is called by only one non-reentrant VI.

Refer to the Execution Properties page topic in LabVIEW Help for more
information about reentrancy. Refer to the Using LabVIEW to Create
Multithreaded VIs for Maximum Performance and Reliability Application
Note for more information about multithreading in LabVIEW.

Calling Conventions (Windows)
Use the Calling Conventions pull-down menu in the Call Library
Function dialog box to select the calling conventions for the function. The
default calling convention is C. You can also use the standard Windows
calling convention, __stdcall. Refer to the documentation for the DLL
you want to call for the appropriate calling conventions.

Parameters
Initially, Call Library Function has no parameters and has a return value of
Void. To add parameters to the function, click the Add a Parameter
Before or After buttons. To remove a parameter, click the Delete this
Parameter button.

Use the Parameter pull-down menu to select different parameters or the
return value. When selected, you can edit the Parameter name to
something more descriptive, which makes it easier to switch between
parameters. The parameter name does not affect the call, but it is
propagated to output wires.

Use the Type pull-down menu to indicate the type of each parameter.
The return type can be Void, meaning the function does not return a value,
Numeric, or String.

For parameters, you can select Numeric, Array, String, Waveform,
ActiveX, or Adapt to Type.

After you select an item from the Type pull-down menu, you see more
items you can use to indicate details about the data type and about how to
pass the data to the library function. Call Library Function has a number of
different items for data types, because of the variety of data types required

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-4 www.ni.com

by different libraries. Refer to the documentation for the library you call to
determine which data types to use.

• Void—Accepted only for the return value. This value is not available
for parameters. If your function does not return any values, use Void
for the return value.

• Numerics—For numeric data types, you must indicate the exact
numeric type using the Data Type pull-down menu. Valid types
include the following:

– Signed and unsigned 8-bit, 16-bit, and 32-bit integers

– Four-byte, single-precision numbers

– Eight-byte, double-precision numbers

You cannot use extended-precision numbers and complex numbers.
Standard libraries generally do not use them.

You also must use the Pass pulldown menu to indicate whether you
want to pass the value or a pointer to the value.

• Arrays—Indicate the data type of arrays using the same items as for
numeric data types, the number of dimensions, and the format to use
in passing the array. Use the Array Format pull-down menu to make
one of the following choices:

– Array Data Pointer—Passes a pointer to the array data.

– Array Handle—Passes a pointer to a pointer to a four-byte value
for each dimension, followed by the data.

– Array Handle Pointer—Passes a pointer to an array handle.

Caution Do not attempt to resize an array with system functions, such as realloc.
Doing so might crash your system. Instead, use one of the CIN manager functions, such as
NumericArrayResize.

Strings—Indicate the string format for strings. Valid values for String
Format include C String Pointer, Pascal String Pointer, String Handle,
or String Handle Pointer.

Select a string format that the library function expects. Most standard
libraries expect either a C string (string followed by a null character) or a
Pascal string (string preceded by a length byte). If the library function you
are calling is written for LabVIEW, you might want to use the String
Handle format, which is a pointer to a pointer to four bytes for length
information, followed by string data.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-5 Using External Code in LabVIEW

Caution Do not attempt to resize a string with system functions, such as realloc.
Doing so might crash your system.

Waveform—For waveform data types, you indicate the dimension, and
you use the Data Type pull-down menu to indicate the exact numeric type.

ActiveX—For ActiveX objects, you select one of the following items in the
Data Type pull-down menu:

• ActiveX Variant Pointer—Passes a pointer to ActiveX data.

• IDispatch* Pointer—Passes a pointer to the IDispatch interface of an
ActiveX Automation server.

• IUnknown Pointer—Passes a pointer to the IUnknown interface of an
ActiveX Automation server.

Adapt to Type—Pass arbitrary LabVIEW data types to DLLs in the same
way they are passed to a CIN, as follows:

• Scalars are passed by reference. A pointer to the scalar is passed to
the library.

• Arrays and strings are passed as a handle (pointer to a pointer to
the data).

• Clusters are passed by reference.

• Scalar elements in arrays or clusters are in line. For example, a
cluster containing a numeric is passed as a pointer to a structure
containing a numeric.

• Cluster within arrays are in line.

• Strings and arrays within clusters are referenced by a handle.

Calling Functions That Expect Other Data Types
You might encounter a function that expects a data type LabVIEW does not
use. For example, you cannot use Call Library Function to pass an arbitrary
cluster or array of non-numeric data. If you need to call a function that
expects other data types, use one of the following methods:

• Depending on the data type, you might be able to pass the data by
creating a string or array of bytes that contains a binary image of the
data you want to send. You can create binary data by typecasting data
elements to strings and concatenating them.

• Write a library function that accepts data types that LabVIEW does
use, and parameters to build the data structures the library function
expects, then calls the library function.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-6 www.ni.com

• Write a CIN that can accept arbitrary data structures. Refer to
Chapter 3, CINs, for more information about writing CINs.

Building a Shared Library (DLL)
This section uses a simple shared library example to describe the three
basic tasks for building external code libraries to call from LabVIEW:

• Task 1: Build the Function Prototype in LabVIEW

• Task 2: Complete the .c File

• Task 3: Build a Library Project in an External IDE

In the Example 1: Call a Shared Library that You Built section, you will
call the shared library that you build here.

Task 1: Build the Function Prototype in LabVIEW
To build a function prototype for your shared library, you must build a
prototype in LabVIEW and then fill in all the details of your code. When
you allow LabVIEW to generate this C source code, you help ensure that
the basic syntax of the code in your shared library will be valid.

Perform the following steps to build your prototype source file,
myshared.c.

1. Create a VI called Array Average in LabVIEW, and access the block
diagram. Select Functions»Advanced»Call Library Function and
place this object on the block diagram.

2. Right-click the Call Library Function icon and select Configure in the
shortcut menu to invoke the Call Library Function dialog box. Leave
the Library Name or Path control empty.

3. Enter the following general specifications.

a. Type avg_num in the Function Name field.

b. Select C in the Calling Conventions control.

4. Define the return value:

a. In the Parameter control change the default name, return
type, to a more descriptive name, error.

b. In the Type control select Numeric.

c. In the Data Type control select Signed 32-bit Integer.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-7 Using External Code in LabVIEW

5. Define the a parameter:

a. Click the Add Parameter After button.

b. In the Parameter control replace the default name, arg1, with the
precise name, a.

c. In the Type control select Array.

d. In the Data Type control select 4-byte Single.

e. In the Array Format control select Array Data Pointer.

Note The Array and String Options section describes the available settings for arrays and
strings in the Call Library Function icon.

6. Define size:

a. Click the Add Parameter After button.

b. In the Parameter control replace the default name, arg2, with the
precise name, size.

c. In the Type control select Numeric.

d. In the Data Type control select Signed 32-bit Integer.

e. In the Pass control select Value.

7. Define avg:

a. Click the Add Parameter After button.

b. In the Parameter control replace the default name, arg3, with the
precise name, avg.

c. In the Type control select Numeric type.

d. In the Data Type control select 4-byte Single.

e. In the Pass control select Pointer to Value.

8. Check that the Function Prototype indicator displays the return value
and three parameters in the correct order, as follows:

long avg_num(float *a, long size, float *avg)

Note The syntax you see in the Function Prototype indicator is technically correct.
However, the .c file that LabVIEW generates in the next section will be more precise
because the first parameter will appear as float a[].

9. Click OK to save your settings and close the dialog box.

10. Observe how the Call Library Function icon updates to reflect your
settings.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-8 www.ni.com

11. Right-click the Call Library Function icon and select Create .c file in
the shortcut menu. Save the file as myshared.c.

Note In this example, you use a .c source file. When you work with C++ libraries, change
the extension of the source file to .cpp.

Preventing C++ Name Decoration
When you build shared libraries for C++, you must prevent the C++
compiler from decorating the function names in the final object code. To
do this, wrap the function declaration in an extern "C" clause, as shown
in the following prototype.

extern "C" {

long MyDLLFunction(long nInput, unsigned long nOutput,

void *arg1);

}

long MyDLLFunction(long nInput, unsigned long nOutput,

void *arg1)

{

/* Insert Code Here */

}

Note If you disable C++ decoration of a function, the compiler cannot create polymorphic
versions of the function.

Task 2: Complete the .c File
The Call Library Function generates the following source code skeleton in
myshared.c:

/* Call Library Source File */

#include "extcode.h"

long avg_num(float a[], long size, float *avg);

long avg_num(float a[], long size, float *avg)

 {

 /* Insert Code Here */

 }

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-9 Using External Code in LabVIEW

Replace the /* Insert Code Here */ spacer with the following
function code, making sure to place the code within the pair of curly braces:

 int i;

 float sum=0;

 if(a != NULL)

 {

 for(i=0;i < size; i++)

 sum = sum + a[i];

 }

 else

 return (1);

 *avg = sum / size;

 return (0);

Required Libraries
This simple example requires no header files. When you build more
complex shared libraries, you must include header files for all related
libraries. For example, a Windows shared library project might need to
include windows.h. In another instance, a project might need to include
extcode.h, the header file for the set of LabVIEW manager functions that
perform simple and complex operations, ranging from low-level byte
manipulation to routines for sorting data and managing memory.

When you want to use the LabVIEW manager functions inside your shared
library, you must include the LabVIEW library files in your compiled
project: labview.lib for Visual C++, labview.sym.lib for Symantec,
and labview.export.stub for Metrowerks CodeWarrior. These files
appear in the cintools directory of your LabVIEW installation.
Specifically, you need the LabVIEW manager functions if you intend to do
any of the following:

• Allocate, free, or resize arrays, strings, or other data structures that are
passed into or out of your library from LabVIEW.

• Work with LabVIEW Path data types.

• Work with file refnums inside your library.

• Use any of the Support Manager functions.

Refer to Chapter 6, Function Descriptions, for more information about the
manager functions.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-10 www.ni.com

Task 3: Build a Library Project in an External IDE
The process of building a library project is specific to each integrated
development environment (IDE) and each operating system. Therefore,
this section describes three compiler/platform combinations that you can
use to build shared libraries to use in LabVIEW: Microsoft Visual C/C++
on Windows, Gnu C/C++ on UNIX, and Metrowerks CodeWarrior on
Macintosh.

Microsoft Visual C++ 6.0 on 32-bit on Windows
Platforms
Follow the steps in this section to build a project and that compiles
myshared.c and generates myshared.dll.

Adding the DLL Export Keyword
You must explicitly export each function from your DLL to make it
available to LabVIEW. For this example, you should use the _declspec
(dllexport) keyword to export the avg_num function. By declaring the
dllexport keyword, you eliminate the need for a module definition file,
which the Module Definition Files section describes. _declspec
(dllexport) is a Microsoft-specific extension to the C or C++ language.

1. Open myshared.c and insert the _declspec(dllexport) keyword
in front of the code for avg_num. This function also has a declaration
statement, and you must place the keyword in front of the declaration,
too.

The following excerpt shows the two places in myshared.c that
require the _declspec(dllexport) keyword.

_declspec(dllexport) long avg_num(float *a,

long size, float *avg);

_declspec(dllexport) long avg_num(float *a,

long size, float *avg)

Setting Up the Project
Perform the following steps in the Microsoft Visual C++ integrated
development environment to set up a project for myshared.c.

2. Select File»New and select Win32 Dynamic Link Library (DLL) in
the listbox of the Projects tab. Click OK to continue.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-11 Using External Code in LabVIEW

Note You do not use Microsoft Foundation Classes (MFC) in this example. However, if
you want to use these object classes in a project, you can select MFC AppWizard (dll) at
this point, instead of selecting Win32 Dynamic Link Library. Then, copy the code from
the myshared.c source file and place it into the skeleton source code file that the MFC
AppWizard generates.

Figure 2-2. Creating a Project in Visual C++

3. The application prompts you to choose the type of DLL that you want
to create; select An empty DLL project.

4. Click Finish to finish creating your project and return to the Visual
C++ workspace.

5. From the Project menu, select Add to Project»Files and add the
myshared.c source file.

Note When you want to use the LabVIEW manager functions in a Windows DLL, you
also must add labview.lib to your project. The cintools directory of your LabVIEW
installation contains this .lib file.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-12 www.ni.com

6. Select Project»Settings and access the C++ tab of the Project
Settings dialog box and make the following settings:

a. Select Code Generation in the Category pull-down menu.

b. For this example and for all configurations, set the Struct
member alignment control to 1 Byte.

c. Select Debug Multithreaded DLL in the Use run-time library
control to apply the Win32 Debug configuration, as shown in the
following figure.

You have the option to choose the Win32 Release configuration,
instead. In that case you would select Multithreaded DLL in the
Use run-time library control.

Figure 2-3. Setting the Use run-time library control, Microsoft Visual C++

7. Select Build»Build myshared.dll to cause Visual C/C++ to build a
DLL and place it in either the Debug or Release output directory,
depending on which configuration option you selected in step 6c.

In the Example 1: Call a Shared Library that You Built section, you call this
DLL from LabVIEW.

Gnu C or C++ Compilers on Solaris, Linux, or HP-UX
Use the following command to compile the myshared.c source file that
you completed in the Task 2: Complete the .c File section.

gcc -fPIC -shared -o <output name> <source file>

The –fPIC option instructs GCC to produce position independent code,
which is suitable for shared libraries. The -shared option specifies that the
output should be a shared library file.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-13 Using External Code in LabVIEW

Note Some versions of the Gnu linker do not produce suitable output for shared libraries.
The –fno-gnu-linker instructs GCC to use the system linker rather than the Gnu linker.
The output name is normally a file with a .so extension on Solaris, Linux, .sl on HP-UX.

Note If you use g++ to compile a shared library on HP-UX, check to be sure that the
Dynamic Loader is calling the shared static global shared class initializers in that library.

Reducing Symbol Scope
By default, all symbols (functions and global variables) defined in your
code are available. It is sometimes desirable for your library to distinguish
between those symbols that should be accessed by external objects, and
those that are for internal use only. Use a mapfile to make these
distinctions. The mapfile is a text document that the linker takes as input
and uses to determine, among other things, which symbols should be
exported.

Use the following basic syntax for a mapfile, where <library file> is
the name of the output file:

<library file> {

global:

[Symbol for global scope 1];

[Symbol for global scope 2];

...

local:

[Symbols for local scope 1]; or “*”

...

};

Under the global and local sections, list all of the symbols that you want to
be available globally or locally, respectively. Each section is optional, but
remember that all symbols are global, by default. In the local section, you
can choose to use the “*” wildcard, rather than listing individual symbols.
This wildcard means, “any symbol not already defined as global,” and
allows you to easily make symbol definitions in terms of symbols to be
exported, rather than symbols to be reduced in scope.

After you create the mapfile, save it, and instruct the linker to use it by
appending -M <mapfile> to the gcc command-line argument list.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-14 www.ni.com

Metrowerks CodeWarrior on Power Macintosh
Create a shared library using the process that the Metrowerks
documentation describes. To use this shared library with LabVIEW, you
must set struct alignment to 68k in the PPC Processor settings panel. Be
sure to export the function(s) that you want to call from LabVIEW.

Calling External APIs
It is frequently desirable to access external APIs from within LabVIEW
code. Most often, a LabVIEW programmer accesses external APIs to
obtain functionality that the operating system provides. Normally, you can
use the LabVIEW Call Library Function object to accomplish this goal.
You must provide the following information to the Call Library Function.

• Function name as it appears in the library

• Function prototype

• Library or module in which the function resides

• Calling conventions of the function

• Thread-safe status of the function

Common Pitfalls with the Call Library Function
The function reference documentation for any API should provide most of
the information that Call Library Function requires. However, you should
keep in mind the common errors listed in this section.

Incorrect Function Name
Your library call can fail when the name of the function as it appears in the
library is different than is expected. Usually this error occurs due to
function name redefinition, or to function name decoration, as in the
following examples:

• Redefinition—This pitfall appears when an API manufacturer uses a
define mechanism, such as #define directive in ANSI C, to define an
abstracted function name to one of many functions present in the
library, based on some external condition such as language or debug
mode. In such cases, you can look in the header (.h) file for the API to
determine whether a #define directive redefined the name of a
function you want to use.

• Function Name Decoration—This pitfall appears when certain
functions have their names decorated when they are linked. A typical
C compiler tracks name decoration, and when it looks for a function in

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-15 Using External Code in LabVIEW

a shared library, it recognizes the decorated name. However, because
LabVIEW is not a C compiler, it does not recognize decorated names.
If you suspect that function name decoration is causing difficulty,
inspect the shared library’s exported functions. In LabVIEW 6.0, the
Function Name control in the Call Library Function dialog box is a
pull-down list where you can access a list of all functions within the
library you have selected. In addition, most operating systems have a
utility you can use to view a library’s exports, for example, QuickView
on the Windows operating system and the nm command on most UNIX
systems.

Data Types
Your library call can fail when you do not use the correct data types.
LabVIEW only supports basic numeric data types and C strings. Also, you
can select Adapt to Type in the Type control of the Call Library
Function dialog box and direct LabVIEW to pass its own internal data
types for a given parameter. You might encounter the following specific
problems:

• Non-Standard Data Type Definitions—Frequently, other APIs use
non-standard definitions for data types. For example, instead of using
char, short, and long, the Windows API uses BYTE, WORD, and
DWORD. If an API that you are using makes use of such data types, you
need to find the equivalent basic C data type so that you can properly
configure the Call Library Function object. The Example 3: Call the
Win32 API section presents an example of this process.

• Structure and Class Data Types—Some APIs have structure and, in
the case of C++, class data types. LabVIEW cannot use these data
types. If you need to use a function that has a structure or class as an
argument, you should write a CIN or shared library wrapper function
that takes as inputs the data types that LabVIEW supports and that
appropriately packages them before LabVIEW calls the desired
function.

Constants
Your library call can fail when your external code uses identifiers in place
of constants. Many APIs define identifiers for constants to make the code
easier to read. LabVIEW must receive the actual value of the constant,
rather than the identifier that a particular API uses. Constants are usually
numeric, but they may also be strings or other values. To identify all
constants, inspect the header file for the API to find the definitions. The
definition may either be in #define statements, or in enumerations, which

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-16 www.ni.com

use the enum keyword. The Constants section presents an example of this
identification process.

Calling Conventions
Your library call can fail when certain operating systems use calling
conventions other than the C calling convention and the Standard
(__stdcall) calling convention. The calling convention defines how data
is passed to a function, and how clean up occurs after the function call is
complete. The documentation for the API should say which calling
convention(s) you must use. The Standard (__stdcall) calling
convention is also known as the WINAPI convention or the Pascal
convention.

Use of calling conventions other than the C or Standard calling conventions
frequently causes the failure of library calls in LabVIEW, because those
other calling conventions use an incompatible method for maintaining the
stack.

Example 1: Call a Shared Library that You Built
This example describes how to complete an averaging VI called Array
Average in which the LabVIEW Call Library Function calls
myshared.dll. (In UNIX the shared library file has a .so or .sl
extension.) The section Building a Shared Library (DLL) describes how to
begin building the Array Average VI and how to create myshared.dll.
This section describes the three stages for completing the Array Average
VI so that it can call the avg_num function in myshared.dll.

• Complete configuration of the Call Library Function icon.

• Create the front panel.

• Create the block diagram.

Configuration of Call Library Function
Complete the configuration of the Call Library Function object as follows.

1. If necessary, create an Array Average VI as described in the Task 1:
Build the Function Prototype in LabVIEW section.

2. In the block diagram of the Array Average VI, right-click the Call
Library Function icon and select Configure in the shortcut menu to
invoke the Call Library Function dialog box.

3. For the Library Name or Path control, browse and select
myshared.dll as the shared library that Call Library Function calls.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-17 Using External Code in LabVIEW

Create Front Panel
Create the front panel of the VI as follows.

1. Place an array control, Array, to contain a scalar array of SGL with
four members.

2. Place a numeric SGL indicator, Average Value, to display the result
of your averaging calculation.

3. Place a numeric indicator, Error, to display any errors that your VI
generates.

Create the Block Diagram
Perform the following steps to complete the block diagram.

1. Connect the icons for following front panel controls to the Call Library
Function icon.

a. Connect the Array of data control to the a input.

b. Connect the Array Size control to the size input.

c. Connect a constant, zero, to the avg input.

d. Connect the Average Value indicator to the avg output.

e. Connect the Error indicator to the error output.

2. In the front panel, add dummy values to the array and run the VI to
calculate the average of those values.

3. Save your work and close the VI.

If your DLL returns incorrect results or crashes, verify the data types and
wiring to see if you wired the wrong type of information. If you require
further help, several sections in this chapter present troubleshooting tips
and pitfalls to avoid.

Example 2: Call a Hardware Driver API
LabVIEW users frequently want to access an API associated with hardware
that they have purchased. With National Instruments hardware, however,
you do not need to use the shared library object to gain access; all National
Instruments products come with LabVIEW interfaces.

In this example you call a hypothetical interface card for a databus called
“X-bus.” The X-bus interface card comes with a software driver for your
operating system. The X-bus documentation provides standard
information:

• A listing of all functions that you can use to access the hardware.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-18 www.ni.com

• Description of the shared library file xbus.dll that contains these
functions.

• Instructions on including a header file xbus.h. Although LabVIEW
does not permit you to include such header files, you can open header
files and extract information about function prototypes and constants.

• A statement about the Standard (__stdcall) calling convention that
the X-bus library uses.

One of the functions you want to use with this hypothetical hardware is
XBusRead16, which reads a 16-bit integer from a certain address. The
documentation describes XBusRead16 as follows:

Given this information, you can configure the LabVIEW Call Library
Function appropriately, as follows:

1. Create a new VI called Read Data and place a Call Library Function
object in the Block diagram.

2. Right-click the Call Library Function object and select Configure in
the shortcut menu.

3. In the Call Library Function dialog box, make the following settings.

a. Select stdcall (WINAPI) in the Calling Conventions control.

b. Type XbusRead16, in the Function Name control.

c. Select Signed 32 bit Integer in the Data Type control for the
return type parameter.

d. Add a parameter and name it offset and select Unsigned 32 bit
Integer in the Data Type control.

e. Add a parameter and name it data and set its data type to be
pointer to a signed 16-bit integer.

4. Inspect the function prototype that appears in the Function Prototype
indicator. If this the prototype you see does not match the definition of
the function in the API you are calling, you must change your settings
in the Call Library Function dialog box.

The following graphic shows what the front panel and block diagram of the
final VI that calls xbus.dll might look like.

long XBusRead16(unsigned long offset, short* data);

Puts 16 bits from the register at “offset” into the memory location
pointed to by “data.” Returns 1 if successful, or 0 if it fails.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-19 Using External Code in LabVIEW

Figure 2-4. VI That Calls Hardware

Example 3: Call the Win32 API
LabVIEW users frequently want to access the 32-bit Windows platform
API (the Win32 API). In Win32 environments, various DLLs permit your
application to interact with the operating system and with the graphical user
interface. Because the API offers thousands of functions, programmers
must rely on the documentation for the Microsoft Software Development
Kit (SDK). Microsoft Visual Studio products give you access to the SDK
documentation. You can also access this information at the Microsoft Web
site on the Internet.

Note Instead of using the Windows DLL as described in this example, you could easily
create this message box in LabVIEW.

In this example you call the Windows MessageBox function, a function
which illustrates several of the typical complexities of the Win32 API.
MessageBox is a simple SDK function that presents a small dialog box
with a message, and has the following prototype:

int MessageBox(HWND hWnd, // handle to owner window

LPCTSTR lpText, // text in message box

LPCTSTR lpCaption, // message box title

UINT uType // message box style);

Notice the non-standard data types like HWND, and LPCTSTR. The Win32
API uses hundreds of data types in the SDK, and very few of them are
standard C data types. However, many of the non-standard data types are
merely aliases for standard C data types. The API uses the aliases to
identify the context of a particular data type. The data types in the
preceding prototype correspond to the following standard C data types:

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-20 www.ni.com

In order to properly call the MessageBox function in LabVIEW, you need
to identify the equivalent LabVIEW data types, which you can usually infer
from the C data types. Mapping LPCTSTR and UINT to LabVIEW is
straightforward: LPCTSTR is a C String and UINT is a U32.

Mapping HWND is more complex. The preceding table shows HWND to be a
double pointer to an integer. However, inspection of the function shows
that MessageBox uses HWND merely as a reference number that identifies
the owner of the window. Because of this fact, you do not need to know the
integer value for which the HWND is a handle. Instead, you need to know the
value of the HWND variable itself. Because it is a double pointer, and hence
a pointer, you can be treat it as an unsigned 32-bit integer, or, in LabVIEW
terms, a U32. It is very common to run across handles like HWND in the
Win32 SDK. In LabVIEW you are almost always interested in the handle
itself, and not the data to which it points. Therefore, you can usually treat
handles—whose names always begin with the letter H in the Win32
API—as U32.

If the SDK documentation does not make clear what C data type
corresponds to a Win32 type, search windef.h for the appropriate
#define or typedef statement.

Constants
This section presents methods for finding the numerical values of constants
in the Win32 API, using MessageBox constants as examples. The
following table lists selected constants for MessageBox.

Table 2-1. Mapping Win32 Data Types to Standard C Data Types

WIN32 SDK Data Type Basic C Data Type

HWND int **

LPCTSTR const char *

UINT unsigned int

Table 2-2. Mapping Win32 Data Types to LabVIEW Data Types

WIN32 SDK Data Type LabVIEW Data Type

HWND uInt32

LPCTSTR CStr (C string pointer)

UINT uInt32

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-21 Using External Code in LabVIEW

In Visual Studio, programmers do not use the actual values of constants. In
LabVIEW, however, you need to pass the actual numeric value of the
constant to the function. You find these values in the header files that come
with the SDK. The SDK online documentation normally lists the relevant
header file at the bottom of the help topic for a given function. For
MessageBox, the SDK online documentation has the following statement:

Header: Declared in winuser.h

The header file named in this statement usually declares the constants.
Searching through that header file you should be able to find a #define
statement or an enumeration that assigns the constant text a value.
winuser.h defines values for some of the MessageBox constants as
follows:

#define MB_OK 0x00000000L

#define MB_ABORTRETRYIGNORE 0x00000002L

#define MB_ICONWARNING MB_ICONEXCLAMATION

Thus, MB_OK has the decimal value0,MB_ABORTRETRYIGNORE has the decimal
value 2, and MB_ICONWARNING is defined as MB_ICONEXCLAMATION.
Elsewhere in winuser.h you find the following statement defining
MB_ICONEXCLAMATION.

#define MB_ICONEXCLAMATION 0x00000030L

A hexadecimal value of 30 translates to a decimal value of 48.

Tip Keep in mind that constants in the SDK often are used in bitfields. A bitfield is usually
a single integer in which each bit controls a certain property. The uType parameter in
MessageBox is an example of a bitfield. Often, you can combine multiple constants in
order to set multiple properties through one parameter. In order to combine these constants,

Table 2-3. Selected Constants for MessageBox

Constant Description

MB_ABORTRETRYIGNORE An Abort, Retry, Ignore message box.

MB_CANCELTRYCONTINUE A Cancel, Try Again, Continue message box in Windows 2000.
An alternative to MB_ABORTRETRYIGNORE

MB_HELP A Help button to add to a message box for Windows 98/95,
Windows NT 4.0 and later. The system sends a WM_HELP message to
the owner whenever the user clicks the Help button or presses <F1>.

MB_OK A message box with an OK button. This is the default message box.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-22 www.ni.com

you use a bit-wise OR operation (|). For example, to set the MessageBox to have a
warning icon and the buttons Abort, Retry, and Ignore, you pass the following value of
uType to MessageBox:

MB_ABORTRETRYIGNORE | MB_ICONEXCLAMATION = 0x32

In LabVIEW, you combine multiple constants by wiring integer types to the OR operator.

Figure 2-5. Combining Function Constants in LabVIEW

Determining the Proper Library and Function Name
Before you can configure this call to the Win32 API, you must identify the
DLL that contains MessageBox and the specific name of MessageBox
within the DLL. Refer to the description of MessageBox in the
documentation that comes with your SDK or search for “MessageBox” on
the Microsoft Web site. A Requirements section follows the function
description for MessageBox and contains the following information:

“Requirements:

Windows NT: Requires version 3.1 or later.

Windows: Requires Windows 95 or later.

Windows CE: Requires version 1.0 or later.

Header: Declared in winuser.h.

Import Library: Use user32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows
and Windows NT.”

The Import Library line names the static library user32.lib that you need
to link to in order to build a program in the C language. Every static library
in the SDK has a dynamic counterpart that has the same filename, but has
a .dll extension instead of a .lib extension. This DLL that contains the
actual implementation of the desired function. So, in this case you know
that user32.dll contains MessageBox.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-23 Using External Code in LabVIEW

Unicode Versions and ANSI Versions of Functions
MessageBox uses one string argument. The SDK implements two versions
of functions that use string arguments, a Unicode version and an ANSI
version. One of the items in the Requirements section of the MessageBox
documentation says, “Unicode: Implemented as Unicode and ANSI
version on Windows and Windows NT.” You can distinguish the two
versions in the DLL because each has a W (Unicode) or an A (ANSI)
appended to the end of the function name. winuser.h contains the
following code:

#ifdef UNICODE

#define MessageBox MessageBoxW

#else

#define MessageBox MessageBoxA

#endif // !UNICODE

This code defines MessageBox to be either MessageBoxA or
MessageBoxW, depending on whether the application is a Unicode
application. In effect, a MessageBox function does not exist in
user32.dll. Instead, there is a function MessageBoxA and a function
MessageBoxW. In most cases in LabVIEW, a VI programmer uses the
ANSI version of the function, because the LabVIEW strings are based on
ANSI, not Unicode. For this example, you use the MessageBoxA function.

Configuring a Call to the Win32 API
Now that you are familiar with many aspects of the Win32 API, you can
configure a LabVIEW Call Library Function to call the MessageBox
function. Remember that you must use the Standard (__stdcall) calling
convention in calls to any function in the Windows SDK.

The following graphic shows a correctly configured instance of the Call
Library Function. Make your Call Library Function dialog box match the
settings in the graphic. Refer to the Task 1: Build the Function Prototype in
LabVIEW section for a separate example that teaches you how to configure
controls in Call Library Function.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-24 www.ni.com

Figure 2-6. Configuring Call Library Function to call the Win32 API

You can configure the block diagram of this VI to match the following
graphic.

Figure 2-7. Block Diagram for a Call to the Win32 API

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-25 Using External Code in LabVIEW

This VI generates the following message box.

Figure 2-8. Running a LabVIEW Call to the Win32 API

Additional Examples of LabVIEW Calls to DLLs
You can access several other examples to learn more about calling DLLs
from LabVIEW.

• If you have a sound card with Windows sound drivers installed on your
system, investigate the Play Sound VI found in the LabVIEW
Examples directory:

\LABVIEW\EXAMPLES\DLL\SOUND\PLAYSND.LLB\Play

Sound.vi

You can use this VI to play Windows .WAV sound files on your
computer from LabVIEW.

• If you do not have a sound card you can generate a sound in your PC
speaker by calling the MessageBeep function in User32.DLL.
The function prototype is:

VOID MessageBeep(UINT uType);

• The LabVIEW example VI Hostname returns the host name of your
computer, demonstrating how to use LabVIEW string handles:

\LABVIEW\EXAMPLES\DLL\HOSTNAME\hostname.vi

• You can programmatically position your cursor anywhere on your
monitor using the SetCursorPos function in User32.DLL. The
function prototype is:

BOOL SetCursorPos(INT x, INT y);

x and y are the coordinates you want, referenced from the upper left
corner of the screen. The return value is TRUE if the function was
successful and FALSE if it was unsuccessful. Remember that the value
returned is type BOOL, which is defined in the Win32 API as a 32-bit
signed integer with values 0=FALSE and 1=TRUE.

Debugging DLLs and Calls to DLLs
When you debug your LabVIEW calls to DLLs, you must be prepared to
trace problems in the DLL you are calling and in your implementation of
Call Library Function in LabVIEW.

Troubleshooting the Call Library Function
When your LabVIEW calls to DLLs generate errors, check for the
following problems in your use of Call Library Function. Also refer to the
Troubleshooting your DLL section and the Troubleshooting Checklist
section.

• Make sure that the path to the DLL file is correct.

• If LabVIEW gives you the error message function not found in
library, double-check your spelling of the name of the function you
wish to call. Remember that function names are case sensitive. Also,
be sure that your compiler has not decorated the function, as discussed
in the Preventing C++ Name Decoration section.

• If your VI crashes, make sure that you are passing exactly the
parameters that the function in the DLL expects. For example, make
sure that you are passing an int16 and not an int32 when the
function expects int16. Also confirm that you are using the correct
calling convention __stdcall or C.

Troubleshooting your DLL
When LabVIEW calls to DLLs generate errors, check for the following
problems in your DLL. Also refer to the Troubleshooting the Call Library
Function section and the Troubleshooting Checklist section.

• Remember that you need to declare the function with the _declspec
(dllexport) keyword in the header file and the source code or
define it in the exports section of the module definition file.

• When you use the _declspec (dllexport) keyword and you are
also using the __stdcall calling convention, you must declare the
DLL function name in the EXPORTS section of the module definition
(.def) file. In the absence of a .def file, __stdcall might truncate
function names in an unpredictable pattern, and so, the actual function
name would be unavailable to applications that call the DLL.

• When a function has not been properly exported, you must recompile
the DLL. Before recompiling, you must close all applications and VIs
that may make use of the DLL. Otherwise, the recompile will fail

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-27 Using External Code in LabVIEW

because the DLL is still in memory. Most compilers warn you when
the DLL is in use by an application.

• After you confirm the name of the function, and after you confirm
proper export of the function, find out whether you have used the C or
C++ compiler on the code. If you have use the C++ compiler, the
names of the functions in the DLL are altered by a process called name
mangling. The easiest way to correct name mangling is to enclose the
declarations of the functions you wish to export in your header file
with the extern "C" statement:

extern "C"

{

/* your function prototypes here */

}

• Try to debug your DLL by using the source level debugger provided
with your compiler. Using the debugger of your compiler, you can set
breakpoints, step through your code, watch the values of the variables,
and so on. Debugging using conventional tools can be extremely
beneficial. For more information about debugging, please refer to the
appropriate manual for your compiler.

• Calling the DLL from another C program is also an excellent way to
debug your DLL. By doing this, you have a means of testing your DLL
independent of LabVIEW, thus helping you to identify any problems,
sooner.

Troubleshooting Checklist
Complete the following checklist to eliminate many potential problems
from LabVIEW VIs that call DLLs.

❑ Call Library Function uses the proper calling convention
(C or __stdcall).

❑ Call Library Function has the correct path to the DLL.

❑ Call Library Function has the correct spelling, syntax, and case
sensitivity for the function name that you are calling. Otherwise, the
error message Function not found in library appears.

❑ In the Call Library Function icon, data is wired to the input terminals
of all the parameters that you are passing to a DLL function. Also,
check that the function is properly configured for all input parameters.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-28 www.ni.com

❑ Return types and data types of arguments for functions in Call Library
Function exactly match the data types your function uses. Erroneous
data type assignments can cause crashes.

❑ Call Library Function passes arguments to the function in the correct
order.

❑ Resizing of arrays and concatenation of strings can take place only
under the following conditions:

– Only when Call Library Function passes a LabVIEW Array
Handle or LabVIEW String Handle, and,

– Only when you add labview.lib to a Visual C++ project,
labview.export.stub to a CodeWarrior project, and
labview.sym.lib to a Symantec project.

Caution Never resize arrays or concatenate strings using the arguments passed directly to
a function. Remember, the parameters you pass are LabVIEW data. Changing array or
string sizes may result in a crash by overwriting other data stored in LabVIEW memory.

❑ Call Library Function passes strings of the correct type to a function:
C string pointers, Pascal string pointers, or the LabVIEW string
handles. The Windows API requires the C-style string pointer.

❑ Pascal strings do not exceed 255 characters in length.

❑ Remember that C strings are NULL terminated. If your DLL function
returns numeric data in a binary string format (for example, through
GPIB or the serial port), it may return NULL values as part of the data
string.

❑ For arrays or strings of data, you always pass a buffer or array that is
large enough to hold any results that the function places in the buffer.
However, if you are passing them as LabVIEW handles, use CIN
functions to resize them under Visual C++, CodeWarrior, or Symantec
compilers.

❑ When you are using __stdcall, you list DLL functions in the
EXPORTS section of the module definition file.

❑ DLL functions that other applications call appear in the module
definition file EXPORTS section, or you include the _declspec
(dllexport) keyword in the function declaration.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-29 Using External Code in LabVIEW

❑ When you use a C++ compiler, you export functions with the extern
"C"{} statement in your header file in order to prevent name
mangling.

❑ For a DLL that you have written, you never recompile the DLL while
the DLL is loaded into memory by another application, for example,
by your VI. Before recompiling a DLL, make sure that all applications
making use of the DLL are unloaded from memory. This ensures that
the DLL itself is not loaded into memory during a recompile. The DLL
might fail to rebuild correctly if you forget this point and your compiler
does not warn you.

❑ You tested the DLL with another program to ensure that the function
(and the DLL) behave correctly. Testing it with the debugger of your
compiler or a simple C program in which you can call a function in a
DLL will help you identify whether possible difficulties are inherent to
the DLL or are related to LabVIEW.

Module Definition Files
In the Building a Shared Library (DLL) section, you configure LabVIEW
to use the C calling convention in the .c source file you build with the
LabVIEW Call Library Function. In contrast, you use the __stdcall
calling convention when you call the Win32 API. When you build a shared
library (DLL) with __stdcall, you normally use a module definition
(.def) file to export the functions in your DLL. In the absence of a .def
file, __stdcall might truncate function names in an unpredictable
pattern, so the actual function name would be unavailable to applications
that call the DLL.

You can associate a module definition (.def) file with a DLL. The .def
file contains the statements for defining a DLL, such as the name of the
DLL and the functions that it exports, as shown in the following example.

LIBRARY myshared

EXPORTS

avg_num

The preceding code example demonstrates key requirements for .def files:

• The only mandatory entries in the .def files are the LIBRARY
statement and the EXPORT statement.

• The LIBRARY statement must be the first statement in the file.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-30 www.ni.com

• The name you specify in the LIBRARY statement identifies the library
in the import library of the DLL.

• The names you specify in the EXPORTS statement identify the
functions that the DLL exports.

Note Instead of a .def file, many Windows programmers use the LINK option in Project
Settings of the Visual C++ compiler to obtain equivalent command-line options for most
module definition statements.

Array and String Options
This section reviews important concepts regarding array and string data in
Call Library Function.

Arrays of Numeric Data
Arrays of numeric data can be comprised of any type of integers, or floating
point numbers with single (4-byte) or double (8-byte) precision. When you
pass an array of data to a DLL function, you can pass the data as an Array
Data Pointer, as a LabVIEW Array Handle, or as a LabVIEW Array Handle
Pointer.

The following list presents the characteristics of Array Data Pointers,
whether you pass them in the Windows API or in another API. Remember
that the Windows API does not use LabVIEW array handles, so with
functions that are part of the Windows API you can use only Array Data
Pointers.

• You can set the number of dimensions in the array, but you must not
include information about the size of the array dimension(s). Instead,
you must pass the size of the array dimension(s) information to your
DLL in a separate variable.

• Specifically, never resize an array or perform operations that may
change the length of the array data passed from LabVIEW. Resizing
may cause a crash because the pointer sent is not an allocated block,
but rather, points into the middle of an allocated block.

• To return an array of data, you should allocate an array of sufficient
size in LabVIEW, pass it to your function, and have this array act as the
buffer. If the data takes less space, you can return the correct size as a
separate parameter and then, on the calling diagram, use array subset
to extract the valid data.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-31 Using External Code in LabVIEW

If you pass the array data as a LabVIEW Array Handle, you can use
LabVIEW CIN functions to resize the array. In order to call LabVIEW CIN
functions, your compile must include the correct LabVIEW library file,
which is located within the LabVIEW cintools directory.

• For CodeWarrior, include labview.export.stub.

• For Symantec, include labview.sym.lib.

• For Visual C++, include labview.lib.

String Data
The types of your string pointers much match the types of string pointers
that your function uses, or errors will occur. Call Library Function offers
the following choices:

• C String Pointer—Pointer to the string, followed by a NULL
character. Most Win32 API functions use this C-style string pointer.

• Pascal String Pointer—Pointer to the string, preceded by a length
byte.

• LabVIEW String Handle—Pointer to a pointer to the string,
preceded by four bytes of length information.

• LabVIEW String Handle Pointer—A pointer to a handle for a string,
preceded by four bytes of length information.

You can think of a string as an array of characters; assembling the
characters in order forms a string. LabVIEW stores a string in a special
format in which the first four bytes of the array of characters form a signed
32-bit integer that stores how many characters appear in the string. Thus,
a string with n characters will require n + 4 bytes to store in memory. For
example, in the following graphic the string text contains four characters.
When LabVIEW stores the string, the first four bytes contain the value 4 as
a signed 32-bit number, and each of the following four bytes contains a
character of the string. The advantage of this type of string storage is that
NULL characters are allowed in the string. Strings are virtually unlimited
in length (up to 231 characters). This method of string storage is illustrated
in the following figure. If you pass a LabVIEW String Handle from Call
Library Function to the DLL, then you can use the LabVIEW CIN
functions like DSSetHandleSize to resize the LabVIEW String Handle.

Figure 2-9. The LabVIEW String Format

\04 t e x t

string length string data

\00 \00 \00

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-32 www.ni.com

Remember, you must add labview.lib to a Visual C++ project,
labview.export.stub to a CodeWarrior project, and
labview.sym.lib to a Symantec project.

The Pascal string format is nearly identical to the LabVIEW string format,
but instead of storing the length of the string as a signed 32-bit integer, it is
stored as an unsigned 8-bit integer. This limits the length of a Pascal style
string to 255 characters. A graphical representation of a Pascal string
appears in the following figure. A Pascal string that is n characters long will
require n + 1 bytes of memory to store.

Figure 2-10. The Pascal String Format

C strings are probably the type of strings you will deal with most
commonly. The similarities between the C-style string and normal numeric
arrays in C becomes much more clear when one observes that C strings are
declared as char *, where char is typically an unsigned byte. Unlike
LabVIEW and Pascal strings, C strings do not contain any information that
directly gives the length of the string. Instead, C strings use a special
character, called the NULL character, to indicate the end of the string.
NULL is defined to have a value of zero in the ASCII character set. Notice
that NULL is the number zero and not the character “0”. Thus, in C, a string
containing n characters requires n + 1 bytes of memory to store: n bytes for
the characters in the string, and one additional byte for the NULL
termination character. The advantage of C-style strings is that they are
limited in size only by available memory. However, if you are acquiring
data from an instrument that returns numeric data as a binary string, as is
common with serial or GPIB instruments, values of zero in the string are
possible. For binary data where NULLs may be present, consider an array
of unsigned 8-bit integers. If you treat the string as a C-style string, your
program will incorrectly assume that the end of the string has been reached,
when in fact your instrument is returning a numeric value of zero. An
illustration of how a C-style string is stored in memory appears in the
following figure.

\04 t e x t

string
length

string data

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-33 Using External Code in LabVIEW

Figure 2-11. The C String Format

When you pass string data to a DLL, you must follow the same guidelines
as for arrays:

• Never resize a string, concatenate a string, or perform operations that
may increase the length of string data passed from LabVIEW if you are
using the C or Pascal string pointers.

• If you must return data as a string, you should first allocate a string of
the appropriate length in LabVIEW, and pass this string into the DLL
to act as a buffer.

• If you pass a LabVIEW String Handle from Call Library Function to
the DLL, then you can use the LabVIEW CIN functions like
DSSetHandleSize to resize the LabVIEW string handle.

Note To use the LabVIEW CIN function calls you must add labview.lib to a Visual
C++ project, labview.export.stub to a CodeWarrior project, and labview.sym.lib
to a Symantec project.

Array and String Tip
When you are not passing LabVIEW handles and your DLL function must
create an array, change its size, or resize a string of data, you should break
the function into two steps:

1. Determine the number of elements that the array requires, or the length
of the string to be returned. Have this first function return the desired
size to LabVIEW.

2. In LabVIEW, initialize an array or string with default values, and pass
this array to a second function in your DLL, which actually places the
data into the array. If you are working with string-based instrument
control, it may be easier to pass an array of 8-bit integers than C strings
because of the possibility of having NULL values in the string.

When you are passing a LabVIEW Array Handle or LabVIEW String
Handle from the Call Library Function object to your DLL, you can
use the LabVIEW CIN functions to resize or create an array or string.
Refer to the Required Libraries section for more information about
this set of functions.

t e x t

string data

\00

NULL
Character

© National Instruments Corporation 3-1 Using External Code in LabVIEW

3
CINs

This chapter discusses the LabVIEW Code Interface Node (CIN), a block
diagram node that links C/C++ source code to LabVIEW.

Supported Languages
The interface for CINs supports a variety of compilers, although not all
compilers can create code in the correct executable format.

External code must be compiled as a form of executable appropriate for a
specific platform. The code must be relocatable, because LabVIEW loads
external code into the same memory space as the main application.

Macintosh
CINs in LabVIEW for Macintosh access a shared libraries. To prepare the
code for LabVIEW, use the separate utilities lvsbutil.app for
Metrowerks CodeWarrior and lvsbutil.tool for the Macintosh
Programmer’s Workshop. These utilities come with LabVIEW.

You can create CINs with compilers from the two major C compiler
vendors:

• Metrowerks CodeWarrior from Metrowerks Corporation of
Austin, TX

• Macintosh Programmer’s Workshop (MPW) from Apple Computer,
Inc. of Cupertino, CA

LabVIEW header files are compatible with these two environments.
Header files might need modification for other environments.

Microsoft Windows
LabVIEW for Windows supports CINs created with any of the following
compilers:

• Microsoft Visual C++

• Symantec C

Chapter 3 CINs

Using External Code in LabVIEW 3-2 www.ni.com

Refer to the Microsoft Windows subsection in the Step 4. Compile the
CIN Source Code section in this chapter for information about creating
a CIN using these compilers.

Solaris, Linux, and HP-UX
LabVIEW for Sun supports external code compiled in a shared library
format. To prepare this library for LabVIEW, use LabVIEW utility
lvsbutil.

The gcc compiler is tested thoroughly with LabVIEW on Solaris, Linux,
and HP-UX platforms. For Solaris, Sun Workshop C Compiler is also
tested thoroughly with LabVIEW.

Resolving Multithreading Issues
You must resolve two issues in order to make multithreaded CINs:

• Make LabVIEW recognize your CIN as being multithreaded.

• Use C code that is completely multithread safe.

Making LabVIEW Recognize a CIN as Thread Safe
The CIN node on the block diagram is orange if you have not set the node
to be thread safe. A thread safe node is yellow. Perform the following steps
to make LabVIEW recognize a CIN node as thread safe.

Add the CINProperties function to your CIN code, in the prototypes
section of your .c source file:

CIN MgErr CINProperties(int32 prop, void *data);

Add the following function statement to the functions section of your .c
source file:

CIN MgErr CINProperties(int32 prop, void *data)

 {

 switch (prop) {

 case kCINIsReentrant:

 *(Bool32 *)data = TRUE;

 return noErr;

 }

 return mgNotSupported;

 }

Chapter 3 CINs

© National Instruments Corporation 3-3 Using External Code in LabVIEW

Using C Code that is Thread Safe
The CINProperties function only labels your CIN as being safe to run
from multiple threads. Whether the CIN is actually thread-safe depends
entirely upon what C code has been written. For information about what
makes C code safe or unsafe to be run from multiple threads
simultaneously, please consult C programming documentation. The
following list presents basic answers to the question, Is my CIN code
thread safe?

• The CIN code is thread safe when it stores no unprotected global data
(for example, no global variables, no files on disk, and so on); does not
access any hardware (in other words, does not contain register-level
programming); and makes no calls to any functions, shared libraries,
or drivers that are not thread safe.

• The CIN code is thread safe when it uses semaphores or mutexes to
protect access to global resources.

• The CIN call is thread safe when only one non-reentrant VI calls
the CIN; and the code accesses no global resources through CIN
housekeeping routines, such as, CINInit, CINAbort, CINDispose,
and others.

Creating a CIN
In general, to create a CIN, describe in LabVIEW the data you want to
pass to the CIN. Then, write the code for the CIN using one of the
supported programming languages. After you compile the code, run
a utility that puts the compiled code into a format LabVIEW can use.
Then, instruct LabVIEW to load the CIN.

If you run the VI at this point and the block diagram needs to execute the
CIN, LabVIEW calls the CIN object code and passes any data wired to the
CIN. If you save the VI after loading the code, LabVIEW saves the CIN
object code along with the VI so LabVIEW no longer needs the original
code to execute the CIN. You can update your CIN object code with new
versions at any time.

The examples directory contains a CINs directory that includes all of the
examples given in this manual. The names of the directories in CINs

correspond to the CIN name in the examples.

To create a CIN, complete the following steps.

Chapter 3 CINs

Using External Code in LabVIEW 3-4 www.ni.com

Step 1. Set Up Input and Output Terminals for a CIN
Access the Code Interface Node located on the Functions»Advanced
palette and place it on a block diagram.

A CIN has terminals with which you can indicate which data passes to and
from a CIN. Initially, the CIN has one set of terminals, and you can pass a
single value to and from the CIN. To add additional terminals, resize the
node, then right-click the node and select Add Parameter.

The following illustration shows how to resize the node to add parameters.

Each pair of terminals corresponds to a parameter LabVIEW passes to the
CIN. The two types of terminal pairs are input-output and output-only.

Input-Output Terminals
By default, a terminal pair is input-output; the left terminal is the input
terminal, and the right terminal is the output terminal. For example,
consider a CIN that has a single terminal pair. A 32-bit integer control is
wired to the input terminal and a 32-bit integer indicator is wired to the
output terminal, as shown in the following illustration.

When the VI calls the CIN, the only argument LabVIEW passes to the CIN
object code is a pointer to the value of the 32-bit integer input. When the
CIN completes, LabVIEW then passes the value referenced by the pointer
to the 32-bit integer indicator. When you wire controls and indicators to the
input and the output terminals of a terminal pair, LabVIEW assumes the
CIN can modify the data passed. If another node on the block diagram
needs the input value, LabVIEW might have to copy the input data before
passing it to the CIN.

Consider the same CIN, but with no indicator wired to the output terminal,
as shown in the following illustration.

Chapter 3 CINs

© National Instruments Corporation 3-5 Using External Code in LabVIEW

If you do not wire an indicator to the output terminal of a terminal pair,
LabVIEW assumes the CIN will not modify the value you pass to it. If
another node on the block diagram uses the input data, LabVIEW does
not copy the data. The source code should not modify the value passed into
the input terminal of a terminal pair if you do not wire the output terminal.
If the CIN does modify the input value, nodes connected to the input
terminal wire may receive the modified data.

Output-Only Terminals
If you use a terminal pair only to return a value, make it an output-only
terminal pair by resizing the node then right-clicking the node and selecting
Output Only. If a terminal pair is output-only, the input terminal is gray,
as shown in the following illustration.

For output-only terminals, LabVIEW creates storage space for a return
value and passes the value by reference to the CIN the same way it passes
values for input-output terminal pairs. If you do not wire a control to the
left terminal, LabVIEW determines the type of the output parameter by
checking the type of the indicator wired to the output terminal. This can
be ambiguous if you wire the output to two destinations that have different
data types. To solve this problem, wire a control to the left (input) terminal
of the terminal pair as shown in the previous illustration. In this case, the
output terminal takes on the same data type as the input terminal. LabVIEW
uses the input type only to determine the data type for the output terminal;
the CIN does not use or affect the data of the input wire.

To remove a pair of terminals from a CIN, right-click the terminal you
want to remove and select Remove Terminal. LabVIEW disconnects
wires connected to the deleted terminal pair. Wires connected to terminal
pairs below the deleted pair remain attached to those terminals and stretch
to adjust to the terminals’ new positions.

Chapter 3 CINs

Using External Code in LabVIEW 3-6 www.ni.com

Step 2. Wire the Inputs and Outputs to the CIN
Connect wires to all the terminal pairs on the CIN to specify the data
you want to pass to the CIN, and the data you want to receive from the
CIN. The order of terminal pairs on the CIN corresponds to the order
in which parameters are passed to the code. You can use any
LabVIEW data types as CIN parameters, so you can pass arbitrarily
complex hierarchical data structures, such as arrays containing clusters that
can in turn contain other arrays or clusters to a CIN. Refer to the Passing
Parameters section in Chapter 4, Programming Issues for CINs, for
information about how LabVIEW passes parameters of specific data types
to CINs.

Step 3. Create a .c File
Right-click the node and select Create .c File to create a .c file in the style

Chapter 3 CINs

© National Instruments Corporation 3-7 Using External Code in LabVIEW

and types whose definitions may conflict with the definitions of system
header files. The cintools directory also contains hosttype.h, which
resolves these differences. This header file also includes many of
the common header files for a given platform.

Always use #include "extcode.h" at the beginning of your source
code. If your code needs to make system calls, also use #include
"hosttype.h" immediately after #include "extcode.h", and then
include your system header files. hosttype.h includes only a subset of
the .h files for a given operating system. If the .h file you need is not
included by hosttype.h, you can include it in the .c file for your CIN
after you include hosttype.h.

LabVIEW calls the CINRun routine when it is time for the node to
execute. CINRun receives the input and output values as parameters. The
other routines (CINLoad, CINSave, CINUnload, CINAbort, CINInit,
CINDispose, and CINProperties) are housekeeping routines, called at
specific times so you can take care of specialized tasks with your CIN. For
example, LabVIEW calls CINLoad when it first loads a VI. If you need to
accomplish a special task when your VI loads, put the code for that task in
the CINLoad routine. To do so, write your CINLoad routine as follows:

CIN MgErr CINLoad(RsrcFile reserved) {

Unused (reserved);

/* ENTER YOUR CODE HERE */

return noErr;

}

In general, you only need to write the CINRun routine. Use the other
routines when you have special initialization needs, such as when your CIN
must maintain some information across calls, and you want to preallocate
or initialize global state information. The following code shows an example
of how to fill out the CINRun routine from the previously shown
LabVIEW-generated .c file to multiply a number by two. Refer to the
Passing Parameters section in Chapter 4, Programming Issues for CINs,
for information about how LabVIEW passes data to a CIN, with several
examples.

CIN MgErr CINRun(int32 *num_in, int32 *num_out) {

*num_out = *num_in * 2;

return noErr;

}

Chapter 3 CINs

Using External Code in LabVIEW 3-8 www.ni.com

Step 4. Compile the CIN Source Code
You must compile the source code for the CIN as a LabVIEW subroutine
(.lsb) file. After you compile your C/C++ code in one of the compilers
that LabVIEW supports, you use a LabVIEW utility that puts the object
code into the .lsb format.

Because the compiling process is often complex, LabVIEW includes
utilities that simplify the process. These utilities take a simple specification
for a CIN and create object code you can load into LabVIEW. These tools
vary depending on the platform and compiler you use. Refer to the
following sections for more information about compiling on your platform.

Note The LabVIEW Base Development system can use existing .lsb files, but cannot
create new .lsb files. You can create .lsb files in the LabVIEW Full and Professional
Development Systems.

Compile on Macintosh
LabVIEW for Macintosh uses shared libraries as a resource for customized
code. To prepare the code for LabVIEW, use the separate utilities
lvsbutil.app for Metrowerks CodeWarrior and lvsbutil.tool for
the Macintosh Programmer’s Workshop. These utilities are included with
LabVIEW.

You can create CINs with compilers from the two major C compiler
vendors:

• Metrowerks CodeWarrior from Metrowerks Corporation of
Austin, TX

• Macintosh Programmer’s Workshop (MPW) from Apple Computer,
Inc. of Cupertino, CA

Always use the latest Universal headers containing definitions for Power
Macintosh compilers.

Metrowerks CodeWarrior for Power Macintosh
To set up your CIN project, use the project stationery in the
cintools:Metrowerks Files:Project Stationery:LabVIEW

CIN MWPPC folder.

Chapter 3 CINs

© National Instruments Corporation 3-9 Using External Code in LabVIEW

To create a CIN for Power Macintosh, you need your source files and
CINLib.ppc.mwerks in your CodeWarrior project. LabVIEW installs
CINLib.ppc.mwerks in the cintools:Metrowerks Files:PPC
Libraries folder.

If you call any routines within LabVIEW, such as DSSetHandleSize()
or SetCINArraySize(), you also need the labview.export.stub file.
LabVIEW installs labview.export.stub in the cintools:PowerPC
Libraries folder.

If you call any routines from a system shared library, you must add the
appropriate shared library interface file to your project.

When building a CIN using CodeWarrior for PPC, you can set many of
the preferences to whatever you want. However, other preferences must be
set to specific values to correctly create a CIN. If you do not use the project
stationery, make sure you set the following preferences in the CodeWarrior
Preferences dialog box:

• Clear the Prefix File (using MacHeaders does not work).

• Set Struct Alignment to 68K.

• Clear all the Entry Point fields.

• Set Export Symbols to Use .exp file and place a copy of the file
projectName.exp (from your cintools:Metrowerks
Files:PPC Libraries folder) in the same folder as your
CodeWarrior project. Rename this file to projectName.exp, where
projectName is the name of the project file. CodeWarrior looks in
this file to determine what symbols your CIN exports. LabVIEW
needs these to link to your CIN.

• Set Project Type to Shared Library. Set the file name to
cinName.tmp, where cinName is the name of your CIN. Set Type to
.tmp. Set Creator to LVsb.

• Add your cintools folder to the list of access paths.

To build the CIN, select Project»Make.

When you successfully build the cinName.tmp file, use the
lvsbutil.app application to create the cinName.lsb file.

Note

Chapter 3 CINs

Using External Code in LabVIEW 3-10 www.ni.com

In the file selection dialog box, make sure the For Power PC box is
checked. Select any other options you want for your CIN, and then select
your cinName.tmp file. LabVIEW creates cinName.lsb in the same
folder as cinName.tmp.

Macintosh Programmer’s Workshop
You can use Macintosh Programmer’s Workshop (MPW) to build CINs
for Power Macintosh. Several scripts are available for the MPW
environment to help you build CINs.

• CINMake—This script uses a simplified form of a makefile you
provide. You can run it every time you need to rebuild your CIN.

• LVMakeMake—Similar to the lvmkmf (LabVIEW Make Makefile)
script available for building CINs on UNIX. This script builds a
skeletal but complete makefile you can then customize and use with
the MPW make tool.

You must have one makefile for each CIN. Name the makefile by
appending .lvm to the CIN name to indicate that it is a LabVIEW makefile.
The makefile should resemble the following pseudocode. Make sure that
each Dir command ends with the colon character (:).

• name = name

Name for the code; indicates the base name for your CIN. The source
code for your CIN should be in name.c. The code created by the
makefile is placed in a new LabVIEW subroutine (.lsb) file,
name.lsb.

• type = type

Type of external code you want to create. For CINs, use a type of CIN.

• codeDir = codeDir:

Complete pathname to the folder containing the .c file used for the
CIN.

• cinToolsDir = cinToolsDir:

Complete pathname to the LabVIEW cintools:MPW folder.

• LVMVers = 2

Version of CINMake script reading this .lvm file.

• inclDir = -i inclDir:

(Optional) Complete or partial pathname to a folder containing any
additional .h files.

Chapter 3 CINs

© National Instruments Corporation 3-11 Using External Code in LabVIEW

• otherPPCObjFiles = otherPPCObjFiles

(Optional) List of additional object files (files with a .o extension)
your code needs to compile. Separate the names of files with spaces.

• ShLibs = sharedLibraryNames

(Optional) A list of the link-time copies of import libraries with which
the CIN must be linked. Each should be a complete path to the file.
Separate the names with spaces.

• ShLibMaps = sharedLibMappings

(Optional) The command-line arguments to the MakePEF tool that
indicate the mapping between the name of each link-time import
library and the run-time name of that import library. These usually look
similar to the following:

-librename libA.xcoff=libA

-librename libB.xcoff=libB

Only the file names are needed, not entire paths.

You must adjust the —Dir names to reflect your own file system hierarchy.

Modify your MPW command search path by appending the
cintools:MPW folder to the default search path. This search path is
defined by the MPW Shell variable commands.

set commands "{commands}","<pathname to directory of

cinToolsDir>"

Go to the MPW Worksheet and enter the following commands. Set your
current folder to the CIN folder:

Directory <pathname to directory of your CIN>

Run the LabVIEW CINMake script:

CINMake <name of your CIN>

If CINMake does not find a .lvm file in the current folder, it builds a
file named cinName.lvm, and prompts you for necessary information.
If CINMake finds cinName.lvm, but it does not have the line
LVMVers = 2, MPW saves the .lvm file in cinName.lvm.old and
updates the cinName.lvm file to be compatible with the new version of
CINMake.

Chapter 3 CINs

Using External Code in LabVIEW 3-12 www.ni.com

The format of the CINMake command follows, with optional parameters
listed in brackets.

CINMake [-MakeOpts “opts”] [-RShell] [-dbg] [-noDelete]

<name of your CIN>

-MakeOpts opts specifies extra options to pass to make.

-Rshell

-dbg If this argument is specified, CINMake prints
statements describing what it does.

-noDelete If this argument is specified, CINMake does not
delete temporary files used when making the
CIN.

You can use LVMakeMake to build an MPW makefile that you can then
customize. You should only have to run LVMakeMake once for each CIN.
You can modify the resulting makefile by adding the proper header file
dependencies, or by adding other object files to be linked into your CIN.
The format of a LVMakeMake command follows, with optional parameters
listed in brackets.

LVMakeMake [-o makeFile] <name of your CIN>.make

-o makeFile indicates the name of the output makefile. If this
argument is not specified, LVMakeMake writes to standard
output.

For example, to build a Power Macintosh makefile for a CIN named myCIN,
use the following command:

LVMakeMake myCIN > myCIN.ppc.make

creates the makefile

You can then use the MPW make tool to build your CIN, as shown in the
following commands:

make -f myCIN.ppc.make> myCIN.makeout

creates the build commands

myCIN.makeout

executes the build commands

Load the .lsb file that this application creates into your LabVIEW CIN.

Chapter 3 CINs

© National Instruments Corporation 3-13 Using External Code in LabVIEW

Microsoft Windows
To build CINs for LabVIEW for Windows, use the Microsoft Visual C++
or Symantec C compilers.

Visual C++ Command Line
This section describes using command line tools in Windows 2000/NT/9x
to build CINs.

1. Add a CINTOOLSDIR definition to your list of user environment
variables.

(Windows 2000/NT) You can edit this list with the System control panel
accessory. For example, if you installed LabVIEW for Windows in
c:\labview, the CIN tools directory should be
c:\labview\cintools. In this instance, you would add the
following line to the user environment variables using the System
control panel.

CINTOOLSDIR = c:\labview\cintools

(Windows 9x) Modify your AUTOEXEC.BAT to set CINTOOLSDIR to the
correct value.

2. Build a .lvm file (LabVIEW Makefile) for your CIN. You must
specify the following items:

• name is the name of CIN or external subroutine (for example,
mult) .

• type is CIN or LVSB, depending on whether it is a CIN or an
external subroutine.

• !include $(CINTOOLSDIR)\ntlvsb.mak

To define additional include paths for a CIN you must add a
CINCLUDES line to the .lvm file, as follows:

CINCLUDE = -Ipathnames

You must include the -I argument on the line and pathnames is the
directory where you look for other includes.

If your CIN uses extra object files, you can specify the objFiles
option. You do not need to specify the codeDir parameter, because the
code for the CIN must be in the same directory as the makefile. You do
not need to specify the wcDir parameter, because the CIN tools can
determine the location of the compiler.

You can compile the CIN code using the following command, where
mult is the makefile name.

nmake /f mult.lvm

Chapter 3 CINs

Using External Code in LabVIEW 3-14 www.ni.com

If you want to use standard C or Windows libraries, define the symbol
cinLibraries. For example, to use standard C functions in the
previous example, you could use the following .lvm file.

name = mult

type = CIN

cinLibraries=libc.lib

!include $(CINTOOLSDIR)\ntlvsb.mak

To include multiple libraries, separate the list of library names
with spaces.

Visual C++ IDE
To build CINs using the Visual C++ Integrated Development Environment,
complete the following steps.

1. Create a new DLL project. Select File»New and select Win32
Dynamic-Link Library as the project type. You can name your
project whatever you want.

2. Add CIN objects and libraries to the project. Select Project»Add To
Project»Files and select cin.obj, labview.lib, lvsb.lib, and
lvsbmain.def from the Cintools\Win32 subdirectory. You need
these files to build a CIN.

3. Add Cintools to the include path. Select Project»Settings and
change Settings for to All Configurations. Select the C/C++ tab and
set the category to Preprocessor. Add the path to your Cintools
directory in the Additional include directories field.

4. Set alignment to 1 byte. Select Project»Settings and change Settings
For to All Configurations. Select the C/C++ tab and set the category
to Code Generation. Select the Struct member alignment tab and
select 1 byte.

5. Choose a run-time library. Select Project»Settings and change
Settings for to All Configurations. Select the C/C++ tab and set the
category to Code Generation. Select Multithreaded DLL in the Use
run-time library control.

6. Make a custom build command to run lvsbutil. Select
Project»Settings and change Settings for to All Configurations.
Select the Custom Build tab and change the Build commands field as
follows; this code should appear on a single line:
"<your path to cintools>\win32\lvsbutil" $(TargetName) -d
"$(WkspDir)\$(OutDir)"

Change Output file fields to $(OutDir)$(TargetName).lsb.

Chapter 3 CINs

© National Instruments Corporation 3-15 Using External Code in LabVIEW

Note The LabVIEW Base Development system can use existing .lsb files, but cannot
create new .lsb files. You can create .lsb files in the LabVIEW Full and Professional
Development Systems.

Symantec C
Building CINs using Symantec C is similar to building CINs for Visual
C++ Command Line. However, you should use smake instead of nmake
on your .lvm file.

Solaris 2.x
LabVIEW for Solaris 2.x uses external code compiled in a shared library
format. To prepare this library for LabVIEW, use the LabVIEW utility
lvsbutil.

The gcc compiler and the Sun Workshop C Compiler are the only compilers
tested thoroughly with LabVIEW.

Note LabVIEW 3.0 for Solaris 2.x supported external code compiled in ELF format.

Existing Solaris 1.x and 2.x (for LabVIEW 3.0) CINs do not operate
correctly if they reference functions not in the System V Interface
Definition (SVID) for libc, libsys, and libnsl. Recompile your
existing CINs using the shared library format to make sure your CINs
function as expected.

HP-UX and Linux
The gcc compiler is the only compiler tested with LabVIEW.

gcc Compiler
Create a makefile using the shell script lvmkmf (LabVIEW Make
Makefile), which creates a makefile for a given CIN. Use the standard
make command to make the CIN code. In addition to compiling the CIN,
the makefile puts the code in a form LabVIEW can use.

The format for the lvmkmf command follows, with optional parameters
listed in brackets.

lvmkmf [-o Makefile] LVSBName

LVSBName is the name of the CIN or external subroutine you want to build.
If LVSBName is foo, the compiler assumes the source is foo.c and names
the output file foo.lsb.

Chapter 3 CINs

Using External Code in LabVIEW 3-16 www.ni.com

-o is the name of the makefile lvmkmf creates. If you do not specify this
argument, the makefile name default is Makefile.

The makefile produced assumes the cin.o, libcin.a,
makeglueXXX.awk, and lvsbutil files are in certain locations,
where XXX is SVR4 on Solaris 2.x, linux on Linux, and HP on HP-UX. If
these assumptions are incorrect, you can edit the makefile to correct the
pathnames.

Step 5. Load the CIN Object Code
To load the code resource, right-click the node and select Load Code
Resource. Select the .lsb file you created in Step 4. Compile the CIN
Source Code.

LabVIEW loads your object code into memory and links the code to the
current front panel or block diagram. After you save the VI, the file
containing the object code does not need to be resident on the computer
running LabVIEW for the VI to run.

If you modify the source code, you can load the new version of the object
code using the Load Code Resource option. The file containing the object
code for the CIN must have an extension of .lsb.

There is no limit to the number of CINs per block diagram.

LabVIEW Manager Routines
LabVIEW has a suite of routines that you can call from CINs. This suite of
routines performs user-specified routines using the appropriate instructions
for a given platform. These routines, which manage the functions of a
specific operating system, are grouped into three categories: memory
manager, file manager, and support manager.

External code written using the managers is portable, that is, you can
compile it without modification on any platform that supports LabVIEW.
This portability has the following two advantages:

• The LabVIEW application is built on top of the managers. Except for
the managers, the LabVIEW source code is identical across platforms.

• The analysis VIs are built mainly from CINs. The source code for these
CINs is the same for all platforms.

Chapter 3 CINs

© National Instruments Corporation 3-17 Using External Code in LabVIEW

Refer to the Manager Overview section of Chapter 4, Programming Issues
for CINs, for more information about the memory manager, the file
manager, and the support manager.

Refer to Chapter 6, Function Descriptions, for descriptions of functions or
file manager data structures.

Pointers as Parameters
Some manager functions have a parameter that is a pointer.
These parameter type descriptions are identified by a trailing asterisk
(such as the hp parameter of the AZHandToHand memory manager
function) or are type defined as such (such as the name parameter of the
FNamePtr function). In most cases, the manager function writes a value
to pre-allocated memory. In some cases, such as FStrFitsPath or
GetALong, the function reads a value from the memory location, so you
do not have to pre-allocate memory for a return value.

The following functions have parameters that return a value for which you
must pre-allocate memory:

AZHandToHand AZMemStats AZPtrToHand

DateToSecs DSHandToHand DSMemStats

Chapter 3 CINs

Using External Code in LabVIEW 3-18 www.ni.com

Correct example:

foo(Path path) {

Str255 buf; /* allocated buffer of 256 chars */

File fd;

MgErr err;

err = FNamePtr(path, buf);

err = FMOpen(&fd, path, openReadOnly,

denyWriteOnly);

}

Incorrect example:

foo(Path path) {

PStr p; /* an uninitialized pointer */

File *fd; /* an uninitialized pointer */

MgErr err;

err = FNamePtr(path, p);

err = FMOpen(fd, path, openReadOnly

denyWriteOnly);

}

In the correct example, buf contains space for the maximum-sized Pascal
string (whose address is passed to FNamePtr), and fd is a local variable
(allocated space) for a file descriptor.

In the incorrect example, p is a pointer to a Pascal string, but the pointer is
not initialized to point to any allocated buffer. FNamePtr expects its caller
to pass a pointer to an allocated space, and writes the name of the file
referred to by path into that space. Even if the pointer does not point to
a valid place, FNamePtr writes its results there, with unpredictable
consequences. Similarly, FMOpenwrites its results to the space to which fd

points, which is not a valid place because fd is uninitialized.

Debugging External Code
LabVIEW has a debugging window you can use with external code to
display information at run time. You can open the window, display
arbitrary print statements, and close the window from any CIN or external
subroutine.

To create this debugging window, use the DbgPrintf function. The format
for DbgPrintf is similar to the format of the SPrintf function, described

Chapter 3 CINs

© National Instruments Corporation 3-19 Using External Code in LabVIEW

in Chapter 6, Function Descriptions. DbgPrintf takes a variable number
of arguments, where the first argument is a C format string.

DbgPrintf
syntax int32 DbgPrintf(CStr cfmt, ..);

The first time you call DbgPrintf, LabVIEW opens a window to display
the text you pass to the function. Subsequent calls to DbgPrintf append
new data as new lines in the window. You do not need to pass in the new
line character to the function. If you call DbgPrintf with NULL instead of
a format string, LabVIEW closes the debugging window. You cannot
position or change the size of the window.

The following examples show how to use DbgPrintf.

DbgPrintf(""); /* print an empty line, opening
the window if necessary */

DbgPrintf("%H", var1); /* print the contents of an
LStrHandle (LabVIEW string),
opening the window if necessary
*/

DbgPrintf(NULL); /* close the debugging window
*/

Windows
Windows supports source-level debugging of CINs using Microsoft’s
Visual C environment. To debug CINs in Windows, complete the
following steps.

1. Modify your CIN to set a debugger trap. You must do this to force
Visual C to load your debugging symbols. The trap call must be
done after the CIN is in memory. The easiest way to do this is to place
it in the CINLoad procedure. After the debugging symbols are loaded,
you can set normal debug points inside Visual C. Windows 9x has a
single method of setting a debugger trap, while Windows 2000/NT can
use the Windows 95 method or another.

The method common to Windows is to insert a debugger break using
an in-line assembly command:

_asm int 3;

Chapter 3 CINs

Using External Code in LabVIEW 3-20 www.ni.com

Adding this to CINLoad gives you the following:

CIN MgErr CINLoad(RsrcFile reserved)

{

Unused(reserved);

_asm int 3;

return noErr;

}

When the debugger trap is hit, Visual C++ invokes a debug window
highlighting that line.

In Windows 2000/NT, you can use the DebugBreak function.
This function exists in Windows 9x, but does not produce
suitable results for debugging CINs. To use DebugBreak, include
<windows.h> at the top of your file and place the call where you
want to break:

#include <windows.h>

CIN MgErr CINLoad(RsrcFile reserved)

{

Unused(reserved);

DebugBreak();

return noErr;

}

When that line runs, you will be in assembly. Step out of that function
to get to the point of the DebugBreak call.

2. Rebuild your CIN with debugging symbols.

If you built your CIN from the command line, add the following lines
to the .lvm file of your CIN to add debug information to the CIN:

DEGUG = 1

cinLibraries = Kernel32.lib

If you built your CIN using the IDE, build a debug version of the DLL.
Select Projects»Settings, the Debug tab, and the General category.
Type your LabVIEW executable in Executable for debug session.

3. Run LabVIEW.

If you built your CIN from the command line, start LabVIEW
normally. When the debugger trap is run, a message appears:

A Breakpoint has been reached. Click OK to terminate

application. Click CANCEL to debug the application.

Chapter 3 CINs

© National Instruments Corporation 3-21 Using External Code in LabVIEW

Click the Cancel button to launch the debugger, which attaches to
LabVIEW, searches for the DLLs, then asks for the source file of
your CIN. Point it to your source file, and the debugger loads the
CIN source code. You can then debug your code.

If you built your CIN using the IDE, open your CIN project and
click the GO button. Visual C launches LabVIEW.

UNIX
You can use standard C printf calls or the DbgPrintf function described
in the previous section. You also can use gdb, the Gnu debugger, to debug
the CIN. You must load the VI that contains the CIN before you add
breakpoints; the CIN is not loaded until the VI is loaded.

© National Instruments Corporation 4-1 Using External Code in LabVIEW

4
Programming Issues for CINs

This chapter describes the data structures LabVIEW uses when passing
data to a CIN and describes the function libraries, called managers, which
you can use in external code modules. These include the memory manager,
the file manager, and the support manager.

Passing Parameters
LabVIEW passes parameters to the CINRun routine. These parameters
correspond to each of the wires connected to the CIN. You can pass any
data type to a CIN you can construct in LabVIEW; there is no limit to the
number of parameters you can pass to and from the CIN.

Parameters in the CIN .c File
When you right-click a CIN on a block diagram and select Create .c File,
LabVIEW creates a .c file in which you can enter your CIN code. The
CINRun function and its prototype are given, and its parameters correspond
to the data types being passed to the CIN in the block diagram. Refer to the
CIN Routines section in Chapter 5, Advanced Applications, for more
information about CIN routines (CINInit, CINLoad, and so on).

The .c file created is a standard C file, except LabVIEW gives the data
types unambiguous names. C does not define the size of low-level data
types—the int data type might correspond to a 16-bit integer for one
compiler and a 32-bit integer for another compiler. The .c file uses names
explicit about data type size, such as int16, int32, float32, and so on.
LabVIEW includes a header file, extcode.h, that contains typedefs
associating these LabVIEW data types with the corresponding data type
for the supported compilers of each platform.

extcode.h defines some constants and types whose definitions may
conflict with the definitions of system header files. The LabVIEW
cintools directory also contains the hosttype.h file, which resolves
these differences. This header file also includes many of the common
header files for a given platform.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-2 www.ni.com

Note Always use #include "extcode.h" at the beginning of your source code. If your
code needs to make system calls, also use #include "hosttype.h" immediately after
#include "extcode.h", and then include your system header files. hosttype.h
includes only a subset of the .h files for a given operating system. If the .h file you need
is not included by hosttype.h, you can include it in the .c file for your CIN after you
include hosttype.h.

If you write a CIN that accepts a single 32-bit signed integer, the .c file
indicates the CINRun routine is passed an int32 by reference. extcode.h
typedefs an int32 to the appropriate data type for the compiler you use
(if it is a supported compiler). Therefore, you can use the int32 data type
in external code you write.

Passing Fixed-Size Data to CINs
As described in the Creating a CIN section in Chapter 3, CINs, you can
designate terminals on the CIN as either input-output or output-only.
Regardless of the designation, LabVIEW passes data by reference to the
CIN. When modifying a parameter value, follow the rules for each kind of
terminal in the Creating a CIN section. LabVIEW passes parameters to the
CINRun routines in the same order as you wire data to the CIN—the first
terminal pair corresponds to the first parameter, and the last terminal pair
corresponds to the last parameter.

Refer to the following sections for information about how LabVIEW passes
fixed-size parameters to CINs. Refer to the Passing Variably Sized Data to
CINs section in this chapter for information about manipulating variably
sized data, such as arrays and strings.

Scalar Numerics
LabVIEW passes numeric data types to CINs by passing a pointer to the
data as an argument. In C, this means LabVIEW passes a pointer to the
numeric data as an argument to the CIN. Arrays of numerics are described
in the subsequent Arrays and Strings section in this chapter.

Scalar Booleans
LabVIEW stores Boolean data types in memory as 8-bit integers. If any bit
of the integer is 1, the Boolean data type is TRUE; otherwise, it is FALSE.
LabVIEW passes Boolean data types to CINs with the same conventions it
uses for numerics.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-3 Using External Code in LabVIEW

Note In LabVIEW 4.x and earlier, Boolean data types were stored as 16-bit integers. If the
high bit of the integer was 1, it was TRUE; otherwise, it was FALSE.

Refnums
LabVIEW treats a refnum the same way as a scalar number and passes
refnums with the same conventions it uses for numbers.

Clusters of Scalars
For a cluster, LabVIEW passes a pointer to a structure containing the
elements of the cluster. LabVIEW stores fixed-size values directly as
components inside of the structure. If a component is another cluster,
LabVIEW stores this cluster value as a component of the main cluster.

Return Value for CIN Routines
The names of the CIN routines are prefaced in the header file with the
words CIN MgErr, as shown in the following example.

CIN MgErr CINRun(...);

The LabVIEW header file extcode.h defines the word CIN to be either
Pascal or nothing, depending on the platform. Prefacing a function with the
word Pascal causes some C compilers to use Pascal calling conventions
instead of C calling conventions to generate the code for the routine.

LabVIEW uses standard C calling conventions, so the header file declares
the word CIN to be equivalent to nothing.

The MgErr data type is a LabVIEW data type corresponding to a set of
error codes the manager routines return. If you call a manager routine
that returns an error, you can either handle the error or return the error so
LabVIEW can handle it. If you can handle the errors that occur, return
the error code noErr.

After calling a CIN routine, LabVIEW checks the MgErr value to
determine whether an error occurred. If an error occurs, LabVIEW
aborts the VI containing the CIN. If the VI is a subVI, LabVIEW aborts
the VI containing the subVI. This behavior enables LabVIEW to handle
conditions when a VI runs out of memory. By aborting the running VI,
LabVIEW can possibly free enough memory to continue running correctly.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-4 www.ni.com

Examples with Scalars
The following examples describe how to create CINs that work with scalar
data types. Refer to Chapter 3, CINs, for more information about creating
CINs.

Creating a CIN That Multiplies Two Numbers
To create a CIN that takes two single-precision floating-point numbers and
returns their product, complete the following steps.

1. Place the CIN on the block diagram.

2. Add two input and output terminals to the CIN.

3. Place two single-precision numeric controls and one single-precision
numeric indicator on a front panel. Wire the node as shown in the
following illustration. A*B is wired to an output-only terminal pair.

4. Save the VI as mult.vi.

5. Right-click the node and select Create .c File. LabVIEW prompts you
to select a name and a storage location for a .c file.

6. Name the file mult.c. LabVIEW creates the following.c file:

/*

 * CIN source file

 */

#include "extcode.h"

CIN MgErr CINRun (float32 *A, float32 *B,

float32 *A_B);

CIN MgErr CINRun (float32 *A, float32 *B,

float32 *A_B) {

/* ENTER YOUR CODE HERE */

return noErr;

}

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-5 Using External Code in LabVIEW

This .c file contains a prototype and a template for the CINRun routine
of the CIN. LabVIEW calls the CINRun routine when the CIN
executes. In this example, LabVIEW passes CINRun the addresses of
the three 32-bit floating-point numbers. The parameters are listed left
to right in the same order as you wired them (top to bottom) to the CIN.
Thus, A, B, and A_B are pointers to A, B, and A*B, respectively.

As described in the Parameters in the CIN .c File section earlier in this
chapter, the float32 data type is not a standard C data type. For most
C compilers, the float32 data type corresponds to the float data
type. However, this may not be true in all cases, because the C standard
does not define the sizes for the various data types. You can use these

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-6 www.ni.com

(Microsoft Visual C++ Compiler Command Line and Symantec C for Windows)
Create a file named mult.lvm. Make sure the name variable is set to
mult. Build mult.lvm.

(Microsoft Visual C++ Compiler IDE for Windows) Create a project.

(UNIX Compilers) Create a makefile using the shell script lvmkmf in the
cintools directory. For this example, enter the following command:
lvmkmf mult

This creates a file called Makefile. After running lvmkmf, enter the
standard make command, which uses Makefile to create a file called
mult.lsb, which you can load into the CIN in LabVIEW.

9. Right-click the node and select Load Code Resource. Select
mult.lsb, the object code file you created.

You should be able to run the VI. If you save the VI, LabVIEW saves the
CIN object code along with the VI.

Comparing Two Numbers, Producing a Boolean
Scalar
To create a CIN that compares two single-precision numbers, complete the
following steps. If the first number is greater than the second one, the return
value is TRUE; otherwise, the return value is FALSE. This example shows
only the block diagram and the code.

1. To create the CIN, follow the instructions in the Creating a CIN section
in Chapter 3, CINs.

The diagram for this CIN is shown in the following illustration.

2. Save the VI as aequalb.vi.

3. Create a .c file for the CIN and name it aequalb.c. LabVIEW
creates the following.c file:

/*

 * CIN source file

 */

#include "extcode.h"

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-7 Using External Code in LabVIEW

CIN MgErr CINRun(float32 *A, float32 *B,
LVBoolean *compare);

CIN MgErr CINRun(float32 *A, float32 *B,
LVBoolean *compare) {

if (*A == *B)

*compare = LVTRUE;

else

*compare= LVFALSE;

return noErr;

}

Passing Variably Sized Data to CINs
LabVIEW dynamically allocates memory for arrays and strings. If a
string or array needs more space to hold new data, its current location might
not offer enough contiguous space to hold the resulting string or array. In
this case, LabVIEW might have to move the data to a location that offers
more space.

To accommodate this relocation of memory, LabVIEW uses handles to
refer to the storage location of variably sized data. A handle is a pointer
to a pointer to the desired data. LabVIEW uses handles instead of simple
pointers because handles allow LabVIEW to move the data without
invalidating references from your code to the data. If LabVIEW moves
the data, LabVIEW updates the intermediate pointer to reflect the new
location. If you use the handle, references to the data go through the
intermediate pointer, which always reflects the correct location of the data.
Refer to the Using Pointers and Handles section later in this chapter for
more information about handles. Refer to Chapter 6, Function
Descriptions, for descriptions of specific handle functions.

Alignment Considerations
When a CIN returns variably sized data, you need to adjust the size of
the handle that references the array. You can adjust the handle size using
the memory manager routine DSSetHandleSize or, if the data is stored in
the application zone, the AZSetHandleSize routine. Both routines work,
but it is difficult to calculate the size correctly in a platform-independent
manner, because some platforms have special requirements about how you
align and pad memory.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-8 www.ni.com

Instead of using XXSetHandleSize, use the LabVIEW routines that
take this alignment into account when resizing handles. You can use the
SetCINArraySize routine to resize a string or an array of arbitrary data
type. Refer to the Resizing Arrays and Strings section in this chapter for a
description of this function.

If you are not familiar with alignment differences for various
platforms, the following examples highlight the problem.
SetCINArraySize and NumericArrayResize solve these problems.

• In Windows, a one-dimensional array of double-precision
floating-point numbers is stored in a handle, and the first four bytes
describe the number of elements in the array. These four bytes are
followed by the 8-byte elements that make up the array. In Solaris,
double-precision floating-point numbers must be aligned to 8-byte
boundaries—the 4-byte value is followed by four bytes of padding.
This padding makes sure the array data falls on eight-byte boundaries.

• In a three-dimensional array of clusters, each cluster contains a
double-precision floating-point number and a 4-byte integer. As in the
previous example, Solaris stores this array in a handle. The first
12 bytes contain the number of pages, rows, and columns in the array.
These dimension fields are followed by four bytes of filler (which
ensures the first double-precision number is on an 8-byte boundary)
and then the data. Each element contains eight bytes for the
double-precision number, followed by four bytes for the integer. Each
cluster is followed by four bytes of padding, which makes sure the next
element is properly aligned.

Arrays and Strings
LabVIEW passes arrays by handle, as described in the Alignment
Considerations section earlier in this chapter. For an n-dimensional array,
the handle begins with n 4-byte values describing the number of values
stored in a given dimension of the array. Thus, for a one-dimensional array,
the first four bytes indicate the number of elements in the array. For a
two-dimensional array, the first four bytes indicate the number of rows,
and the second four bytes indicate the number of columns. These
dimension fields can be followed by filler and then the actual data.
Each element can also have padding to meet alignment requirements.

LabVIEW stores strings and Boolean arrays in memory as one-dimensional
arrays of unsigned 8-bit integers.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-9 Using External Code in LabVIEW

Note LabVIEW 4.x stored Boolean arrays in memory as a series of bits packed to
the nearest 16-bit word. LabVIEW 4.x ignored unused bits in the last word. LabVIEW 4.x
ordered the bits from left to right; that is, the most significant bit (MSB) is index 0. As with
other arrays, a 4-byte dimension size preceded Boolean arrays. The dimension size for
LabVIEW 4.x Boolean arrays indicates the number of valid bits contained in the array.

Paths
The exact structure for Path data types is subject to change in future
versions of LabVIEW. A Path is a dynamic data structure LabVIEW
passes the same way it passes arrays. LabVIEW stores the data for Paths
in an application zone handle. Refer to Refer to Chapter 6, Function
Descriptions, for more information about the functions that manipulate
Paths.

Clusters Containing Variably Sized Data
For cluster arguments, LabVIEW passes a pointer to a structure
containing the elements of the cluster. LabVIEW stores scalar values
directly as components inside the structure. If a component is another
cluster, LabVIEW stores this cluster value as a component of the main
cluster. If a component is an array or string, LabVIEW stores a handle
to the array or string component in the structure.

Resizing Arrays and Strings
To resize return arrays and strings you pass to a CIN, use the LabVIEW
SetCINArraySize routine. Pass to the function the handle you want to
resize, information describing the data structure, and the desired size of the
array or handle. The function takes into account any padding and alignment
needed for the data structure. However, the function does not update the
dimension fields in the array. If you successfully resize the array, you need
to update the dimension fields to correctly reflect the number of elements
in the array.

You can resize numeric arrays more easily with NumericArrayResize.
Pass to this function the array you want to resize, a description of the data
structure, and information about the new size of the array.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-10 www.ni.com

When you resize arrays of variably sized data (for example, arrays of
strings) with the SetCINArraySize or NumericArrayResize routines,
consider the following issues:

• If the new size of the array is smaller, LabVIEW disposes of the
handles used by the disposed element. Neither function sets the
dimension field of the array. You must do this in your code after the
function call.

• If the new size of the array is larger, LabVIEW does not automatically
create the handles for the new elements. You have to create these
handles after the function returns.

The following sections describe the SetCINArraySize and
NumericArrayResize routines.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-11 Using External Code in LabVIEW

SetCINArraySize
MgErr SetCINArraySize (UHandle dataH, int32 paramNum, int32 newNumElmts);

Purpose
SetCINArraySize resizes a data handle based on the data structure of an argument you pass
to the CIN. It does not set the array dimension field.

Parameters

Return Value
MgErr, which can contain the errors in the following list. Refer to the Manager Overview
section later in this chapter for more information about MgErr.

noErr No error.

mFullErr Not enough memory to perform operation.

mZoneErr Handle is not in specified zone.

Name Type Description

dataH UHandle Handle you want to resize.

paramNum int32 Number for this parameter in the argument
list to the CIN. The leftmost parameter has a
parameter number of 0, and the rightmost
has a parameter number of n – 1, where n is
the total number of parameters.

newNumElmts int32 New number of elements to which the handle
should refer. For a one-dimensional array
of five values, pass a value of 5. For a
two-dimensional array of two rows by
three columns, pass a value of 6.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-12 www.ni.com

NumericArrayResize
MgErr NumericArrayResize(int32 typeCode, int32 numDims, UHandle *dataHP,

int32 totalNewSize);

Purpose
NumericArrayResize resizes a data handle referring to a numeric array. This routine also
accounts for alignment issues. It does not set the array dimension field. If *dataHP is NULL,
LabVIEW allocates a new array handle in *dataHP.

Parameters

Name Type Description

typeCode int32 Data type for the array you want to resize. The header file
extcode.h defines the following constants for this argument:

iB Array of signed 8-bit integers

iW Array of signed 16-bit integers

iL Array of signed 32-bit integers

uB Array of unsigned 8-bit integers

uW Array of unsigned 16-bit integers

uL Array of unsigned 32-bit integers

fS Array of single-precision (32-bit) numbers

fD Array of double-precision (64-bit) numbers

fX Array of extended- precision numbers

cS Array of single-precision complex numbers

cD Array of double-precision complex numbers

cX Array of extended-precision complex numbers

numDims int32 Number of dimensions in the data structure to which the handle
refers. Thus, if the handle refers to a two-dimensional array,
pass a value of 2.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-13 Using External Code in LabVIEW

Return Values
MgErr, which can contain the errors in the following list. Refer to the Manager Overview
section later in this chapter for more information about MgErr.

noErr No error.

mFullErr Not enough memory to perform operation.

mZoneErr Handle is not in specified zone.

*dataHP UHandle Pointer to the handle you want to resize. If this is a pointer
to NULL, LabVIEW allocates and sizes a new handle
appropriately and returns the handle in *dataHP.

totalNewSize int32 New number of elements to which the handle should refer. For
a unidimensional array of five values, pass a value of 5. For a
two-dimensional array of two rows by three columns, pass a
value of 6.

Name Type Description

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-14 www.ni.com

Examples with Variably Sized Data
The following examples describe how to create CINs that work with
variably sized data types. Refer to Chapter 3, CINs, for more information
about creating CINs.

Concatenating Two Strings
To create a CIN that concatenates two strings and use input-output
terminals by passing the first string as an input-output parameter to the
CIN, complete the following steps. The top right terminal of the CIN
returns the result of the concatenation. This example shows only the
diagram and the code.

1. To create the CIN, follow the instructions in the Creating a CIN section
in Chapter 3, CINs.

The diagram for this CIN is shown in the following illustration.

2. Save the VI as lstrcat.vi.

3. Create a .c file for the CIN and name it lstrcat.c. LabVIEW
creates the following .c file.

/*

 * CIN source file

 */

#include "extcode.h"

CIN MgErr CINRun(

LStrHandle var1,

LStrHandle var2);

CIN MgErr CINRun(

LStrHandle var1,

LStrHandle var2) {

/* ENTER YOUR CODE HERE */

return noErr;

}

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-15 Using External Code in LabVIEW

4. Fill in the CINRun function, as follows:

CIN MgErr CINRun(

LStrHandle strh1,

LStrHandle strh2) {

int32 size1, size2, newSize;

MgErr err;

size1 = LStrLen(*strh1);

size2 = LStrLen(*strh2);

newSize = size1 + size2;

if(err = NumericArrayResize(uB, 1L,

(UHandle*)&strh1, newSize))

goto out;

/* append the data from the second string to

first string */

MoveBlock(LStrBuf(*strh2),

LStrBuf(*strh1)+size1, size2);

/* update the dimension (length) of the

first string */

LStrLen(*strh1) = newSize;

out:

return err;

}

In this example, CINRun is the only routine that performs substantial
operations. CINRun concatenates the contents of strh2 to the end of
strh1, with the resulting string stored in strh1.

5. Before performing the concatenation, NumericArrayResize resizes
strh1 to hold the additional data.

If NumericArrayResize fails, it returns a non-zero value of type
MgErr. In this case, NumericArrayResize could fail if LabVIEW
does not have enough memory to resize the string. Returning the error
code gives LabVIEW a chance to handle the error. If CINRun reports
an error, LabVIEW aborts the calling VIs. Aborting the VIs might free
up enough memory so LabVIEW can continue running.

After resizing the string handle, MoveBlock copies the second string
to the end of the first string. MoveBlock is a support manager routine
that moves blocks of data. Finally, this example sets the size of the first
string to the length of the concatenated string.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-16 www.ni.com

Computing the Cross Product of Two
Two-Dimensional Arrays
To create a CIN that accepts two two-dimensional arrays and then
computes the cross product of the arrays, complete the following steps. The
CIN returns the cross product in a third parameter and a Boolean value as
a fourth parameter. This Boolean parameter is TRUE if the number of
columns in the first matrix is not equal to the number of rows in the second
matrix. This example shows only the front panel, block diagram, and
source code.

1. To create the CIN, follow the instructions in the Creating a CIN section
in Chapter 3, CINs.

The front panel for this VI is shown in the following illustration.

The block diagram for this VI is shown in the following illustration.

2. Save the VI as cross.vi.

3. Save the .c file for the CIN as cross.c. Following is the source code
for cross.c with the CINRun routine added.

/*

 * CIN source file

 */

#include "extcode.h"

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-17 Using External Code in LabVIEW

#define ParamNumber 2

/* The return parameter is parameter 2 */

#define NumDimensions 2

/* 2D Array */

/*

 * typedefs

 */

typedef struct {

int32 dimSizes[2];

float64 arg1[1];

} TD1;

typedef TD1 **TD1Hdl;

CIN MgErr CINRun(TD1Hdl A, TD1Hdl B, TD1Hdl
AxB, LVBoolean *error);

CIN MgErr CINRun(TD1Hdl A, TD1Hdl B, TD1Hdl
AxB, LVBoolean *error) {

int32 i,j,k,l;

int32 rows, cols;

float64 *aElmtp, *bElmtp, *resultElmtp;

MgErr err=noErr;

int32 newNumElmts;

if ((k = (*ah)–>dimSizes[1]) !=
(*bh)–>dimSizes[0]) {

*error = LVTRUE;

goto out;

}

*error = LVFALSE;

rows = (*ah)–>dimSizes[0];

/* number of rows in a and result */

cols = (*bh)–>dimSizes[1];

/* number of cols in b and result */

newNumElmts = rows * cols;

if (err = SetCINArraySize((UHandle)AxB,

ParamNumber, newNumElmts))

goto out;

(*resulth)–>dimSizes[0] = rows;

(*resulth)–>dimSizes[1] = cols;

aElmtp = (*ah)–>arg1;

bElmtp = (*bh)–>arg1;

resultElmtp = (*resulth)–>arg1;

for (i=0; i<rows; i++)

for (j=0; j<cols; j++) {

*resultElmtp = 0;

for (l=0; l<k; l++)

*resultElmtp += aElmtp[i*k + l] *

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-18 www.ni.com

bElmtp[l*cos + j];

resultElmtp++;

}

out:

return err;

}

In this example, CINRun is the only routine performing substantial
operations. CINRun cross-multiplies the two-dimensional arrays A and B.
LabVIEW stores the resulting array in resulth. If the number of columns
in A is not equal to the number of rows in B, CINRun sets *error to
LVTRUE to inform the calling diagram of invalid data.

SetCINArraySize, the LabVIEW routine that accounts for alignment and
padding requirements, resizes the array. The two-dimensional array data
structure is the same as the one-dimensional array data structure, except the
2D array has two dimension fields instead of one. The two dimensions
indicate the number of rows and the number of columns in the array,
respectively. The data is declared as a one-dimensional C-style array.
LabVIEW stores data row by row, as shown in the following illustration.

For an array with r rows and c columns, you can access the element at
row i and column j as shown in the following code.

value = (*arrayh)–>arg1[i*c + j];

Working with Clusters
To take an array of clusters and a single cluster as inputs, complete the
following steps. The clusters contain a signed 16-bit integer and a string.
The input for the array of clusters is an input-output terminal. In addition to
the array of clusters, the CIN returns a Boolean parameter and a signed

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-19 Using External Code in LabVIEW

32-bit integer. If the cluster value is already present in the array of clusters,
the CIN sets the Boolean parameter to TRUE and returns the position of the
cluster in the array of clusters using the 32-bit integer output. If the cluster
value is not present, the CIN adds it to the array, sets the Boolean output to
FALSE, and returns the new position of the cluster in the array of clusters.

This example shows only the front panel, block diagram, and source code.

1. To create the CIN, follow the instructions in the Creating a CIN section
in Chapter 3, CINs.

The front panel for this VI is shown in the following illustration.

The block diagram for this VI is shown in the following illustration.

2. Save the VI as tblsrch.vi.

3. Save the .c file for the CIN as tblsrch.c. Following is the source
code for tblsrch.c with the CINRun routine added.

/*

 * CIN source file

 */

#include "extcode.h"

#define ParamNumber 0

/* The array parameter is parameter 0 */

/*

 * typedefs

 */

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-20 www.ni.com

typedef struct {

int16 number;

LStrHandle string;

} TD2;

typedef struct {

int32 dimSize;

TD2 arg1[1];

} TD1;

typedef TD1 **TD1Hdl;

CIN MgErr CINRun(

TD1Hdl clusterTableh,

TD2 *elementp,

LVBoolean *presentp,

int32 *positionp);

CIN MgErr CINRun(

TD1Hdl clusterTableh,

TD2 *elementp,

LVBoolean *presentp,

int32 *positionp) {

int32 size,i;

MgErr err=noErr;

TD2 *tmpp;

LStrHandle newStringh;

TD2 *newElementp;

int32 newNumElements;

size = (*clusterTableh)–>dimSize;

tmpp = (*clusterTableh)–>arg1;

*positionp = –1;

*presentp = LVFALSE;

for(i=0; i<size; i++) {

if(tmpp–>number == elementp–>number)

if(LStrCmp(*(tmpp–>string),

*(elementp–>string)) == 0)

break;

tmpp++;

}

if(i<size) {

*positionp = i;

*presentp = LVTRUE;

goto out;

}

newStringh = elementp–>string;

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-21 Using External Code in LabVIEW

if(err = DSHandToHand((UHandle *)
&newStringh))

goto out;

newNumElements = size+1;

if(err =

SetCINArraySize((UHandle)clusterTableh,
ParamNumber,
newNumElements)) {

DSDisposeHandle(newStringh);

goto out;

}

(*clusterTableh)–>dimSize = size+1;

newElementp = &((*clusterTableh)
–>arg1[size]);

newElementp–>number = elementp–>number;

newElementp–>string = newStringh;

*positionp = size;

out:

return err;

}

In this example, CINRun is the only routine performing substantial
operations. CINRun first searches through the table to see if the
element is present. CINRun then compares string components using
the LabVIEW routine LStrCmp, which is described in Chapter 6,
Function Descriptions. If CINRun finds the element, the routine
returns the position of the element in the array.

4. If the routine does not find the element, add a new element to the array.
Use the memory manager routine DSHandToHand to create a new
handle containing the same string as the one in the cluster element
you passed to the CIN. CINRun increases the size of the array using
SetCINArraySize and fills the last position with a copy of the
element you passed to the CIN.

If the SetCINArraySize call fails, the CIN returns the error code
returned by the manager. If the CIN is unable to resize the array,
LabVIEW disposes of the duplicate string handle.

Manager Overview
LabVIEW has a large number of external functions that you can use to
perform simple and complex operations. These functions, organized into
libraries called managers, range from low-level byte manipulation to
routines for sorting data and managing memory. All manager routines
described in this chapter are platform-independent. If you use these

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-22 www.ni.com

routines, you can create external code that works on all platforms that
LabVIEW supports.

To achieve platform independence, data types should not depend on the
peculiarities of various compilers. For example, the C language does not
define the size of an integer. Without an explicit definition of the size of
each data type, it is almost impossible to create code that works identically
across multiple compilers.

LabVIEW managers use data types that explicitly indicate their size.
For example, if a routine requires a 4-byte integer as a parameter, you
define the parameter as an int32. The managers define data types in terms
of the fundamental data types for each compiler. Thus, on one compiler, the
managers might define an int32 as an int, while on another compiler, the
managers might define an int32 as a long int. When your writer
external code, use the manager data types instead of the host computer data
types, so your code is more portable and has fewer errors.

Most applications need routines for allocating and deallocating memory
on request. You can use the memory manager to dynamically allocate,
manipulate, and release memory. The LabVIEW memory manager
supports dynamic allocation of both non-relocatable and relocatable
blocks, using pointers and handles. Refer to the Memory Manager section
later in this chapter for more information.

Applications that manipulate files can use the functions in the file manager.
This set of routines supports basic file operations such as creating, opening,
and closing files, writing data to files, and reading data from files. In
addition, you can use file manager routines to create directories, determine
characteristics of files and directories, and copy files. File manager routines
use a LabVIEW data type for file pathnames (Paths) that indicates a file or
directory path independent of the platform. You can translate a Path to and
from a host platform’s conventional format for describing a file pathname.
Refer to the File Manager section later in this chapter for more
information.

The support manager contains a collection of generally useful functions,
such as functions for bit or byte manipulation of data, string manipulation,
mathematical operations, sorting, searching, and determining the current
time and date. Refer to the Support Manager section later in this chapter for
more information.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-23 Using External Code in LabVIEW

Basic Data Types
Manager data types include five basic data types: scalar, char, dynamic,
memory-related, and constants.

Scalar
Scalar data types include Boolean and numeric.

Boolean
External code modules work with two kinds of Boolean scalars—those
existing in LabVIEW block diagrams and those passing to and from
manager routines. The manager routines use a conventional Boolean form,
where 0 is FALSE and 1 is TRUE. This form is called a Bool32, and it is
stored as a 32-bit value.

LabVIEW block diagrams store Boolean scalars as 8-bit values. The value
is 1 if TRUE, and 0 if FALSE. This form is called an LVBoolean.

The following table describes the two forms of Boolean scalars.

Numeric
The managers support 8-, 16-, and 32-bit signed and unsigned integers.
For floating-point numbers, LabVIEW supports the single (32-bit), double
(64-bit), and extended floating-point (at least 80-bit) data types. LabVIEW
supports complex numbers containing two floating-point numbers, with
different complex numeric types for each of the floating-point data types.
The basic LabVIEW data types for numbers include the following:

• Signed integers

– int8 8-bit integer

– int16 16-bit integer

– int32 32-bit integer

• Unsigned integers

– uInt8 8-bit unsigned integer

– uInt16 16-bit unsigned integer

Name Description

Bool32 32-bit integer, 1 if TRUE, 0 if FALSE

LVBoolean 8-bit integer, 1 if TRUE, 0 if FALSE

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-24 www.ni.com

– uInt32 32-bit unsigned integer

• Floating-point numbers

– float32 32-bit floating-point number

– float64 64-bit floating-point number

– floatExt extended-precision floating-point number

In Windows, extended-precision numbers are stored as an 80-bit structure
with two int32 components, mhi and mlo, and an int16 component, e.
In Sun, extended-precision numbers are stored as 128-bit floating-point
numbers. In Power Macintosh, extended-precision numbers are stored in
the 128-bit double-double format. In HP and Concurrent,
extended-precision numbers are the same as float64.

Complex Numbers
The complex data types are structures with two floating-point components,
re and im. As with floating-point numbers, complex numbers can have
32-bit, 64-bit, and extended-precision components. The following code
gives the type definitions for each of these complex data types.

typedef struct {

float32 re, im;

} cmplx64;

typedef struct {

float64 re, im;

} cmplx128;

typedef struct {

floatExt re, im;

} cmplxExt;

char
The char data type is defined by C to be a signed byte value. LabVIEW
defines an unsigned char data type, with the following type definition.

typedef uInt8 uChar;

Dynamic
LabVIEW defines a number of data types you must allocate and deallocate
dynamically. Arrays, strings, and paths have data types you must allocate
using memory manager and file manager routines.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-25 Using External Code in LabVIEW

Arrays
LabVIEW supports arrays of any of the basic data types described in this
section. You can construct more complicated data types using clusters,
which can in turn contain scalars, arrays, and other clusters.

The first four bytes of a LabVIEW array indicate the number of elements
in the array. The elements of the array follow the length field. Refer to the
Passing Parameters section earlier in this chapter for examples of
manipulating arrays.

Strings
LabVIEW supports C- and Pascal-style strings, lists of strings, and LStr,
a special string data type you use for string parameters to external code
modules. The support manager contains routines for manipulating strings
and converting them among the different types of strings.

C-Style Strings (CStr)
A C-style string (CStr) is a series of zero or more unsigned characters,
terminated by a zero. C strings have no effective length limit.
Most manager routines use C strings, unless you specify otherwise.
The following code is the type definition for a C string.

typedef uChar *CStr;

Pascal-Style Strings (PStr)
A Pascal-style string (PStr) is a series of unsigned characters. The value
of the first character indicates the length of the string. This gives a range of
0 to 255 characters. The following code is the type definition for a Pascal
string.

typedef uChar Str255[256], Str31[32],

*StringPtr,

**StringHandle;

typedef uChar *PStr;

LabVIEW Strings (LStr)
The first four bytes of a LabVIEW string (LStr) indicate the length of the
string, and the specified number of characters follow. This is the string data
type used by LabVIEW block diagrams. The following code is the type
definition for an LStr string.

typedef struct {

int32 cnt;

/* number of bytes that follow */

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-26 www.ni.com

uChar str[1];

/* cnt bytes */

} LStr, *LStrPtr, **LStrHandle;

Concatenated Pascal String (CPStr)
Many algorithms require manipulation of lists of strings. Arrays of strings
are usually the most convenient representation for lists. However, this
representation can place a burden on the memory manager because of the
large number of dynamic objects it must manage. To make working with
lists more efficient, LabVIEW supports the concatenated Pascal string
(CPStr) data type, which is a list of Pascal-style strings concatenated into
a single block of memory. You can use support manager routines to create
and manipulate lists using this data structure.

The following code is the type definition for a CPStr string.

typedef struct {

int32 cnt;

/* number of pascal strings that follow */

uChar str[1];

/* cnt concatenated pascal strings */

} CPStr, *CPStrPtr, **CPStrHandle;

Paths
A path (pathname) indicates the location of a file or directory in a file
system. LabVIEW has a separate data type for a path, represented as Path,
which the file manager defines in a platform-independent manner. The
actual data type for a path is private to the file manager and subject to
change. You can create and manipulate Path data types using file manager
routines.

Memory-Related
LabVIEW uses pointers and handles to reference dynamically allocated
memory. These data types have the following type definitions.

typedef uChar *UPtr;

typedef uChar **UHandle;

Refer to Chapter 6, Function Descriptions, for more information about the
use of memory-related data types with functions.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-27 Using External Code in LabVIEW

Constants
The managers define the following constant for use with external
code modules.

NULL 0(uInt32)

The following constants define the possible values of the Bool32 data type.

FALSE 0 (int32)

TRUE 1 (int32)

The following constants define the possible values of the LVBoolean
data type.

LVFALSE 0 (uInt8)

LVTRUE 1 (uInt8)

Memory Manager
The memory manager is a set of platform-independent routines you can use
to allocate, manipulate, and deallocate memory from external code
modules.

If you need to perform dynamic memory allocation or manipulation from
external code modules, use the memory manager. If your external code
operates on data types other than scalars, you should understand how
LabVIEW manages memory and know which utilities manipulate data.

The memory manager defines generic handle and pointer data types
as follows.

typedef uChar *Ptr;

typedef uChar **UHandle;

Memory Allocation
Applications use two types of memory allocation: static and dynamic.

Static
With static allocation, the compiler determines memory requirements when
you create an application. When you launch the application, LabVIEW
creates memory for the known global memory requirements of the
application. This memory remains allocated while the application runs.
This form of memory management is simple to work with, because the
compiler handles all the details.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-28 www.ni.com

However, static memory allocation cannot address the memory
management requirements of most real-world applications, because you
cannot determine most memory requirements until run-time. Also,
statically declared memory might result in larger memory requirements,
because the memory is allocated for the duration of the application.

Dynamic
With dynamic memory allocation, you reserve memory when you need it,
and free memory when you are no longer using it. Dynamic allocation
requires more work than static memory allocation, because you have to
determine memory requirements and allocate and deallocate memory as
necessary.

The LabVIEW memory manager supports two kinds of dynamic
memory allocation. The more conventional method uses pointers to
allocate memory. With pointers, you request a block of memory of a certain
size and the routine returns the address of the block to your CIN. When you
no longer need the block of memory, you call a routine to free the block.
You can use the block of memory to store data, and you reference that data
using the address the manager routine returned when you created the
pointer. You can make copies of the pointer and use them in multiple places
in your application to refer to the same data.

Pointers in the LabVIEW memory manager are nonrelocatable, which
means the manager never moves the memory block to which a pointer
refers while that memory is allocated for a pointer. This avoids problems
that occur when you need to change the amount of memory allocated to
a pointer, because other references would be out of date. If you need more
memory, there might not be sufficient memory to expand the pointer's
memory space without moving the memory block to a new location.
This causes problems if an application had multiple references to the
pointer, because each pointer refers to the old memory address of the data.
Using invalid pointers can cause severe problems.

A second form of memory allocation uses handles to address this problem.
As with pointers, when you allocate memory using handles, you request
a block of memory of a certain size. The memory manager allocates the
memory and adds the address of the memory block to a list of master
pointers. The memory manager returns a handle that is a pointer to the
master pointer. If you reallocate a handle and it moves to another address,
the memory manager updates the master pointer to refer to the new address.
If you look up the correct address using the handle, you access the correct
data.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-30 www.ni.com

If you need to resize an existing handle, use the XXSetHandleSize
routine, which determines the size of an existing handle. Because pointers
are not relocatable, you cannot resize them.

A handle is a pointer to a pointer. In other words, a handle is the address
of an address. The second pointer, or address, is a master pointer, which
means it is maintained by the memory manager. Languages that support
pointers provide operators for accessing data by its address. With a handle,
you use this operator twice; once to get to the master pointer, and a second
time to get to the actual data. Refer to the following section for a simple
example of how to work with pointers and handles in C.

While operating within a single call of a CIN node, an AZ handle does
not move unless you specifically resize it. In this context, you do not need
to lock or unlock handles. If your CIN maintains an AZ handle across
different calls of the same CIN (an asynchronous CIN), the AZ handle
might be relocated between calls. AZHLock and AZHUnlock might be
useful if you do not want the handle to relocate. A DS handle moves only
when you resize it.

Additional routines make it easy to copy and concatenate handles and
pointers to other handles, check the validity of handles and pointers,
and copy or move blocks of memory from one place to another.

Simple Example
The following code shows how to work with a pointer to an int32.

int32 *myInt32P;

myInt32P = (int32 *)DSNewPtr(sizeof(int32));

*myInt32P = 5;

x = *myInt32P + 7;

...

DSDisposePtr(myInt32P);

The first line declares the variable myInt32P as a pointer to, or the address

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-31 Using External Code in LabVIEW

The third line places the value 5 in the memory location to which
myInt32P refers. The * operator refers to the value in the address location.

The fourth line sets x equal to the value at address myInt32P plus 7.

The last line frees the pointer.

The following code is the same example using handles instead of pointers.

int32 **myInt32H;

myInt32H =(int32**)DSNewHandle(sizeof(int32));

**myInt32H = 5;

x = **myInt32H + 7;

...

DSDisposeHandle(myInt32H);

The first line declares the variable myInt32H as a handle to an a signed
32-bit integer. Strictly speaking, this line declares myInt32H as a pointer
to a pointer to an int32. As with the previous example, this declaration
does not allocate memory for the int32; it creates memory for an address
and associates the name myInt32H with that address. The H at the end of
the variable name is a convention used in this example to indicate the
variable is a handle.

The second line creates a block of memory in the data space large enough to
hold a single int32. DSNewHandle places the address of the memory
block as an entry in the master pointer list and returns the address of the
master pointer entry. Finally, this line sets myInt32H to refer to the master
pointer.

The third line places the value 5 in the memory location to which
myInt32H refers. Because myInt32H is a handle, you use the * operator
twice to get to the data.

The fourth line sets x equal to the value referenced by myInt32H plus 7.

The last line frees the handle.

This example shows only the simplest aspects of how to work with pointers
and handles in C. Other examples throughout this manual show different
aspects of using pointers and handles. Refer to a C manual for a list of other
operators you can use with pointers and more information about how to
work with pointers.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-32 www.ni.com

File Manager
The file manager supports routines for opening and creating files, reading
data from and writing data to files, and closing files. In addition, you can
manipulate the end-of-file mark of a file and position the current read or

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-33 Using External Code in LabVIEW

perform an operation on the open file. The file descriptor is an identifier the
file manager associates with the file when you open it. When you close the
file, the file manager dissociates the file descriptor from the file.

Path Specifications
LabVIEW uses three kinds of filepath specifications: conventional, empty,
and LabVIEW specifications.

Conventional
All platforms have a method for describing the paths for files and
directories. These path specifications are similar, but they are usually
incompatible from one platform to another. You usually specify a path
as a series of names separated by separator characters. Typically, the first
name is the top level of the hierarchical specification of the path, and the
last name is the file or directory the path identifies.

There are two types of paths: relative paths and absolute paths.
A relative path describes the location of a file or directory relative to
an arbitrary location in the file system. An absolute path describes the
location of a file or directory starting from the top level of the file system.

A path does not necessarily go from the top of the hierarchy down to the
target. You can often use a platform-specific tag in place of a name that
indicates the path should go up a level from the current location.

For instance, in UNIX, you specify the path of a file or directory as a series
of names separated by the slash (/) character. If the path is an absolute path,
you begin the specification with a slash. Indicate the path should move up
a level using two periods in a row (..). Thus, the following path specifies a
file README relative to the top level of the file system.

/usr/home/gregg/myapps/README

The following paths are two relative paths to the same file.

gregg/myapps/README relative to /usr/home

../myapps/README relative to a directory inside of the gregg
directory

In Windows, you separate names in a path with a backslash (\) character.
If the path is an absolute path, you begin the specification with a drive
designation, followed by a colon (:), followed by the backslash. Indicate
the path should move up a level using two periods in a row (..). Thus, the

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-34 www.ni.com

following path specifies a file README relative to the top level of the file
system, on a drive named C.

C:\HOME\GREGG\MYAPPS\README

The following paths are two relative paths to the same file.

GREGG\MYAPPS\README relative to the HOME directory

..\MYAPPS\README relative to a directory inside of the GREGG
directory

In Macintosh, you separate names in a path with the colon (:) character. If
the path is an absolute path, you begin the specification with the name of
the volume containing the file. If an absolute path consists of only one
name (it specifies a volume), it must end with a colon. If the path is a
relative path, it begins with a colon. This colon is optional for a relative path
consisting of only one name. Indicate the path should move up a level using
two colons in a row (::). Thus, the following path specifies a file README
relative to the top level of the file system, on a drive named Hard Drive.

Hard Drive:Home:Gregg:MyApps:README

The following paths are two relative paths to the same file.

:Gregg:MyApps:README relative to the Home directory

::MyApps:README relative to a directory inside of the
Gregg directory

Empty
You can define a path with no names, called an empty path. An empty path
is either absolute or relative. The empty absolute path is the highest point
you can specify in the file hierarchy. The empty relative path is a path
relative to an arbitrary location in the file system to itself.

In UNIX, a slash (/) represents the empty absolute path. The slash specifies
the root of the file hierarchy. A period (.) represents the empty relative path.

In Windows, you represent the empty absolute path as an empty string.
It specifies the set of all volumes on the system. A period (.) represents
the empty relative path.

In Macintosh, the empty absolute path is represented as an empty string.
It specifies the set of all volumes on the system. A colon (:) represents the
empty relative path.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-35 Using External Code in LabVIEW

LabVIEW
In LabVIEW, you specify a path using a special LabVIEW data type,
represented as Path. The exact structure of the Path data type is private to
the file manager. You create and manipulate the Path data type using file
manager routines.

A Path is a dynamic data structure. Just as you use memory manager
routines to allocate and deallocate handles and pointers, you use file
manager routines to create and deallocate a Path. Just as with handles,
declaring a Path variable does not actually create a Path. Before you
can use the Path to manipulate a file, you must dynamically allocate
the Path using file manager routines. When you are finished using the
Path variable, you should release the Path using file manager routines.

In addition to providing routines for the creation and elimination of a Path,
the file manager provides routines for comparing, duplicating, determining
their characteristics, and converting them to and from other formats, such
as the platform-specific format for the system on which LabVIEW is
running.

File Descriptors
When you open a file, LabVIEW returns a file descriptor associated
with the file. A file descriptor is a data type LabVIEW uses to identify
open files. All operations performed on an open file use the file
descriptor to identify the file.

A file descriptor is valid only while the file is open. If you close the file,
the file descriptor is no longer associated with the file. If you open the file
again, the new file descriptor is most likely different from the previous file
descriptor.

File Refnums
In the file manager, LabVIEW accesses open files using file descriptors.
However, on the front panel and block diagram, LabVIEW accesses open
files using file refnums. A file refnum contains a file descriptor for use by

© National Instruments Corporation 5-1 Using External Code in LabVIEW

5
Advanced Applications

This chapter describes several options needed only in advanced
applications, including how to use the CINInit, CINDispose, CINAbort,
CINLoad, CINUnload, CINSave, and CINProperties routines. This
chapter also describes how global data works within CIN source code, and
how Windows users can call a DLL from a CIN.

CIN Routines
A CIN consists of several routines, as described by the .c file LabVIEW
creates when you right-click the node on the block diagram and select
Create .c File. Previous chapters have described only the CINRun routine.
Other routines include CINLoad, CINInit, CINAbort, CINSave,
CINDispose, CINUnload, and CINProperties.

For most CINs, you need to write only the CINRun routine. The other
routines are supplied mainly for special initialization needs, such as when
your CIN is going to maintain information across calls and you want to
preallocate or initialize global state information.

If you want to preallocate/initialize global state information, you need to
understand more of how LabVIEW manages data and CINs, as described
in the following sections.

Data Spaces and Code Resources
When you create a CIN, you compile your source into an object code file
and load the code into the node. At that point, LabVIEW loads a copy of
the code resource into memory and attaches it to the node. When you save
the VI, this code resource is saved along with the VI as an attached
component; the original object code file is no longer needed.

When LabVIEW loads a VI, it allocates a data space, a block of data
storage memory, for that VI. LabVIEW uses this data space to store
information such as the values in shift registers. If the VI is reentrant,
LabVIEW allocates a data space for each usage of the VI. Refer to
LabVIEW Help for more information about reentrancy and other execution
properties.

Chapter 5 Advanced Applications

Using External Code in LabVIEW 5-2 www.ni.com

Within your CIN code resource, you might have declared global data.
Global data includes variables declared outside of the scope of all routines
and variables declared as static variables within routines. LabVIEW
allocates space for this global data. As with the code itself, only one
instance of these globals is in memory. Regardless of how many nodes
reference the code resource and regardless of whether the surrounding VI
is reentrant, only one copy of these global variables is ever in memory and
their values are consistent.

When you create a CIN, LabVIEW allocates a CIN data space, a 4-byte
storage location in the VI data space(s), strictly for the use of the CIN. Each
CIN can have one or more CIN data spaces reserved for the node,
depending on how many times the node appears in a VI or collection of VIs.
You can use this CIN data space to store global data on a per data space
basis, as described in the Code Globals and CIN Data Space Globals
section later in this chapter. The following illustration shows a simple
example of data storage spaces for one CIN.

A CIN references the code resource by name, using the name you specified
when you created the code resource. When you load a VI containing a CIN,
LabVIEW looks in memory to see if a code resource with the desired name
is already loaded. If so, LabVIEW links the CIN to the code resource for
execution purposes.

This linking behaves the same way as links between VIs and subVIs. When
you try to reference a subVI and another VI with the same name already
exists in memory, LabVIEW references the one already in memory instead
of the one you selected. In the same way, if you try to load references to two
different code resources having the same name, only one code resource is

VI data space code resource

global storage

(code globals)

(data space globals)

4-byte CIN
data space

VI

Chapter 5 Advanced Applications

© National Instruments Corporation 5-3 Using External Code in LabVIEW

actually loaded into memory, and both references point to the same code.
However, LabVIEW can verify that a subVI call matches the subVI
connector pane terminal, but LabVIEW cannot verify that your source code
matches the CIN call.

One Reference to the CIN in a Single VI
The following section describes the standard case, in which you have a
code resource referenced by only one CIN, and the VI containing the CIN
is non-reentrant. The other cases have slightly more complicated behavior,
described in later sections of this chapter.

Loading a VI
When you first load a VI, LabVIEW calls the CINLoad routines for any
CINs contained in that VI. This gives you a chance to load any file-based
resources at load time, because LabVIEW calls this routine only when the
VI is first loaded. Refer to the Loading a New Resource into the CIN section
that follows for an exception to this rule. After LabVIEW calls the
CINLoad routine, it calls CINInit. Together, these two routines perform
any initialization you need before the VI runs.

LabVIEW calls CINLoad once for a given code resource, regardless of the
number of data spaces and the number of references to that code resource.
For this reason, you should initialize code globals in CINLoad.

LabVIEW calls CINInit for a given code resource a total of one time
for each CIN data space multiplied by the number of references to the
code resource in the VI corresponding to that data space. If you want
to use CIN data space globals, initialize them in CINInit. Refer to the
Code Globals and CIN Data Space Globals, Loading a New Resource into
the CIN, and Compiling a VI sections later in this chapter for more
information.

Unloading a VI
When you close a VI front panel, LabVIEW checks whether any references
to that VI are in memory. If so, the VI code and data space remain in
memory. When all references to a VI are removed from memory and its
front panel is not open, that VI is unloaded from memory.

When a VI is unloaded from memory, LabVIEW calls the
CINDispose routine, giving you a chance to dispose of anything
you allocated earlier. CINDispose is called for each CINInit call. For
instance, if you used XXNewHandle in your CINInit routine, you should

Chapter 5 Advanced Applications

Using External Code in LabVIEW 5-4 www.ni.com

use XXDisposeHandle in your CINDispose routine. LabVIEW calls
CINDispose for a code resource once for each individual CIN data space.

As the last reference to the code resource is removed from memory,
LabVIEW calls the CINUnload routine for that code resource once,
giving you the chance to dispose of anything allocated in CINLoad.
As with CINDispose/CINInit, CINUnload is called for each CINLoad.
For example, if you loaded some resources from a file in CINLoad, you can
free the memory those resources are using in CINUnload. After LabVIEW
calls CINUnload, the code resource itself is unloaded from memory.

Loading a New Resource into the CIN
If you load a new code resource into a CIN, the old code resource is first
given a chance to dispose of anything it needs to dispose. LabVIEW calls
CINDispose for each CIN data space and each reference to the code
resource, followed by the CINUnload for the old resource. The new code
resource is then given a chance to perform any initialization it needs to
perform. LabVIEW calls the CINLoad for the new code resource, followed
by the CINInit routine, called once for each data space and each reference
to the code resource.

Compiling a VI
When you compile a VI, LabVIEW recreates the VI data space, including
resetting all uninitialized shift registers to their default values. In the same
way, your CIN is given a chance to dispose or initialize any storage it
manages. Before disposing of the current data space, LabVIEW calls the
CINDispose routine for each reference to the code resource within the
VI(s) being compiled to give the code resource a chance to dispose of any
old results it is managing. LabVIEW then compiles the VI and creates a
new data space for the VI(s) being compiled (multiple data spaces for any
reentrant VI). LabVIEW then calls CINInit for each reference to the code
resource within the compiled VI(s) to give the code resource a chance to
create or initialize any data it wants to manage.

Running a VI
Click the Run button in a VI to run the VI. When LabVIEW encounters a
Code Interface Node, it calls the CINRun routine for that node.

Saving a VI
When you save a VI, LabVIEW calls the CINSave routine for that VI,
giving you the chance to save any resources, such as something you loaded

Chapter 5 Advanced Applications

© National Instruments Corporation 5-5 Using External Code in LabVIEW

in CINLoad. When you save a VI, LabVIEW creates a new version of the
file, even if you are saving the VI with the same name. If the save is
successful, LabVIEW deletes the old file and renames the new file with the
original name. Therefore, you need to save in CINSave anything you
expect to be able to load in CINLoad.

Aborting a VI
When you abort a VI, LabVIEW calls the CINAbort routine for every
reference to a code resource contained in the VI being aborted. LabVIEW
also calls the CINAbort routine of all actively running subVIs. If a CIN is
in a reentrant VI, it is called for each CIN data space as well. CINs in VIs
not currently running are not notified by LabVIEW of the abort event.

CINs are synchronous, so when a CIN begins execution, it takes control
of its thread until the CIN completes. If your version of LabVIEW is
single-threaded, the user cannot abort the CIN, because no other LabVIEW
tasks can run while a CIN executes.

Multiple References to the Same CIN in a Single VI
If you loaded the same code resource into multiple CINs, or you duplicated
a given CIN, LabVIEW gives each reference to the code resource a chance
to perform initialization or deallocation. No matter how many references
you have in memory to a given code resource, LabVIEW calls the CINLoad
routine only once when the resource is first loaded into memory (though it
is also called if you load a new version of the resource. When you unload
the VI, LabVIEW calls CINUnload once.

After LabVIEW calls CINLoad, it calls CINInit once for each reference
to the CIN, because its CIN data space might need initialization. Thus, if
you have two nodes in the same VI, where both reference the same code,
LabVIEW calls the CINLoad routine once and CINInit twice. If you later
load another VI referencing the same code resource, LabVIEW calls
CINInit again for the new version. LabVIEW has already called CINLoad
once, and does not call it again for this new reference.

LabVIEW calls CINDispose and CINAbort for each individual CIN data
space. LabVIEW calls CINSave only once, regardless of the number of
references to a given code resource within the VI you are saving.

The following illustration shows an example of three CINs referencing the
same code resource.

Chapter 5 Advanced Applications

Using External Code in LabVIEW 5-6 www.ni.com

Multiple References to the Same CIN in Different VIs
Making multiple references to the same CIN in different VIs is different
for single-threaded operating systems than for mutlithreaded
operating systems. To use multithreading, you must use LabVIEW on
Windows or Solaris 2.x.

Single-Threaded Operating Systems
When you make a VI reentrant, LabVIEW creates a separate data space for
each instance of that VI. If you have a CIN data space in a reentrant VI and
you call that VI in seven places, LabVIEW allocates memory to store seven
CIN data spaces for that VI, each of which contains a unique storage
location for the CIN data space for that calling instance.

As with multiple instances of the same node, LabVIEW calls the CINInit,
CINDispose, and CINAbort routines for each individual CIN data space.

If you have a reentrant VI containing multiple copies of the same code
resource, LabVIEW calls the CINInit, CINDispose, and CINAbort

routines once for each use of the reentrant VI, multiplied by the number of
references to the code resource within that VI.

global storage

(code globals)

VI data space

4-byte CIN
data space

4-byte CIN
data space

4-byte CIN
data space

(data space globals)

code resource

VI

Chapter 5 Advanced Applications

© National Instruments Corporation 5-7 Using External Code in LabVIEW

The following illustration shows an example of three VIs referencing a
reentrant VI containing one CIN.

Multithreaded Operating Systems
By default, CINs written before LabVIEW 5.0 run in a single thread, the
user interface thread. When you change a CIN to be reentrant (that is, to run
in multiple threads), more than one execution thread can call the CIN at the
same time. If you want a CIN to run in the current execution thread of the
block diagram, add the following code to your .c file:

CIN MgErr CINProperties(int32 mode, void *data)

{

switch (mode) {

case kCINIsReentrant:

*(Bool32 *)data = TRUE;

return noErr;

break;

}

return mgNotSupported;

}

global storage

(code globals)

code resource

My VI
data space 1

4-byte CIN
data space

(data space globals)

My VI
data space 3

4-byte CIN
data space

(data space globals)

My VI
data space 2

4-byte CIN
data space

(data space globals)

caller 1 caller 2

My VI

caller 3

Chapter 5 Advanced Applications

Using External Code in LabVIEW 5-8 www.ni.com

If you read and write a global or static variable or call a non-reentrant
function within your CINs, keep the execution of those CINs in a single
thread. Even if a CIN is marked reentrant, the CIN functions other than
CINRun are called from the user interface thread. For example, CINInit
and CINDispose are never called from two different threads at the same
time, but CINRunmight be running when the user interface thread is calling
CINInit, CINAbort, or any of the other functions.

To be reentrant, the CIN must be safe to call CINRun from multiple
threads, and safe to call any of the other CIN procedures and CINRun at the
same time. Other than CINRun, you do not need to protect any of the CIN
procedures from each other, because calls to them are always in one thread.

Code Globals and CIN Data Space Globals
When you declare global or static local data within a CIN code resource,
LabVIEW allocates storage for that data. LabVIEW maintains your globals
across calls to various routines.

When you allocate a global in a CIN code resource, LabVIEW creates
storage for only one instance of it, regardless of whether the VI is reentrant
or whether you have multiple references to the same code resource in
memory.

In some cases, you might want globals for each reference to the code
resource multiplied by the number of usages of the VI (if the VI is
reentrant). For each instance of one of these globals, LabVIEW allocates
the CIN data space for the use of the CIN. Within the CINInit,
CINDispose, CINAbort, and CINRun routines you can call the
GetDSStorage routine to retrieve the value of the CIN data space for the
current instance. You also can call SetDSStorage to set the value of the
CIN data space for this instance.

You can use this storage location to store any 4-byte quantity you want to
have for each instance of one of these globals. If you need more than four
bytes of global data, store a handle or pointer to a structure containing your
globals.

The following code is an example of the exact syntax of these two routines,
defined in extcode.h.

• int32 GetDSStorage(void);

This routine returns the value of the 4-byte quantity in the CIN data
space LabVIEW allocates for each CIN code resource, or for each use

Chapter 5 Advanced Applications

© National Instruments Corporation 5-9 Using External Code in LabVIEW

of the surrounding VI (if the VI is reentrant). Call this routine only
from CINInit, CINDispose, CINAbort, or CINRun.

• int32 SetDSStorage(int32 newVal);

This routine sets the value of the 4-byte quantity in the CIN data space
LabVIEW allocates for each CIN use of that code resource, or the uses
of the surrounding VI (if the VI is reentrant). It returns the old value of
the 4-byte quantity in that CIN data space. Call this routine only from
CINInit, CINDispose, CINAbort, or CINRun.

Examples
The following examples illustrate the differences between code globals and
CIN data space globals. In both examples, the CIN takes a number and
returns the average of that number and the previous numbers passed to it.

When you write your application, decide whether it is appropriate to use
code globals or data space globals. If you use code globals, calling the same
code resource from multiple nodes or different reentrant VIs affects the
same set of globals. In the code globals averaging example, the result
indicates the average of all values passed to the CIN.

If you use CIN data space globals, each CIN calling the same code resource
and each VI can have its own set of globals, if the VI is reentrant. In the
CIN data space averaging example, the results indicate the average of
values passed to a specific node for a specific data space.

If you have only one CIN referencing the code resource, and the VI
containing that CIN is not reentrant, choose either method.

Using Code Globals
The following code averages using code globals. The variables are
initialized in CINLoad. If the variables are dynamically created (if they are
pointers or handles), you can allocate the memory for the pointer or handle
in CINLoad and deallocate it in CINUnload. You can do this because
CINLoad and CINUnload are called only once, regardless of the number
of references to the code resources and the number of data spaces. This
example does not use the UseDefaultCINLoad macro, because this .c
file has a CINLoad function.

Chapter 5 Advanced Applications

Using External Code in LabVIEW 5-10 www.ni.com

/*

 * CIN source file

 */

#include "extcode.h"

float64 gTotal;

int32 gNumElements;

CIN MgErr CINRun(float64 *new_num, float64 *avg);

CIN MgErr CINRun(float64 *new_num, float64 *avg)

{

gTotal += *new_num;

gNumElements++;

*avg = gTotal / gNumElements;

return noErr;

}

CIN MgErr CINLoad(RsrcFile rf)

{

gTotal=0;

gNumElements=0;

return noErr;

}

Using CIN Data Space Globals
The following code averages using CIN data space globals. A handle for
the global data is allocated in CINInit, and stored in the CIN data space
storage using SetDSStorage. When LabVIEW calls the CINInit,
CINDispose, CINAbort, or CINRun routines, it makes sure
GetDSStorage and SetDSStorage return the 4-byte CIN data space
value for that node or CIN data space.

When you want to access that data, use GetDSStorage to retrieve the
handle and then dereference the appropriate fields. Finally, use the
CINDispose routine you need to dispose of the handle.

/*

 * CIN source file

 */

#include "extcode.h"

typedef struct {

float64 total;

int32 numElements;

Chapter 5 Advanced Applications

© National Instruments Corporation 5-11 Using External Code in LabVIEW

} dsGlobalStruct;

CIN MgErr CINInit() {

dsGlobalStruct **dsGlobals;

MgErr err = noErr;

if (!(dsGlobals = (dsGlobalStruct **)

DSNewHandle(sizeof(dsGlobalStruct))))

{

/* if 0, ran out of memory */

err = mFullErr;

goto out;

}

(*dsGlobals)–>numElements=0;

(*dsGlobals)–>total=0;

SetDSStorage((int32) dsGlobals);

out:

return err;

}

CIN MgErr CINDispose()

{

dsGlobalStruct **dsGlobals;

dsGlobals=(dsGlobalStruct **) GetDSStorage();

if (dsGlobals)

DSDisposeHandle(dsGlobals);

return noErr;

}

CIN MgErr CINRun(float64 *new_num, float64 *avg);

CIN MgErr CINRun(float64 *new_num, float64 *avg)

{

dsGlobalStruct **dsGlobals;

dsGlobals=(dsGlobalStruct **) GetDSStorage();

if (dsGlobals) {

(*dsGlobals)–>total += *new_num;

(*dsGlobals)–>numElements++;

*avg = (*dsGlobals)–>total /

(*dsGlobals)–>numElements;

}

return noErr;

}

© National Instruments Corporation 6-1 Using External Code in LabVIEW

6
Function Descriptions

This chapter describes the CIN functions you can use with LabVIEW. You
can use these functions to perform simple and complex operations. These
functions, organized into libraries called managers, range from low-level
byte manipulation to routines for sorting data and managing memory. All
CIN manager routines are platform-independent, so you can create CINs
that work on all platforms supported by LabVIEW.

Refer to the Manager Overview section in Chapter 4, Programming Issues
for CINs, for general information about the manager routines.

Memory Manager Functions
The memory manager functions can dynamically allocate, manipulate, and
release memory.

To perform the following operations, use the functions listed:

• Handle and pointer verification:

– AZCheckHandle/DSCheckHandle

– AZCheckPtr/DSCheckPtr

• Handles, allocating and releasing:

– SetCINArraySize

– NumericArrayResize

– AZDispose Handle/DSDisposeHandle

– AZGetHandleSize/DSGetHandleSize

– AZNewHandle/DSNewHandle

– AZNewHClr/DSNewHClr

– AZRecoverHandle/DSRecoverHandle

– AZSetHandleSize/DSSetHandleSize

– AZSetHSzClr/DSSetHSzClr

• Handles, manipulating properties:

– AZHLock

– AZHPurge

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-2 www.ni.com

– AZHNoPurge

– AZHUnlock

• Memory utilities:

– AZHandAndHand/DSHandAndHand

– AZHandToHand/DSHandToHand

– AZPtrAndHand/DSPtrAndHand

– AZPtrToHand/DSPtrToHand

– AZPtrToXHand/DSPtrToXHand

– ClearMem

– MoveBlock

– SwapBlock

• Memory zone utilities:

– AZHeapCheck/DSHeapCheck

– AZMaxMem/DSMaxMem

– AZMemStats/DSMemStats

• Pointers, allocating and releasing:

– AZDisposePtr/DSDisposePtr

– AZNewPClr/DSNewPClr

– AZNewPtr/DSNewPtr

File Manager Functions
The file manager functions can create, open, and close files, write data to
files, and read data from files. In addition, file manager routines can create
directories, determine characteristics of files and directories, and copy files.

The file manager defines the Path data type for use in describing paths to
files and directories. The data structure for the Path data type is private.
Use file manager routines to create and manipulate the Path data type.

The file manager uses the int32 data type to describe permissions for files
and directories. The manager uses only the least significant nine bits of the
int32.

In UNIX, the nine bits of permissions correspond exactly to nine UNIX
permission bits governing read, write, and execute permissions for user,
group, and others. The following illustration shows permission bits in
UNIX.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-3 Using External Code in LabVIEW

In Windows, permissions are ignored for directories. For files, only bit 7
(the UNIX user write permission bit) is used. If this bit is clear, the file is
read-only. Otherwise, you can write to the file.

In Macintosh, all nine bits are used for directories (folders). The bits which
control read, write, and execute permissions, respectively, in UNIX are
used to control See Files, Make Changes, and See Folders access rights,
respectively, in Macintosh.

To perform the following operations, use the functions listed:

• Current position mark, positioning:

– FMSeek

– FMTell

• Default access rights information, getting:

– FGetDefGroup

• Directory contents, creating and determining:

– FListDir

– FNewDir

• End-of-file mark, positioning:

– FGetEOF

– FSetEOF

• File data to disk, flushing:

– FFlush

• File operations, performing basic:

– FCreate

– FCreateAlways

– FMClose

– FMOpen

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-4 www.ni.com

– FMRead

– FMWrite

• File range, locking:

– FLockOrUnlockRange

• File refnums, manipulating:

– FDisposeRefNum

– FlsARefNum

– FNewRefNum

– FRefNumToFD

– FRefNumToPath

• File, directory, and volume information determination:

– FExists

– FGetAccessRights

– FGetInfo

– FGetVolInfo

– FSetAccessRights

– FSetInfo

• Filenames and patterns, matching:

– FStrFitsPat

• Files and directories, moving and deleting:

– FMove

– FRemove

• Files, copying:

– FCopy

• Path type, determining:

– FGetPathType

– FlsAPathOfType

– FSetPathType

• Path, extracting information:

– FDepth

– FDirName

– FName

– FNamePtr

– FVolName

Chapter 6 Function Descriptions

© National Instruments Corporation 6-5 Using External Code in LabVIEW

• Paths, comparing:

– FlsAPath

– FlsAPathOrNotAPath

– FlsEmptyPath

– FPathCmp

• Paths, converting to and from other representations:

– FArrToPath

– FFlattenPath

– FPathToArr

– FPathToAZString

– FPathToDSString

– FStringToPath

– FTextToPath

– FUnFlattenPath

• Paths, creating:

– FAddPath

– FAppendName

– FAppPath

– FEmptyPath

– FMakePath

– FNotAPath

– FRelPath

• Paths, disposing:

– FDisposePath

• Paths, duplicating:

– FPathCpy

– FPathToPath

Support Manager Functions
You can use the support manager functions for bit or byte manipulation of
data, string manipulation, mathematical operations, sorting, searching, and
determining the current time and date.

To perform the following operations, use the functions listed:

• Byte manipulation operations:

– Cat4Chrs

– GetALong

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-6 www.ni.com

– Hi16

– HiByte

– HiNibble

– Lo16

– LoByte

– Long

– LoNibble

– Offset

– SetALong

– Word

• Mathematical operations:

– Abs

– Max

– Min

– Pin

– RandomGen

• String manipulation:

– BlockCmp

– CPStrBuf

– CPStrCmp

– CPStrIndex

– CPStrInsert

– CPStrLen

– CPStrRemove

– CPStrReplace

– CPStrSize

– CToPStr

– FileNameCmp

– FileNameIndCmp

– FileNameNCmp

– FPrintf

– HexChar

– IsAlpha

– IsDigit

– IsLower

– IsUpper

– LStrBuf

Chapter 6 Function Descriptions

© National Instruments Corporation 6-7 Using External Code in LabVIEW

– LStrCmp

– LStrLen

– LStrPrintf

– LToPStr

– PPrintf

– PPrintfp

– PPStrCaseCmp

– PPStrCmp

– PStrBuf

– PStrCaseCmp

– PStrCat

– PStrCmp

– PStrCpy

– PStrLen

– PStrNCpy

– PToCStr

– PToLStr

– SPrintF

– SPrintfp

– StrCat

– StrCmp

– StrCpy

– StrLen

– StrNCaseCmp

– StrNCmp

– StrNCpy

– ToLower

– ToUpper

• Utility functions:

– BinSearch

– QSort

– Unused

• Time functions:

– ASCIITime

– DateCString

– DateToSecs

– MilliSecs

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-8 www.ni.com

– SecsToDate

– TimeCString

– TimeInSecs

Mathematical Operations
In addition to the mathematical operations in the previous list, LabVIEW
supports a number of other mathematical functions. The following
functions are implemented as defined in The C Programming Language by
Brian W. Kernighan and Dennis M. Ritchie.

double atan(double);

double cos(double);

double exp(double);

double fabs(double);

double log(double);

double sin(double);

double sqrt(double);

double tan(double);

double acos(double);

double asin(double);

double atan2(double, double);

double ceil(double);

double cosh(double);

double floor(double);

double fmod(double, double);

double frexp(double, int *);

double ldexp(double, int);

double log10(double);

double modf(double, double *);

double pow(double, double);

double sinh(double);

double tanh(double);

Chapter 6 Function Descriptions

© National Instruments Corporation 6-9 Using External Code in LabVIEW

Abs
int32 Abs(n);

Purpose
Returns the absolute value of n, unless n is –231, in which case the function returns the number
unmodified.

Parameters

Name Type Description

n int32 int32 whose absolute value you want to
determine.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-10 www.ni.com

ASCIITime
CStr ASCIITime(secs);

Purpose
Returns a pointer to a string representing the date and time of day corresponding to t seconds
after January 1, 1904, 12:00 AM, GMT. This function uses the same date format as that
returned by the DateCString function using a mode of 2. The date is followed by a space,
and the time is in the same format as that returned by the TimeCString function using a
mode of 0. For example, this function might return Tuesday, Dec 22, 1992 5:30. In
SPARCstation, this function accounts for international conventions for representing dates.

Parameters

Return Value
The date and time as a C string.

Name Type Description

secs uInt32 Seconds since January 1, 1904, 12:00 AM,
GMT.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-11 Using External Code in LabVIEW

AZCheckHandle/DSCheckHandle
MgErr AZCheckHandle(h);
MgErr DSCheckHandle(h);

Purpose
Verifies that the specified handle is a handle. If it is not a handle, this function returns
mZoneErr.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

h Uhandle Handle you want to verify.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-12 www.ni.com

AZCheckPtr/DSCheckPtr
MgErr AZCheckPtr(p);
MgErr DSCheckPtr(p);

Purpose
Verifies that the specified pointer is allocated with XXNewPtr or XXNewPClr. If it is not a
pointer, this function returns mZoneErr.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

p

Chapter 6 Function Descriptions

© National Instruments Corporation 6-13 Using External Code in LabVIEW

AZDisposeHandle/DSDisposeHandle
MgErr AZDisposeHandle(h);
MgErr DSDisposeHandle(h);

Purpose
Releases the memory referenced by the specified handle.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

h UHandle Handle you want to dispose of.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-14 www.ni.com

AZDisposePtr/DSDisposePtr
MgErr AZDisposePtr(p);
MgErr DSDisposePtr(p);

Purpose
Releases the memory referenced by the specified pointer.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

p UPtr Pointer you want to dispose of.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-15 Using External Code in LabVIEW

AZGetHandleSize/DSGetHandleSize
int32 AZGetHandleSize(h);
int32 DSGetHandleSize(h);

Purpose
Returns the size of the block of memory referenced by the specified handle.

Parameters

Return Value
The size in bytes of the relocatable block referenced by the handle h. If an error occurs, this
function returns a negative number.

Name Type Description

h UHandle Handle whose size you want to determine.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-16 www.ni.com

AZHandAndHand/DSHandAndHand
MgErr AZHandAndHand(h1, h2);
MgErr DSHandAndHand(h1, h2);

Purpose
Appends the data referenced by h1 to the end of the memory block referenced by h2.

The function resizes handle h2 to hold h1 and h2 data. If h1 is an AZ handle, lock it, because
this routine can move memory.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

MFullErr Not enough memory to perform the operation.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

h1 UHandle Source of data you want to append to h2.

h2 UHandle Initial handle, to which the data of h1 is
appended.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-17 Using External Code in LabVIEW

AZHandToHand/DSHandToHand
MgErr AZHandToHand(hp);
MgErr DSHandToHand(hp);

Purpose
Copies the data referenced by the handle to which hp points into a new handle, and returns a
pointer to the new handle in hp.

Use this routine to copy an existing handle into a new handle. The old handle remains
allocated. This routine writes over the pointer that is passed in, so you should maintain a copy
of the original handle.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

MFullErr Not enough memory to perform the operation.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

hp UHandle Pointer to handle you want to duplicate. A
pointer to the resulting handle is returned in
this parameter. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-18 www.ni.com

AZHeapCheck/DSHeapCheck
int32 AZHeapCheck(Bool32 d);
int32 DSHeapCheck(Bool32 d);

Purpose
Verifies that the specified heap is not corrupt. This function returns 0 for an intact heap and a
nonzero value for a corrupt heap.

Parameters

Return Value
int32, which can contain the following errors:

NoErr The heap is intact.

MCorruptErr The heap is corrupt.

Name Type Description

d Bool32 Heap you want to verify.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-19 Using External Code in LabVIEW

AZHLock
MgErr AZHLock(h);

Purpose
Locks the memory referenced by the application zone handle h so the memory cannot move.
This means the memory manager cannot move the block of memory to which the handle
refers.

Do not lock handles more than necessary; it interferes with efficient memory management.
Also, do not enlarge a locked handle.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

h UHandle Application zone handle you want to lock.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-20 www.ni.com

AZHNoPurge
void AZHNoPurge(h);

Purpose
Marks the memory referenced by the application zone handle h as not purgative.

Parameters

Name Type Description

h UHandle Application zone handle you want to mark as
not purgative.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-21 Using External Code in LabVIEW

AZHPurge
void AZHPurge(h);

Purpose
Marks the memory referenced by the application zone handle h as purgative. This means that
in tight memory conditions the memory manager can perform an AZEmptyHandle on h. Use
AZReallocHandle to reuse a handle if the manager purges it.

If you mark a handle as purgative, check the handle before using it to determine whether it
has become an empty handle.

Parameters

Name Type Description

h UHandle Application zone handle you want to mark as
purgative.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-22 www.ni.com

AZHUnlock
MgErr AZHUnlock(h);

Purpose
Unlocks the memory referenced by the application zone handle h so it can be moved. This
means that the memory manager can move the block of memory to which the handle refers if
other memory operations need space.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

h UHandle Application zone handle you want to unlock.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-23 Using External Code in LabVIEW

AZMaxMem/DSMaxMem
int32 AZMaxMem();
int32 DSMaxMem();

Purpose
Returns the size of the largest block of contiguous memory available for allocation.

Return Value
int32, the size of the largest block of contiguous memory available for allocation.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-24 www.ni.com

AZMemStats/DSMemStats
void AZMemStats(MemStatRec *msrp);
void DSMemStats(MemStatRec *msrp);

Purpose
Returns various statistics about the memory in a zone.

Parameters

A MemStatRec structure is defined as follows:

typedef struct {

int32 totFreeSize, maxFreeSize, nFreeBlocks;

int32 totAllocSize, maxAllocSize;

int32 nPointers, nUnlockedHdls, nLockedHdls;

int32 reserved [4];

}

The free memory in a zone consists of a number of blocks of contiguous memory. In the
MemStatRec structure, totFreeSize is the sum of the sizes of these blocks, maxFreeSize is
the largest of these blocks (as returned by XXMaxMem), and nFreeBlocks is the number of
these blocks.

Similarly, the allocated memory in a zone consists of a number of blocks of contiguous
memory. In the MemStatRec structure, totAllocSize is the sum of the sizes of these blocks
and maxAllocSize is the largest of these blocks.

Because there are three different varieties of allocated blocks, the numbers of blocks of each
type is returned separately.

nPointers (int32) is the number of pointers, nUnlockedHdls (int32) is the number of
unlocked handles, and nLockedHdls (int32) is the number of locked handles. Add these
three values together to find the total number of allocated blocks.

The four reserved fields are reserved for use by National Instruments.

Name Type Description

msrp MemStatRec Statistics about the zone's free memory in a
MemStatRec structure. Refer to the Pointers
as Parameters section in Chapter 3, CINs,
for more information about using this
parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-25 Using External Code in LabVIEW

AZNewHandle/DSNewHandle
UHandle AZNewHandle(size);
UHandle DSNewHandle(size);

Purpose
Creates a new handle to a relocatable block of memory of the specified size. The routine
aligns all handles and pointers in DS to accommodate the largest possible data representations
for the platform in use.

Parameters

Return Value
A handle of the specified size. If an error occurs, this function returns NULL.

Name Type Description

size int32 Size, in bytes, of the handle you want to
create.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-26 www.ni.com

AZNewHClr/DSNewHClr
UHandle AZNewHClr(size);
UHandle DSNewHClr(size);

Purpose
Creates a new handle to a relocatable block of memory of the specified size and initializes the
memory to zero.

Parameters

Return Value
A handle of the specified size, where the block of memory is set to all zeros. If an error occurs,
this function returns NULL.

Name Type Description

size int32 Size, in bytes, of the handle you want to
create.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-27 Using External Code in LabVIEW

AZNewPClr/DSNewPClr
UPtr AZNewPClr(size);
UPtr DSNewPClr(size);

Purpose
Creates a new pointer to a non-relocatable block of memory of the specified size and
initializes the memory to zero.

Parameters

Return Value
A pointer to a block of size bytes filled with zeros. If an error occurs, this function returns
NULL.

Name Type Description

size int32 Size, in bytes, of the pointer you want to
create.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-28 www.ni.com

AZNewPtr/DSNewPtr
UPtr AZNewPtr(size);
UPtr DSNewPtr(size);

Purpose
Creates a new pointer to a non-relocatable block of memory of the specified size.

Parameters

Return Value
A pointer to a block of size bytes. If an error occurs, this function returns NULL.

Name Type Description

size int32 Size, in bytes, of the pointer you want to
create.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-29 Using External Code in LabVIEW

AZPtrAndHand/DSPtrAndHand
MgErr AZPtrAndHand(p, h, size);
MgErr DSPtrAndHand(p, h, size);

Purpose
Appends size bytes from the address referenced by p to the end of the memory block
referenced by h.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

MFullErr Not enough memory to perform the operation.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

p UPtr Source of data you want to append to h.

h UHandle Handle to which the data of p is appended.

size int32 Number of bytes to copy from p.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-30 www.ni.com

AZPtrToHand/DSPtrToHand
MgErr AZPtrToHand(p, hp, size);
MgErr DSPtrToHand(p, hp, size);

Purpose
Creates a new handle of size bytes and copies size bytes from the address referenced by p to
the handle.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

MFullErr Not enough memory to perform the operation.

Name Type Description

p UPtr Source of data you want to copy to the handle
pointed to by hp.

hp UHandle Pointer to handle you want to duplicate. A
pointer to the resulting handle is returned in
this parameter. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

size int32 Number of bytes to copy from p to the new
handle.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-31 Using External Code in LabVIEW

AZPtrToXHand/DSPtrToXHand
MgErr AZPtrToXHand(p, h, size);
MgErr DSPtrToXHand(p, h, size);

Purpose
Copies size bytes from the address referenced by p to the existing handle h, resizing h,
if necessary, to hold the results.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

MFullErr Not enough memory to perform the operation.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

p UPtr Source of data you want to copy to the handle
h.

h UHandle Destination handle.

size int32 Number of bytes to copy from p to the
existing handle.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-32 www.ni.com

AZRecoverHandle/DSRecoverHandle
UHandle AZRecoverHandle(p);
UHandle DSRecoverHandle(p);

Purpose
Given a pointer to a block of memory that was originally declared as a handle, this function
returns a handle to the block of memory.

This function is useful when you have the address of a block of memory that you know is a
handle, and you need to get a true handle to the block of memory.

Parameters

Return Value

A handle to the block of memory to which p refers. If an error occurs, this function returns
NULL.

Name Type Description

p UPtr Pointer to a relocatable block of memory.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-33 Using External Code in LabVIEW

AZSetHandleSize/DSSetHandleSize
MgErr AZSetHandleSize(h, size);
MgErr DSSetHandleSize(h, size);

Purpose
Changes the size of the block of memory referenced by the specified handle.

While LabVIEW arrays are stored in DS handles, do not use this function to resize array
handles. Many platforms have memory alignment requirements that make it difficult to
determine the correct size for the resulting array. Instead, use either NumericArrayResize
or SetCINArraySize, described in the Resizing Arrays and Strings section in Chapter 4,
Programming Issues for CINs. Do not use these functions on a locked handle.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

MFullErr Not enough memory to perform the operation.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

h UHandle Handle you want to resize.

size int32 New size, in bytes, of the handle.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-34 www.ni.com

AZSetHSzClr/DSSetHSzClr
MgErr AZSetHSzClr(h, size);
MgErr DSSetHSzClr(h, size);

Purpose
Changes the size of the block of memory referenced by the specified handle and sets any new
memory to zero. Do not use this function on a locked handle.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

MFullErr Not enough memory to perform the operation.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

h UHandle Handle you want to resize.

size int32 New size, in bytes, of the handle.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-35 Using External Code in LabVIEW

BinSearch
int32 BinSearch(arrayp, n, elmtSize, key, compareProcP);

Purpose
Searches an array of an arbitrary data type using the binary search algorithm. In addition to
passing the array you want to search to this routine, you also pass a comparison procedure that
this sort routine then uses to compare elements in the array.

The comparison routine should return a number less than zero if a is less than b, zero if a is
equal to b, and a number greater than zero if a is greater than b.

You should declare the comparison routine to have the following parameters and return type.

int32 compareProcP(UPtr a, UPtr b);

Parameters

Return Value
The position in the array where the data is found, with 0 being the first element of the array,
if it is found. If the data is not found, BinSearch returns –i–1, where i is the position where
x should be placed.

Name Type Description

arrayp Uptr Pointer to an array of data.

n int32 Number of elements in the array you want to
search.

elmtSize int32 Size in bytes of an array element.

key Uptr Pointer to the data for which you want to
search.

compareProcP ProcPtr Comparison routine you want BinSearch to
use to compare array elements. BinSearch
passes this routine the addresses of two
elements that it needs to compare.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-36 www.ni.com

BlockCmp
int32 BlockCmp(p1, p2, numBytes);

Purpose
Compares two blocks of memory to determine whether one is less than, equal to, or greater
than the other.

Parameters

Return Value
A negative number, zero, or a positive number if p1 is less than, equal to, or greater than p2,
respectively.

Name Type Description

p1 UPtr Pointer to a block of memory.

p2 UPtr Pointer to a block of memory.

numBytes int32 Number of bytes you want to compare.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-37 Using External Code in LabVIEW

Cat4Chrs
Macro

int32 Cat4Chrs(a,b,c,d);

Purpose
Constructs an int32 parameter from four uInt8 parameters, with the first parameter as the
high byte and the last parameter as the low byte.

Parameters

Return Value
The resulting int32.

Name Type Description

a uInt8 High order byte of the high word of the
resulting int32.

b uInt8 Low order byte of the high word of the
resulting int32.

c uInt8 High order byte of the low word of the
resulting int32.

d uInt8 Low order byte of the low word of the
resulting int32.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-38 www.ni.com

ClearMem
void ClearMem(p, size);

Purpose
Sets size bytes starting at the address referenced by p to 0.

Parameters

Name Type Description

p UPtr Pointer to block of memory you want to
clear.

size int32 Number of bytes you want to clear.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-39 Using External Code in LabVIEW

CPStrBuf
Macro

uChar *CPStrBuf(sp);

Purpose
Returns the address of the first string in a concatenated list of Pascal strings, that is, the
address of sp->str.

Parameters

Return Value
The address of the first string of the concatenated list of Pascal strings.

Name Type Description

sp CPStrPtr Pointer to a concatenated list of Pascal
strings.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-40 www.ni.com

CPStrCmp
int32 CPStrCmp(s1p, s2p);

Purpose
Lexically compares two concatenated lists of Pascal strings to determine whether one is less
than, equal to, or greater than the other. This comparison is case sensitive, and the function
compares the lists as if they were one string.

Parameters

Return Value
<0, 0, or >0 if s1p is less than, equal to, or greater than s2p, respectively. Returns <0 if s1p is
an initial substring of s2p.

Name Type Description

s1p CPStrPtr Pointer to a concatenated list of Pascal
strings.

s2p CPStrPtr Pointer to a concatenated list of Pascal
strings.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-41 Using External Code in LabVIEW

CPStrIndex
PStr CPStrIndex(s1h, index);

Purpose
Returns a pointer to the Pascal string denoted by index in a list of strings. If index is greater
than or equal to the number of strings in the list, this function returns the pointer to the last
string.

Parameters

Return Value
A pointer to the specified Pascal string.

Name Type Description

s1h CPStrHandle Handle to a concatenated list of Pascal
strings.

index int32 Number of the string you want, with 0 as the
first string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-42 www.ni.com

CPStrInsert
MgErr CPStrInsert(s1h, s2, index);

Purpose
Inserts a new Pascal string before the index numbered Pascal string in a concatenated list of
Pascal strings. If index is greater than or equal to the number of strings in the list, this function
places the new string at the end of the list. The function resizes the list to make room for the
new string.

Parameters

Return Value
mgErr, which can contain the following errors:

mFullErr Insufficient memory.

Name Type Description

s1h CPStrHandle Handle to a concatenated list of Pascal
strings.

s2 PStr Pointer to a Pascal string.

index int32 Position you want the new Pascal string to
have in the list of Pascal strings, with 0 as the
first string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-43 Using External Code in LabVIEW

CPStrLen
Macro

int32 CPStrLen(sp);

Purpose
Returns the number of Pascal strings in a concatenated list of Pascal strings, that is, sp->cnt.
Use the CPStrSize function to get the total number of characters in the list.

Parameters

Return Value
The number of strings in the concatenated list of Pascal strings.

Name Type Description

sp CPStrPtr Pointer to a concatenated list of Pascal
strings.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-44 www.ni.com

CPStrRemove
void CPStrRemove(s1h, index);

Purpose
Removes a Pascal string from a list of Pascal strings. If index is greater than or equal to the
number of strings in the list, this function removes the last string. The function resizes the list
after removing the string.

Parameters

Name Type Description

s1h CPStrHandle Handle to a concatenated list of Pascal
strings.

index int32 Number of the string you want to remove,
with 0 as the first string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-45 Using External Code in LabVIEW

CPStrReplace
MgErr CPStrReplace(s1h, s2, index);

Purpose
Replaces a Pascal string in a concatenated list of Pascal strings with a new Pascal string.

Parameters

Return Value
mgErr, which can contain the following errors:

mFullErr Insufficient memory.

Name Type Description

s1h CPStrHandle Handle to a concatenated list of Pascal
strings.

s2 PStr Pointer to a Pascal string.

index int32 Number of the string you want to replace,
with 0 as the first string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-46 www.ni.com

CPStrSize
int32 CPStrSize(sp);

Purpose
Returns the number of characters in a concatenated list of Pascal strings. Use the CPStrLen
function to get the number of Pascal strings in the concatenated list.

Parameters

Return Value
The number of characters in the concatenated list of Pascal strings.

Name Type Description

sp CPStrPtr Pointer to a concatenated list of Pascal
strings.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-47 Using External Code in LabVIEW

CToPStr
int32 CToPStr(cstr, pstr);

Purpose
Converts a C string to a Pascal string, even if the pointers cstr and pstr refer to the same
memory location. If the length of cstr is greater than 255 characters, this function converts
only the first 255 characters. The function assumes pstr is large enough to contain cstr.

Parameters

Return Value
The length of the string, truncated to a maximum of 255 characters.

Name Type Description

cstr CStr Pointer to a C string.

pstr PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-48 www.ni.com

DateCString
CStr DateCString(secs, fmt);

Purpose
Returns a pointer to a string representing the date corresponding to t seconds after January 1,
1904, 12:00 AM, GMT. In SPARCstation, this function accounts for international
conventions for representing dates.

Note This function was formerly called DateString.

Parameters

Return Value
The date as a C string.

Name Type Description

secs uInt32 Seconds since January 1, 1904, 12:00 AM,
GMT.

fmt int32 Indicates the format of the returned date
string, using the following values:

• 0—Short date format, mm/dd/yy,
where mm is a number between 1

and 12 representing the current
month, dd is the current day of the
month (1 through 31), and yy is the
last two digits of the corresponding
year. For example, 12/31/92.

• 1—Long date format, dayName,
MonthName, DayOfMonth,

LongYear. For example,
Thursday, December 31,

1992.

• 2—Abbreviated date format,
AbbrevDayName,

AbbrevMonthName,

DayOfMonth, LongYear. For
example, Thu, Dec 31, 1992.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-49 Using External Code in LabVIEW

DateToSecs
uint32 DateToSecs(dateRecordP);

Purpose
Converts from a time described using the DateRec data structure to the number of seconds
since January 1, 1904, 12:00 AM, GMT.

Parameters

Return Value
The corresponding number of seconds since January 1, 1904, 12:00 AM, GMT.

Name Type Description

dateRecordP DateRec * Pointer to a DateRec structure.
DateToSecs stores the converted date in the
fields of the date structure referred to by
dateRecordP. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-50 www.ni.com

FAddPath
MgErr FAddPath(basePath, relPath, newPath);FAddPath

Purpose
Creates an absolute path by appending a relative path to an absolute path. You can pass the
same path variable for the new path that you use for basePath or relPath. Therefore, you can
call this function in the following three ways:

• FAddPath(basePath, relPath, newPath);

/* the new path is returned in a third path variable */

• FAddPath(path, relPath, path);

/* the new path writes over the old base path */

• FAddPath(basepath, path, path);

/* the new path writes over the old relative path */

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

mFullErr Insufficient memory.

Name Type Description

basePath Path Absolute path to which you want to append a
relative path.

relPath Path Relative path you want to append to the
existing base path.

newPath Path Path returned by FAddPath.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-51 Using External Code in LabVIEW

FAppendName
MgErr FAppendName(path, name);

Purpose
Appends a file or directory name to an existing path.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

mFullErr Insufficient memory.

Name Type Description

path Path Base path to which you want to append a new
file or directory name.FAppendName returns
the resulting path in this parameter.

name PStr File or directory name you want to append to
the existing path.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-52 www.ni.com

FAppPath
MgErr FAppPath(p);

Purpose
Indicates the path to the LabVIEW application currently running.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

mFullErr Insufficient memory.

FNotFound File not found.

FIOErr Unspecified I/O error.

Name Type Description

p Path Path in which FAppPath stores the path to
the current application. p must already be an
allocated path.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-53 Using External Code in LabVIEW

FArrToPath
MgErr FArrToPath(arr, relative, path);

Purpose
Converts a one-dimensional LabVIEW array of strings to a path of the type specified by
relative. Each string in the array is converted in order into a component name of the resulting
path.

If no error occurs, path is set to a path whose component names are the strings in arr. If an
error occurs, path is set to the canonical invalid path.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

mFullErr Insufficient memory.

Name Type Description

arr UHandle DS handle containing the array of strings you
want to convert to a path.

relative Bool32 If TRUE, the resulting path is relative.
Otherwise, the resulting path is absolute.

path Path Path where FArrToPath stores the resulting
path. This path must already have been
allocated.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-54 www.ni.com

FCopy
MgErr FCopy(oldPath, newPath);

Purpose
Copies a file, preserving the type, creator, and access rights. The file to be copied must not be
open. If an error occurs, the new file is not created.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

fNotFound File not found.

fNoPerm Access was denied; the file, directory, or disk is locked or
protected.

fDiskFull Disk is full.

fDupPath The new file already exists.

fIsOpen The original file is open for writing.

fTMFOpen Too many files are open.

mFullErr Insufficient memory.

fIOErr Unspecified I/O error.

Name Type Description

oldPath Path Path of the file or directory you want to copy.

newPath Path Path, including filename, where you want to
store the new file.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-55 Using External Code in LabVIEW

FCreate
MgErr FCreate(fdp, path, permissions, openMode, denyMode, group);

Purpose
Creates a file with the name and location specified by path and with the specified
permissions, and opens it for writing and reading, as specified by openMode. If the file
already exists, the function returns an error.

You can use denyMode to control concurrent access to the file from within LabVIEW. You
can use the group parameter to assign the file to a UNIX group; in Windows or Macintosh,
group is ignored.

If the function creates the file, the resulting file descriptor is stored in the address referred to
by fdp. If an error occurs, the function stores 0 in the address referred to by fdp and returns
an error.

Note Before you call this function, make sure that you understand how to use the fdp
parameter. Refer to the Pointers as Parameters section in Chapter 3, CINs, for more
information about using this parameter.

Parameters

Name Type Description

fdp File * Address at which FCreate stores the file
descriptor for the new file. If FCreate fails,
it stores 0 in the address fdp. Refer to the
Pointers as Parameters section in Chapter 3,
CINs, for more information about using this
parameter.

path Path Path of the file you want to create.

permissions int32 Permissions to assign to the new file.

openMode int32 Access mode to use in opening the file. The
following values are defined in the file
extcode.h:

• openReadOnly—Open for reading.

• openWriteOnly—Open for writing.

• openReadWrite—Open for both
reading and writing.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-56 www.ni.com

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

fIsOpen File is already open for writing. This error is returned only in
Macintosh and Solaris. Windows returns fIOErr when the file is
already open for writing.

fNoPerm Access was denied, because the file is locked or protected.

fDupPath A file of that name already exists.

fTMFOpen Too many files are open.

fIOErr Unspecified I/O error.

denyMode int32 Mode that determines what level of
concurrent access to the file is allowed.
The following values are defined in the file
extcode.h:

• denyReadWrite—Prevents others
from reading from and writing to
the file while it is open.

• denyWriteOnly—Prevents others
from writing to the file only while it
is open.

• denyNeither—Allows others to
read from and write to the file while
it is open.

group PStr UNIX group you want to assign to the new
file.

Name Type Description

Chapter 6 Function Descriptions

© National Instruments Corporation 6-57 Using External Code in LabVIEW

FCreateAlways
MgErr FCreateAlways(fdp, path, permissions, openMode, denyMode, group);

Purpose
Creates a file with the name and location specified by path and with the specified
permissions, and opens the file for writing and reading, as specified by openMode. If the file
already exists, this function opens and truncates the file.

You can use denyMode to control concurrent access to the file from within LabVIEW. You
can use the group parameter to assign the file to a UNIX group; in Windows or Macintosh,
group is ignored.

If the function creates the file, the resulting file descriptor is stored in the address referred to
by fdp. If an error occurs, the function stores 0 in the address referred to by fdp and returns
an error.

Note Before you call this function, make sure that you understand how to use the fdp
parameter. Refer to the Pointers as Parameters section in Chapter 3, CINs, for more
information about using this parameter.

Parameters

Name Type Description

fdp File * Address at which FCreateAlways stores
the file descriptor for the new file. If
FCreateAlways fails, it stores 0 in the
address fdp. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

path Path Path of the file you want to create.

permissions int32 Permissions to assign to the new file.

openMode int32 Access mode to use in opening the file.
The following values are defined in the file
extcode.h:

• openReadOnly—Open for reading.

• openWriteOnly—Open for writing.

• openReadWrite—Open for both
reading and writing.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-58 www.ni.com

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

fIsOpen File is already open for writing. This error is returned only in
Macintosh and Solaris. Windows returns fIOErr when the file is
already open for writing.

fNoPerm Access was denied, because the file is locked or protected.

fDupPath A file of that name already exists.

fTMFOpen Too many files are open.

fIOErr Unspecified I/O error.

denyMode int32 Mode that determines what level of
concurrent access to the file is allowed.
The following values are defined in the file
extcode.h:

• denyReadWrite—Prevents others
from reading from and writing to
the file while it is open.

• denyWriteOnly—Prevents others
from writing to the file only while it
is open.

• denyNeither—Allows others to
read from and write to the file while
it is open.

group PStr UNIX group you want to assign to the new
file.

Name Type Description

Chapter 6 Function Descriptions

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-60 www.ni.com

FDirName
MgErr FDirName(path, dir);

Purpose
Creates a path for the parent directory of a specified path. You can pass the same path variable
for the parent path that you use for path. Therefore, you can call this function in the following
two ways:

• err = FDirName(path, dir);

/* the parent path is returned in a second path variable */

• err = FDirName(path, path);

/* the parent path writes over the existing path */

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

Name Type Description

path Path Path whose parent path you want to
determine.

dir Path Parameter in which FDirName stores the
parent path.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-61 Using External Code in LabVIEW

FDisposePath
MgErr FDisposePath(p);

Purpose
Disposes of a path.

Parameters

Return Value
mgErr, which can contain the following errors:

mZoneErr Invalid path.

Name Type Description

p Path Path you want to dispose of.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-62 www.ni.com

FDisposeRefNum
MgErr FDisposeRefNum(refNum);

Purpose
Disposes of the specified file refNum.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr File refnum is not valid.

Name Type Description

refNum LVRefNum File refnum of which you want to dispose.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-63 Using External Code in LabVIEW

FEmptyPath
Path FEmptyPath(p);

Purpose
Makes an empty absolute path, which is not the same as disposing the path.

Parameters

Return Value
The resulting path; if p was not NULL, the return value is the same empty absolute path as p.
If an error occurs, this function returns NULL.

Name Type Description

p Path Path allocated by FEmptyPath. If NULL,
FEmptyPath allocates a new path and
returns the value. If p is a path, FEmptyPath
sets the existing path to an empty path and
returns the new p.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-64 www.ni.com

FExists
int32 FExists(path);

Purpose
Returns information about the specified file or directory. It returns less information than
FGetInfo, but it is much quicker on most platforms.

Parameters

Return Value
int32, which can contain the following values:

kFIsFile Specified item is a file.

kFIsFolder Specified item is a directory or folder.

kFNotExist Specified item does not exist.

Name Type Description

path Path Path of the file or directory about which you
want information.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-65 Using External Code in LabVIEW

FFlattenPath
int32 FFlattenPath(p, fp);

Purpose
Converts a path into a flat form that you can use to write the path as information to a file. This
function stores the resulting flat path in a pre-allocated buffer and returns the number of bytes.

To determine the size needed for the flattened path, pass NULL for fp. The function returns the
necessary size without writing anything into the location pointed to by fp.

Parameters

Return Value
int32, indicating the number of bytes required to store the flattened path.

Name Type Description

path Path Path you want to flatten.

fp UPtr Address in which FFlattenPath stores the
resulting flattened path. If NULL,
FFlattenPath does not write anything to
this address, but does return the size that the
flattened path would require. Refer to the
Pointers as Parameters section in Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-66 www.ni.com

FFlush
MgErr FFlush(fd);

Purpose
Writes any buffered data for the specified file out to the disk.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr Not a valid file descriptor.

fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-67 Using External Code in LabVIEW

FGetAccessRights
MgErr FGetAccessRights(path, owner, group, permPtr);

Purpose
Returns access rights information about the specified file or directory.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

FNotFound File not found.

fIOErr Unspecified I/O error.

Name Type Description

path Path Path of the file or directory about which you
want access rights information.

owner PStr Address at which FGetAccessRights

stores the owner of the file or directory.

group PStr Address at which FGetAccessRights

stores the group of the file or directory.

permPtr int32 * Address at which FGetAccessRights

stores the permissions of the file or directory.
Refer to the Pointers as Parameters section
in Chapter 3, CINs, for more information
about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-68 www.ni.com

FGetDefGroup
LStrHandle FGetDefGroup(groupHandle);

Purpose
Gets the LabVIEW default group for a file or directory.

Parameters

Return Value
The resulting LStrHandle. If groupHandle was not NULL, the return value is the same
LStrHandle as groupHandle. If an error occurs, this function returns NULL.

Name Type Description

groupHandle LStrHandle Handle that represents the LabVIEW default
group for a file or directory. If groupHandle
is NULL, FGetDefGroup allocates a new
handle and returns the default group in it. If
groupHandle is a handle, FGetDefGroup
returns it, and groupHandle resizes to hold
the default group.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-69 Using External Code in LabVIEW

FGetEOF
MgErr FGetEOF(fd, sizep);

Purpose
Returns the size of the specified file.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr Not a valid file descriptor.

fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file.

sizep int32 * Address at which FGetEOF stores the size of
the file in bytes. If an error occurs, *sizep is
undefined. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-70 www.ni.com

FGetInfo
MgErr FGetInfo(path, infop);

Purpose
Returns information about the specified file or directory.

Parameters

FInfoPtr is a data structure that defines the attributes of a file or directory. The following
code lists the file/directory information record, FInfoPtr.

typedef struct {

int32 type; * system specific file type--

0 for directories */

int32 creator; * system specific file

creator-- 0 for folders (on

Mac only)*/

int32 permissions; * system specific file access

rights */

int32 size; /* file size in bytes (data

fork on Mac) or entries in

directory*/

int32 rfSize; /* resource fork size (on Mac

only) */

uint32 cdate; /* creation date: seconds

since system reference time

*/

uint32 mdate; /* last modification date:

seconds since system ref time

*/

Name Type Description

path Path Path of the file or directory about which you
want information.

infop FInfoPtr Address where FGetInfo stores
information about the file or directory. If an
error occurs, infop is undefined. Refer to the
Pointers as Parameters section in Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-71 Using External Code in LabVIEW

Bool32 folder; /* indicates whether path

refers to a folder */

Bool32 isInvisible; /* indicates whether file is

visible in File Dialog (on

Mac only)*/

Point location; /* system specific desktop

geographical location (on Mac

only)*/

Str255 owner; /* owner (in pascal string

form) of file or folder */

Str255 group; /* group (in pascal string

form) of file or folder */

} FInfoRec, *FInfoPtr;

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

FNotFound File not found.

fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-72 www.ni.com

FGetPathType
MgErr FGetPathType(path, typePtr)

Purpose
Returns the type (relative, absolute, or not a path) of a path.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

Name Type Description

path Path Path whose type you want to determine.

typePtr int32 * Address at which FGetPathType stores
the type. *typePtr can have the following
values:

• fAbsPath—The path is absolute.

• fRelPath—The path is relative.

• fNotAPath—The path is the
canonical invalid path or an error
occurred.

Refer to the Pointers as Parameters section
in Chapter 3, CINs, for more information
about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-73 Using External Code in LabVIEW

FGetVolInfo
MgErr FGetVolInfo(path, vinfo);

Purpose
Gets a path specification and information for the volume containing the specified file or
directory.

Parameters

The following code describes the volume information record, VInfoRec:

typedef struct {

uint32 size; /* size in bytes of a

volume */

uint32 used; /* number of bytes used on

volume */

uint32 free; /* number of bytes available

for use on volume */

} VInfoRec;

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

fIOErr Unspecified I/O error.

Name Type Description

path Path Path of a file or directory contained on the
volume from which you want to get
information. This path is overwritten with a
path specifying the volume containing the
specified file or directory. If an error occurs,
path is undefined.

vinfo VInfoRec * Address at which FgetVolInfo stores the
information about the volume. If an error
occurs, vinfo is undefined. Refer to the
Pointers as Parameters section in Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-74 www.ni.com

FileNameCmp
Macro

int32 FileNameCmp(s1, s2);

Purpose
Lexically compares two file names, to determine whether one is less than, equal to, or greater
than the other. This comparison uses the same case sensitivity as the file system, that is,
case-insensitive for Macintosh and Windows, case-sensitive for SPARCstation.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-75 Using External Code in LabVIEW

FileNameIndCmp
Macro

int32 FileNameIndCmp(s1p, s2p);

Purpose
This function is similar to FileNameCmp, except you pass the function handles to the string
data instead of pointers. Use this function to compare two file names lexically and determine
whether one is less than, equal to, or greater than the other. This comparison uses the same
case sensitivity as the file system, that is, case-insensitive for Macintosh and Windows,
case-sensitive for SPARCstation.

Parameters

Return Value
<0, 0, or >0 if s1p is less than, equal to, or greater than s2p, respectively. Returns <0 if s1p is
an initial substring of s2p.

Name Type Description

s1p PStr * Pointer to a Pascal string.

s2p PStr * Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-76 www.ni.com

FileNameNCmp
Macro

int32 FileNameNCmp(s1, s2, n);

Purpose
Lexically compares two file names to determine whether one is less than, equal to, or greater
than the other, limiting the comparison to n characters. This comparison uses the same case
sensitivity as the file system, that is, case-insensitive for Macintosh and Windows,
case-sensitive for SPARCstation.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

n uInt32 Maximum number of characters you want to
compare.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-77 Using External Code in LabVIEW

FIsAPath
Bool32 FIsAPath(path);

Purpose
Determines whether path is a valid path.

Parameters

Return Value
Bool32, which can contain the following values:

TRUE Path is well formed and type is absolute or relative.

FALSE Path is not valid.

Name Type Description

path Path Path you want to verify.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-78 www.ni.com

FIsAPathOfType
Bool32 FIsAPathOfType(path, ofType);

Purpose
Determines whether a path is a valid path of the specified type (relative or absolute).

Parameters

Return Value
Bool32, which can contain the following values:

TRUE Path is well formed and type is identical to ofType.

FALSE Otherwise.

Name Type Description

path Path Path you want to compare to the specified
type.

ofType int32 Type you want to compare to the path’s type.
ofType can have the following values:

• fAbsPath—Compare the path’s
type to absolute.

• fRelPath—Compare the path’s
type to relative.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-79 Using External Code in LabVIEW

FIsAPathOrNotAPath
Bool32 FIsAPathOrNotAPath(path);

Purpose
Determines whether path is a valid path or the canonical invalid path.

Parameters

Return Value
Bool32, which can contain the following values:

TRUE Path is well formed and type is absolute, relative, or not a path.

FALSE Path is not valid.

Name Type Description

path Path Path you want to verify.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-80 www.ni.com

FIsARefNum
Bool32FIsARefNum(refNum);

Purpose
Determines whether refNum is a valid file refnum.

Parameters

Return Value
Bool32, which can contain the following values:

TRUE File refnum has been created and not yet disposed.

FALSE File refnum is not valid.

Name Type Description

refNum LVRefNum File refnum you want to verify.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-81 Using External Code in LabVIEW

FIsEmptyPath
Bool32 FIsEmptyPath(path);

Purpose
Determines whether path is a valid empty path.

Parameters

Return Value
Bool32, which can contain the following values:

TRUE Path is well formed and empty and type is absolute or relative.

FALSE Path is not a valid empty path.

Name Type Description

path Path Path you want to verify.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-82 www.ni.com

FListDir
MgErr FListDir(path, list, typeH);

Purpose
Determines the contents of a directory.

The function fills the AZ handle passed in list with a CPStr, where the cnt field specifies the
number of concatenated Pascal strings that follow in the str[] field. Refer to the Basic Data
Types section in Chapter 4, Programming Issues for CINs, for a description of the CPStr data
type. If typeH is not NULL, the function fills the AZ handle passed in typeH with the file type
information for each file name or directory name stored in list.

Parameters

The file type record is:

typedef struct {

int32 flags;

int32 type;

} FileType;

Only the least significant four bits of flags contain useful information. The remaining bits
are reserved for use by LabVIEW. You can test these four bits using the following four masks:

#define kIsFile 0x01

#define kRecognizedType 0x02

Name Type Description

path Path Path of the directory whose contents you
want to determine.

list CPStrHandle Application zone handle in which FListDir
stores a series of concatenated Pascal strings,
preceded by a 4-byte integer field, cnt, that
indicates the number of items in the buffer.

typeH FileType Application zone handle in which FListDir
stores a series of FileType records. If
typeH is not NULL, FListDir stores one
FileType record in typeH for each Pascal
string in list. The nth FileType in typeH
denotes the file type information about the
file or directory named in the nth string in list.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-83 Using External Code in LabVIEW

#define kIsLink 0x04

#define kFIsInvisible 0x08

The kIsFile bit is set if the item described by the file type record is a file; otherwise, it is
clear. The kRecognizedType bit is set if the item described is a file for which you can
determine a 4-character file type; otherwise, it is clear. The kIsLink bit is set if the item
described is a UNIX link or Macintosh alias; otherwise, it is clear. The kFIsInvisible bit
is set if the item described does not appear in a file dialog; otherwise, it is clear.

The value of type is defined only if the kRecognizedType bit is set in flags. In this case,
type is the 4-character file type of the file described by the file type record. This 4-character
file type is provided by the file system in Macintosh and is computed by examining the file
name extension on other systems.

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

FNotFound The directory was not found.

FNoPerm Access was denied; the file, directory, or disk is locked or
protected.

MFullErr Insufficient memory.

fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-84 www.ni.com

FLockOrUnlockRange
MgErr FLockOrUnlockRange(fd, mode, offset, count, lock);

Purpose
Locks or unlocks a section of a file.

Parameters

Name Type Description

fd File File descriptor associated with the file.

mode int32 Position in the file relative to which
FLockOrUnlockRange determines the first
byte to lock or unlock, using the following
values:

• fStart—The first byte to lock or
unlock is located offset bytes from
the start of the file (offset must be
greater than or equal to 0).

• fCurrent—The first byte to lock
or unlock is located offset bytes
from the current position mark
(offset can be positive, 0, or
negative).

• fEnd—The first byte to lock or
unlock is located offset bytes from
the end of the file (offset must be
less that or equal to 0).

offset int32 The position of the first byte to lock or
unlock. The position is the number of bytes
from the beginning of the file, the current
position mark, or the end of the file, as
determined by mode.

count int32 Number of bytes to lock or unlock starting at
the location specified by mode and offset.

lock Bool32 Indicates whether FLockOrUnlockRange
locks or unlocks a range of bytes. If TRUE the
function locks a range; if FALSE the function
unlocks a range.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-85 Using External Code in LabVIEW

Return Value
mgErr, which can contain the following errors:

fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-86 www.ni.com

FMakePath
Path FMakePath(path, type, [volume, directory, directory, ..., name,] NULL);

The brackets indicate that the volume, directory, and name parameters are optional.

Purpose
Creates a new path. If path is NULL, this function allocates and returns a new path. Otherwise,
path is set to the new path and this function returns path. If an error occurs, or path is not
specified correctly, the function returns NULL.

When you finish using a path, dispose of it using FDisposePath.

Parameters

Return Value
The resulting path; if you specified path, the return value is the same as path. If an error
occurs, this function returns NULL.

Name Type Description

path Path Parameter in which FMakePath returns the
new path if path is not NULL.

type int32 Type of path you want to create. If
fAbsPath, the new path is absolute. If
fRelPath, the new path is relative.

volume PStr (Optional) Pascal string containing a legal
volume name. An empty string indicates to
go up a level in the path hierarchy. This
parameter is used only for absolute paths in
Macintosh or Windows.

directory PStr (Optional) Pascal string containing a legal
directory name. An empty string indicates to
go up a level in the path hierarchy.

name PStr (Optional) File or directory name. An empty
string indicates to go up a level in the path
hierarchy.

NULL PStr Marker indicating the end of the path.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-87 Using External Code in LabVIEW

FMClose
MgErr FMClose(fd);

Purpose
Closes the file associated with the file descriptor fd.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr Not a valid file descriptor.

fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file you
want to close.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-88 www.ni.com

FMOpen
MgErr FMOpen(fdp, path, openMode, denyMode);

Purpose
Opens a file with the name and location specified by path for writing and reading, as specified
by openMode.

You can use denyMode to control concurrent access to the file from within LabVIEW.

If the function opens the file, the resulting file descriptor is stored in the address referred to
by fdp. If an error occurs, the function stores 0 in the address referred to by fdp and returns
an error.

Note Before you call this function, make sure that you understand how to use the fdp
parameter. Refer to the Pointers as Parameters section in Chapter 3, CINs, for more
information about using this parameter.

Parameters

Name Type Description

fdp File * Address at which FMOpen stores the file
descriptor for the new file. If FMOpen fails,
it stores 0 in the address fdp. Refer to the
Pointers as Parameters section in Chapter 3,
CINs, for more information about using this
parameter.

path Path Path of the file you want to create.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-89 Using External Code in LabVIEW

openMode int32 Access mode to use in opening the file.
The following values are defined in the file
extcode.h:

• openReadOnly—Open for
reading.

• openWriteOnly—Open for
writing; file is not truncated (data is
not removed). In Macintosh, this
mode provides true write-only
access to files. In Windows or
UNIX, LabVIEW I/O functions are
built in the C standard I/O library,
with which you have write-only
access to a file only if you are
truncating the file or making the
access append-only. Therefore, this
mode actually allows both read and
write access to files in Windows or
UNIX.

• openReadWrite—Open for both
reading and writing.

• openWriteOnlyTruncate—Open
for writing; truncates the file.

denyMode int32 Mode that determines what level of
concurrent access to the file is allowed.
The following values are defined in the file
extcode.h:

• denyReadWrite—Prevents others
from reading from and writing to
the file while it is open.

• denyWriteOnly—Prevents others
from writing to the file only while it
is open.

• denyNeither—Allows others to
read from and write to the file while
it is open.

Name Type Description

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-90 www.ni.com

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

fIsOpen File is already open for writing. This error is returned only in
Macintosh and Solaris. Windows returns fIOErr when the file is
already open for writing.

fNotFound File not found.

fTMFOpen Too many files are open.

fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-91 Using External Code in LabVIEW

FMove
MgErr FMove(oldPath, newPath);

Purpose
Moves a file or renames it if the new path indicates the file is to remain in the same directory.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

fNotFound File not found.

fNoPerm Access was denied; the file, directory, or disk is locked or
protected.

fDiskFull Disk is full.

fDupPath The new file already exists.

fIsOpen The original file is open for writing.

fTMFOpen Too many files are open.

mFullErr Insufficient memory.

fIOErr Unspecified I/O error.

Name Type Description

oldPath Path Path of the file or directory you want to
move.

newPath Path Path, including the name of the file or
directory, where you want to move the file or
directory.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-92 www.ni.com

FMRead
MgErr FMRead(fd, inCount, outCountp, buffer);

Purpose
Reads inCount bytes from the file specified by the file descriptor fd. The function starts from
the current position mark and reads the data into memory, starting at the address specified by
buffer. Refer to the FMSeek and FMTell functions for more information about the current
position mark.

The function stores the actual number of bytes read in *outCountp. The number of bytes can
be less than inCount if the function encounters end-of-file before reading inCount bytes. The
number of bytes is zero if any other error occurs.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr Not a valid file descriptor or inCount < 0.

FEOF EOF encountered.

fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file from
which you want to read.

inCount int32 Number of bytes you want to read.

outCountp int32 * Address at which FMRead stores the number
of bytes read. FMRead does not store any
value if NULL is passed. Refer to the Pointers
as Parameters section in Chapter 3, CINs,
for more information about using this
parameter.

buffer Uptr Address where FMRead stores the data.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-94 www.ni.com

FMTell
MgErr FMTell(fd, ofstp);

Purpose
Returns the position of the current position mark in the file.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr The file descriptor is not valid.

fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file.

ofstp int32 * Address at which FMTell stores the position
of the current position mark, in terms of
bytes relative to the beginning of the file. If
an error occurs, ofstp is undefined. Refer to
the Pointers as Parameters section in
Chapter 3, CINs, for more information about
using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-95 Using External Code in LabVIEW

FMWrite
MgErr FMWrite(fd, inCount, outCountp, buffer);

Purpose

Writes inCount bytes from memory, starting at the address specified by buffer, to the file
specified by the file descriptor fd, starting from the current position mark. Refer to the
FMSeek and FMTell functions for more information about the current position mark.

The function stores the actual number of bytes written in *outCountp. The number of bytes
stored can be less than inCount if an fDiskFull error occurs before the function writes
inCount bytes. The number of bytes stored is zero if any other error occurs.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr Not a valid file descriptor or inCount < 0.

fDiskFull Out of space.

fNoPerm Access was denied.

fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file from
which you want to write.

inCount int32 Number of bytes you want to write.

outCountp int32 * Address at which FMWrite stores the
number of bytes written. FMWrite does not
store any value if NULL is passed. Refer to the
Pointers as Parameters section in Chapter 3,
CINs, for more information about using this
parameter.

buffer Uptr Address of the data you want to write.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-96 www.ni.com

FName
MgErr FName(path, name);

Purpose
Copies the last component name of a specified path into a string handle and resizes the handle
as necessary.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr Badly formed path or path is root directory.

mFullErr Insufficient memory.

Name Type Description

path Path Path whose last component name you want
to determine.

name StringHandle Handle in which FName returns the last
component name as a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-97 Using External Code in LabVIEW

FNamePtr
MgErr FNamePtr(path, name);

Purpose
Copies the last component name of a path to the address specified by name. This routine does
not allocate space for the returned data, so name must specify allocated memory of sufficient
size to hold the component name.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr Badly formed path or path is root directory.

mFullErr Insufficient memory.

Name Type Description

path Path Path whose last component name you want
to determine.

name PStr Address at which FNamePtr stores the last
component name as a Pascal string. This
address must specify allocated memory of
sufficient size to hold the name. Refer to the
Pointers as Parameters section in Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-98 www.ni.com

FNewDir
MgErr FNewDir(path, permissions);

Purpose
Creates a new directory with the specified permissions. If an error occurs, the function does
not create the directory.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

fNoPerm Access was denied; the file, directory, or disk is locked or
protected.

fDupPath Directory already exists.

fIOErr Unspecified I/O error.

Name Type Description

path Path Path of the directory you want to create.

permissions int32 Permissions for the new directory.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-99 Using External Code in LabVIEW

FNewRefNum
MgErr FNewRefNum(path, fd, refNumPtr);

Purpose
Creates a new file refnum for an open file with the name and location specified by path and
the file descriptor fd.

If the file refnum is created, the resulting file refnum is stored in the address referred to by
refNumPtr. If an error occurs, NULL is stored in the address referred to by refNumPtr and
the error is returned.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

mFullErr Insufficient memory.

Name Type Description

path Path Path of the open file for which you want to
create a file refnum.

fd File File descriptor of the open file for which you
want to create a file refnum.

refNumPtr LVRefNum * Address at which FNewRefNum stores the
new file refnum. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-100 www.ni.com

FNotAPath
Path FNotAPath(p);

Purpose
Creates a path that is the canonical invalid path.

Parameters

Return Value
The resulting path; if p was not NULL, the return value is the same canonical invalid path as
p. If an error occurs, this function returns NULL.

Name Type Description

p Path Path allocated by FNotAPath. If NULL,
FNotAPath allocates a new canonical
invalid path and returns the value. If p is a
path, FNotAPath sets the existing path to the
canonical invalid path and returns the new p.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-101 Using External Code in LabVIEW

FPathCmp
int32 FPathCmp(lsp1, lsp2);

Purpose
Compares two paths.

Parameters

Return Value
int32, which can contain the following values:

–1 Paths are of different types (for example, one is absolute and the
other is relative).

0 Paths are identical.

n+1 Paths have the same first n components, but are not identical.

Name Type Description

lsp1 Path First path you want to compare.

lsp2 Path Second path you want to compare.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-102 www.ni.com

FPathCpy
MgErr FPathCpy(dst, src);

Purpose
Duplicates the path specified by src and stores the resulting path in the existing path, dst.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

Name Type Description

dst Path Path where FPathCpy places the resulting
duplicate path. This path must already have
been created.

src Path Path you want to duplicate.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-103 Using External Code in LabVIEW

FPathToArr
MgErr FPathToArr(path, relativePtr, arr);

Purpose
Converts a path to a one-dimensional LabVIEW array of strings and determines whether the
path is relative. Each component name of the path is converted in order into a string in the
resulting array.

If no error occurs, arr is set to an array of strings containing the component names of
path. If an error occurs, arr is set to an empty array.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr Badly formed path or unallocated array.

mFullErr Insufficient memory.

Name Type Description

path Path Path you want to convert to an array of
strings.

relativePtr Bool32 * Address at which to store a Boolean value
indicating whether the specified path is
relative. Refer to the Pointers as Parameters
section in Chapter 3, CINs, for more
information about using this parameter.

arr UHandle DS handle where FPathToArr stores the
resulting array of strings. This handle must
already have been allocated.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-104 www.ni.com

FPathToAZString
MgErr FPathToAZString(p, txt);

Purpose
Converts a path to an LStr and stores the string as an application zone handle. The LStr
contains the platform-specific syntax for the path.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

mFullErr Insufficient memory.

fIOErr Unspecified I/O error.

Name Type Description

p Path Path you want to convert to a string.

txt LstrHandle * Address at which FPathToAZString stores
the resulting string. If nonzero, the function
assumes it is a valid handle, resizes the
handle, fills in its value, and stores the handle
at the address referred to by txt. Refer to the
Pointers as Parameters section in Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-105 Using External Code in LabVIEW

FPathToDSString
MgErr FPathToDSString(p, txt);

Purpose
Converts a path to an LStr and stores the string as a data space zone handle. The LStr
contains the platform-specific syntax for the path.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

mFullErr Insufficient memory.

fIOErr Unspecified I/O error.

Name Type Description

p Path Path you want to convert to a string.

txt LstrHandle * Address at which FPathToDSString stores
the resulting string. If nonzero, the function
assumes it is a valid handle, resizes the
handle, fills in its value, and stores the handle
at the address referred to by txt. Refer to the
Pointers as Parameters section in Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-106 www.ni.com

FPathToPath
MgErr FPathToPath(p);

Purpose
Duplicates a path and returns the new path in the same variable.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

Name Type Description

p Path * Address of the path you want to duplicate.
Variable to which FPathToPath returns the
resulting path. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-107 Using External Code in LabVIEW

FRefNumToFD
MgErr FRefNumToFD(refNum, fdp);

Purpose
Gets the file descriptor associated with the specified file refnum.

If no error occurs, the resulting file descriptor is stored in the address referred to by fdp. If an
error occurs, NULL is stored in the address referred to by fdp and the error is returned.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr File refnum is not valid.

Name Type Description

refNum LVRefNum The file refnum whose associated file
descriptor you want to get.

fdp File * Address at which FRefNumToFD stores the
file descriptor associated with the specified
file refnum. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-108 www.ni.com

FRefNumToPath
MgErr FRefNumToPath(refNum, path);

Purpose
Gets the path associated with the specified file refnum, and stores the resulting path in the
existing path.

If no error occurs, path is set to the path associated with the specified file refnum. If an error
occurs, path is set to the canonical invalid path.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

mFullErr Insufficient memory.

Name Type Description

refNum LVRefNum The file refnum whose associated path you
want to get.

path Path Path where FRefNumToPath stores the path
associated with the specified file refnum.
This path must already have been created.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-109 Using External Code in LabVIEW

FRelPath
MgErr FRelPath(startPath, endPath, relPath);

Purpose
Computes a relative path between two absolute paths. You can pass the same path variable for
the new path that you use for startPath or relPath. Therefore, you can call this function in
the following three ways:

• FRelPath(startPath, endPath, relPath);

/* the relative path is returned in a third path variable */

• FRelPath(startPath, endPath, startPath);

/* the new path writes over the old startPath */

• FRelPath(startPath, endPath, endPath);

/* the new path writes over the old endPath */

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

mFullErr Insufficient memory.

Name Type Description

startPath Path Absolute path from which you want the
relative path to be computed.

endPath Path Absolute path to which you want the relative
path to be computed.

relPath Path Path returned by fAddPath.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-110 www.ni.com

FRemove
MgErr FRemove(path);

Purpose
Deletes a file or a directory. If an error occurs, this function does not remove the file or
directory.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

fNotFound File not found.

fNoPerm Access was denied; the file, directory, or disk is locked or
protected.

fIsOpen File is open or directory is not empty.

fIOErr Unspecified I/O error.

Name Type Description

path Path Path of the file or directory you want to
delete.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-111 Using External Code in LabVIEW

FSetAccessRights
MgErr FSetAccessRights(path, owner, group, permPtr);

Purpose
Sets access rights information for the specified file or directory. If an error occurs, no
information changes.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

FNotFound File not found.

fIOErr Unspecified I/O error.

Name Type Description

path Path Path of the file or directory for which you
want to set access rights information.

owner PStr New owner that FSetAccessRights sets
for the file or directory if owner is not NULL.

group PStr New group that FSetAccessRights sets
for the file or directory if group is not NULL.

permPtr int32 * Address of new permissions that
FSetAccessRights sets for the file or
directory if permPtr is not NULL.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-112 www.ni.com

FSetEOF
MgErr FSetEOF(fd, size);

Purpose
Sets the size of the specified file. If an error occurs, the file size does not change.

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr Not a valid file descriptor or size < 0.

fDiskFull Disk is full.

fNoPerm Access was denied; the file already exists or the disk is locked or
protected.

fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file.

size int32 * New file size in bytes.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-113 Using External Code in LabVIEW

FSetInfo
MgErr FSetInfo(path, infop);

Purpose
Sets information for the specified file or directory. If an error occurs, no information changes.

Parameters

FInfoPtr is a data structure that defines the attributes of a file or directory. The following
code lists the file/directory information record, FInfoPtr.

typedef struct {

int32 type; * system specific file type--

0 for directories */

int32 creator; * system specific file

creator-- 0 for folders (on

Mac only)*/

int32 permissions; * system specific file access

rights */

int32 size; /* file size in bytes (data

fork on Mac) or entries in

directory*/

int32 rfSize; /* resource fork size (on Mac

only) */

uint32 cdate; /* creation date: seconds

since system reference time

*/

uint32 mdate; /* last modification date:

seconds since system ref time

*/

Bool32 folder; /* indicates whether path

refers to a folder */

Name Type Description

path Path Path of the file or directory for which you
want to set information.

infop FInfoPtr Address of information FSetInfo sets for
the file or directory.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-114 www.ni.com

Bool32 isInvisible; /* indicates whether file is

visible in File Dialog (on

Mac only)*/

Point location; /* system specific desktop

geographical location (on Mac

only)*/

Str255 owner; /* owner (in pascal string

form) of file or folder */

Str255 group; /* group (in pascal string

form) of file or folder */

} FInfoRec, *FInfoPtr;

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

FNotFound File not found.

fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-115 Using External Code in LabVIEW

FSetPathType
MgErr FSetPathType(path, type);

Purpose
Changes the type of a path (which must be a valid path) to the specified type (relative or
absolute).

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr Badly formed path or invalid type.

Name Type Description

path Path Path whose type you want to change.

Type int32 New type you want the path to have. type can
have the following values:

• fAbsPath—The path is absolute.

• fRelPath—The path is relative.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-116 www.ni.com

FStrFitsPat
Bool32FStrFitsPat(pat, str, pLen, sLen);

Purpose
Determines whether a filename, str, matches a pattern, pat.

Parameters

Return Value
Bool32, which can contain the following values:

TRUE Filename fits the pattern.

FALSE Filename does not match the pattern.

Name Type Description

pat uChar * Pattern (string) to which filename is to be
compared. The following characters have
special meanings in the pattern.

\ is literal, not treated as having a special
meaning. A single backslash at the end of pat
is the same as two backslashes.

? matches any one character.

* matches zero or more characters.

str uChar * Filename (string) to compare to pattern.

pLen int32 Number of characters in pat.

sLen int32 Number of characters in str.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-117 Using External Code in LabVIEW

FStringToPath
MgErr FStringToPath(text, p);

Purpose
Creates a path from an LStr. The LStr contains the platform-specific syntax for a path.

Parameters

Return Value
mgErr, which can contain the following errors:

mFullErr Insufficient memory.

Name Type Description

text LstrHandle String that contains the path in
platform-specific syntax.

p Path * Address at which FstringToPath stores
the resulting path. If non-zero, the function
assumes it is a valid path, resizes the path,
and fills in its value. If NULL, the function
creates a new path, fills in its value, and
stores the path at the address referred to by p.
Refer to the Pointers as Parameters section
in Chapter 3, CINs, for more information
about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-118 www.ni.com

FTextToPath
MgErr FTextToPath(text, tlen, *p);

Purpose
Creates a path from a string (at the address text) that represents a path in the platform-specific
syntax for a path.

Parameters

Return Value
mgErr, which can contain the following errors:

mFullErr Insufficient memory.

Name Type Description

text UPtr String that contains the path in
platform-specific syntax.

tlen int32 Number of characters in text.

p Path * Address at which FTextToPath stores the
resulting path. If non-zero, the function
assumes it is a valid path, resizes the path,
and fills in its value. If NULL, the function
creates a new path, fills in its value, and
stores the path at the address referred to by p.
Refer to the Pointers as Parameters section
in Chapter 3, CINs, for more information
about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-119 Using External Code in LabVIEW

FUnFlattenPath
int32 FUnFlattenPath(fp, pPtr);

Purpose
Converts a flattened path (created using FFlattenPath) into a path.

Parameters

Return Value
Number of bytes the function interpreted as a path.

Name Type Description

fp UPtr Pointer to the flattened path you want to
convert to a path.

pPtr Path * Address at which FUnFlattenPath stores
the resulting path. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-120 www.ni.com

FVolName
MgErr FVolName(path, vol);

Purpose
Creates a path for the volume of an absolute path by removing all but the first component
name from path. You can pass the same path variable for the volume path that you use for
path. Therefore, you can call this function in the following two ways:

• err = FVolName(path, vol);

/* the parent path is returned in a second path variable */

• err = FVolName(path, path);

/* the parent path writes over the existing path */

Parameters

Return Value
mgErr, which can contain the following errors:

mgArgErr A bad argument was passed to the function. Verify the path.

Name Type Description

path Path Path whose volume path you want to
determine.

vol Path Parameter in which FVolName stores the
volume path.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-121 Using External Code in LabVIEW

GetALong
Macro

int32 GetALong(p);

Purpose
Retrieves an int32 from a void pointer. In SPARCstation, this function can retrieve an
int32 at any address, even if the int32 is not long word aligned.

Parameters

Return Value
int32 stored at the specified address.

Name Type Description

p void * Address from which you want to read an
int32.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-122 www.ni.com

HexChar
int32 HexChar(n);

Purpose
Returns the ASCII character in hex that represents the specified value n, 0 ≤ n ≤ 15.

Parameters

Return Value
The corresponding ASCII hex character. If n is out of range, the function returns the ASCII
character corresponding to n modulo 16.

Name Type Description

n int32 Decimal value between 0 and 15.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-123 Using External Code in LabVIEW

Hi16
Macro

int16 Hi16(x);

Purpose
Returns the high order int16 of an int32.

Parameters

Name Type Description

x int32 int32 for which you want to determine the
high int16.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-124 www.ni.com

HiByte
Macro

int8 HiByte(x);

Purpose
Returns the high order int8 of an int16.

Parameters

Name Type Description

x int16 int16 for which you want to determine the
high int8.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-125 Using External Code in LabVIEW

HiNibble
Macro

uInt8 HiNibble(x);

Purpose
Returns the value stored in the high four bits of an uInt8.

Parameters

Name Type Description

x uInt8 uInt8 whose high four bits you want to
extract.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-126 www.ni.com

IsAlpha
Bool32 IsAlpha(c);

Purpose
Returns TRUE if the character c is a lowercase or uppercase letter, that is, in the set a to z or
A to Z. In SPARCstation, this function also returns TRUE for international characters, such as
à, á, Ä, and so on.

Parameters

Return Value
Bool32, which can contain the following values:

TRUE The character is alphabetic.

FALSE Otherwise.

Name Type Description

c uChar Character you want to analyze.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-127 Using External Code in LabVIEW

IsDigit
Bool32 IsDigit(c);

Purpose
Returns TRUE if the character c is between 0 and 9.

Parameters

Return Value
Bool32, which can contain the following values:

TRUE Character is a numerical digit.

FALSE Otherwise.

Name Type Description

c uChar Character you want to analyze.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-128 www.ni.com

IsLower
Bool32 IsLower(c);

Purpose
Returns TRUE if the character c is a lowercase letter, that is, in the set a to z. In SPARCstation,
this function also returns TRUE for lowercase international characters, such as ó, ö, and so on.

Parameters

Return Value
Bool32, which can contain the following values:

TRUE Character is a lowercase letter.

FALSE Otherwise.

Name Type Description

c uChar Character you want to analyze.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-129 Using External Code in LabVIEW

IsUpper
Bool32 IsUpper(c);

Purpose
Returns TRUE if the character c is between an uppercase letter, that is, in the set A to Z. In
SPARCstation, this function also returns TRUE for uppercase international characters, such as
Ó, Ä, and so on.

Parameters

Return Value
Bool32, which can contain the following values:

TRUE Character is an uppercase letter.

FALSE Otherwise.

Name Type Description

c uChar Character you want to analyze.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-130 www.ni.com

Lo16
Macro

int16 Lo16(x);

Purpose
Returns the low order int16 of an int32.

Parameters

Name Type Description

x int32 int32 for which you want to determine the
low int16.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-131 Using External Code in LabVIEW

LoByte
Macro

int8 LoByte(x);

Purpose
Returns the low order int8 of an int16.

Parameters

Name Type Description

x int16 int16 for which you want to determine the
low int8.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-132 www.ni.com

Long
Macro

int32 Long(hi, lo);

Purpose
Creates an int32 from two int16 parameters.

Parameters

Return Value
The resulting int32.

Name Type Description

hi int16 High int16 for the resulting int32.

lo int16 Low int16 for the resulting int32.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-133 Using External Code in LabVIEW

LoNibble
Macro

uInt8 LoNibble(x);

Purpose
Returns the value stored in the low four bits of an uInt8.

Parameters

Name Type Description

x uInt8 uInt8 whose low four bits you want to
extract.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-134 www.ni.com

LStrBuf
Macro

uChar *LStrBuf(s);

Purpose
Returns the address of the string data of a long Pascal string, that is, the address of s->str.

Parameters

Return Value
The address of the string data of the long Pascal string.

Name Type Description

s LStrPtr Pointer to a long Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-135 Using External Code in LabVIEW

LStrCmp
LStrPtr LStrCmp(l1p, l2p);

Purpose
Lexically compares two long Pascal strings to determine whether one is less than, equal to, or
greater than the other. This comparison is case sensitive.

Parameters

Return Value
<0, 0, or >0 if l1p is less than, equal to, or greater than l2p, respectively. Returns <0 if l1p is
an initial substring of l2p.

Name Type Description

l1p LStrPtr Pointer to a long Pascal string.

l2p LStrPtr Pointer to a long Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-136 www.ni.com

LStrLen
Macro

int32 LStrLen(s);

Purpose
Returns the length of a long Pascal string, that is, s->cnt.

Parameters

Return Value
The number of characters in the long Pascal string.

Name Type Description

s LStrPtr Pointer to a long Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-137 Using External Code in LabVIEW

LToPStr
int32 LToPStr(lstrp, pstr);

Purpose
Converts a long Pascal string to a Pascal string. If the long Pascal string is more than
255 characters, this function converts only the first 255 characters. The function works even
if the pointers lstrp and pstr refer to the same memory location. The function assumes pstr
is large enough to contain lstrp.

Parameters

Return Value
The length of the string, truncated to a maximum of 255 characters.

Name Type Description

lstrp LStrPtr Pointer to a long Pascal string.

pstr PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-138 www.ni.com

Max
int32 Max(n,m);

Purpose
Returns the maximum of two int32 parameters.

Parameters

Name Type Description

n, m int32 int32 parameters whose maximum value
you want to determine.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-139 Using External Code in LabVIEW

MilliSecs
uint32 MilliSecs();

Return Value
The time in milliseconds since an undefined system time. The actual resolution of this timer
is system dependent.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-140 www.ni.com

Min
int32 Min(n,m);

Purpose
Returns the minimum of two int32 parameters.

Parameters

Name Type Description

n, m int32 int32 parameters whose minimum value
you want to determine.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-141 Using External Code in LabVIEW

MoveBlock
void MoveBlock(ps, pd, size);

Purpose
Moves size bytes from one address to another. The source and destination memory blocks can
overlap.

Parameters

Name Type Description

ps UPtr Pointer to source.

pd UPtr Pointer to destination.

size int32 Number of bytes you want to move.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-142 www.ni.com

NumericArrayResize
MgErr NumericArrayResize (int32 typeCode, int32 numDims, Uhandle *dataHP,

int32 totalNewSize)

Purpose
Resizes a data handle that refers to a numeric array. This routine also accounts for alignment
issues. It does not set the array dimension field. If *dataHP is NULL, LabVIEW allocates a
new array handle in *dataHP.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

MFullErr Not enough memory to perform the operation.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

typeCode int32 Data type for the array you want to resize.

numDims int32 Number of dimensions in the data structure
to which the handle refers.

*dataHP UHandle Pointer to the handle you want to resize.

totalNewSize int32 New number of elements to which the handle
should refer.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-143 Using External Code in LabVIEW

Offset
Macro

int16 Offset(type, field);

Purpose
Returns the offset of the specified field within the structure called type.

Parameters

Return Value
An offset as an int16.

Name Type Description

type — Structure that contains field.

field — Field whose offset you want to determine.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-144 www.ni.com

Pin
int32 Pin(i, low, high);

Purpose
Returns i coerced to fall within the range from low to high inclusive.

Parameters

Return Value
i coerced to the specified range.

Name Type Description

i int32 Value you want to coerce to the specified
range.

low int32 Low value of the range to which you want to
coerce i.

high int32 High value of the range to which you want to
coerce i.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-145 Using External Code in LabVIEW

PPStrCaseCmp
int32 PPStrCaseCmp(s1p, s2p);

Purpose
This function is similar to PStrCaseCmp, except you pass the function handles to the string
data instead of pointers. Use this function to compare two Pascal strings lexically and
determine whether one is less than, equal to, or greater than the other. This comparison
ignores differences in case.

Parameters

Return Value
<0, 0, or >0 if s1p is less than, equal to, or greater than s2p, respectively. Returns <0 if s1p is
an initial substring of s2p.

Name Type Description

s1p PStr * Pointer to a Pascal string.

s2p PStr * Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-146 www.ni.com

PPStrCmp
int32 PPStrCmp(s1p, s2p);

Purpose
This function is similar to PStrCmp, except you pass the function handles to the string data
instead of pointers. Use this function to compare two Pascal strings lexically and determine
whether one is less than, equal to, or greater than the other. This comparison is case sensitive.

Parameters

Return Value
<0, 0, or >0 if s1p is less than, equal to, or greater than s2p, respectively. Returns <0 if s1p is
an initial substring of s2p.

Name Type Description

s1p PStr * Pointer to a Pascal string.

s2p PStr * Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-147 Using External Code in LabVIEW

Printf
SPrintf, SPrintfp, PPrintf, PPrintfp, FPrintf, LStrPrintf

int32 SPrintf(CStr destCSt, CStr cfmt, ...);
int32 SPrintfp(CStr destCSt, PStr pfmt, ...);
int32 PPrintf(PStr destPSt, CStr cfmt, ...);
int32 PPrintfp(PStr destPSt, PStr pfmt, ...);
int32 FPrintf(File destFile, CStr cfmt, ...);
MgErr LStrPrintf(LStrHandle destLsh, CStr cfmt,...);

Purpose
These functions format data into an ASCII format to a specified destination. A format string
describes the desired conversions. These functions take a variable number of arguments, and
each argument follows the format string paired with a conversion specification embedded in
the format string. The second parameter, cfmt or pfmt, must be cast appropriately to either
type CStr or PStr.

SPrintf prints to a C string, just like the C library function sprintf. sprintf returns the
actual character count and appends a NULL byte to the end of the destination C string.

SPrintfp is the same as SPrintf, except the format string is a Pascal string instead of
a C string. As with SPrintf, SPrintfp appends a NULL byte to the end of the destination
C string.

If you pass NULL for destCStr, SPrintf and SPrintfp do not write data to memory, and
they return the number of characters required to contain the resulting data, not including the
terminating NULL character.

PPrintf prints to a Pascal string with a maximum of 255 characters. PPrintf sets the length
byte of the Pascal string to reflect the size of the resulting string. PPrintf does not append a
NULL byte to the end of the string.

PPrintfp is the same as PPrintf, except the format string is a Pascal string instead of a
C string. As with PPrintf, PPrintfp sets the length byte of the Pascal string to reflect the
size of the resulting string.

FPrintf prints to a file specified by the refnum in fd. FPrintf does not embed a length
count or a terminating NULL character in the data written to the file.

LStrPrintf prints to a LabVIEW string specified by destLsh. Because the string is a handle
that may be resized, LStrPrintf can return memory errors just as DSSetHandleSize does.

These functions accept the following special characters:

\b Backspace

\f Form feed

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-148 www.ni.com

\n New line (inserts the system-dependent end-of-line char(s); for
example, CR on Macintosh, NL on UNIX, CRNL on DOS)

\r Carriage return

\s Space

\t Tab

%% Percentage character (to print %)

These functions accept the following formats:

%[-] [field size] [.precision] [argument size] [conversion]

[-] Left-justifies what is printed; if not specified, the data is
right-justified.

[field size] Indicates the minimum width of the field to print into. If not
specified, the default is 0. If less than the specified number of

Chapter 6 Function Descriptions

© National Instruments Corporation 6-149 Using External Code in LabVIEW

f Fixed-point format

H String handle (LStrHandle)

o Octal

p Pascal string

P Long Pascal string (LStrPtr)

q Print a point (passed by value) as %d,%d
representing horizontal, vertical coordinates

Q Print a point (passed by value) as
hv(%d,%d) representing horizontal,
vertical coordinates

r Print a rectangle (passed by reference) as
%d,%d,%d,%d representing top, left,
bottom, right coordinates

R Print a rectangle (passed by reference) as
tlbr(%d,%d,%d,%d) representing top,
left, bottom, right coordinates

s String

u Unsigned decimal

x Hex

z Path

Conversion
Specifier Description

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-150 www.ni.com

PStrBuf
Macro

uChar *PStrBuf(s);

Purpose
Returns the address of the string data of a Pascal string, that is, the address following the
length byte.

Parameters

Name Type Description

s PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-151 Using External Code in LabVIEW

PStrCaseCmp
int32 PStrCaseCmp(s1, s2);

Purpose
Lexically compares two Pascal strings to determine whether one is less than, equal to, or
greater than the other. This comparison ignores differences in case.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-152 www.ni.com

PStrCat
int32 PStrCat(s1, s2);

Purpose
Concatenates a Pascal string, s2, to the end of another Pascal string, s1, and returns the result
in s1. This function assumes s1 is large enough to contain the resulting string. If the resulting
string is larger than 255 characters, the function limits the resulting string to 255 characters.

Parameters

Return Value
The length of the resulting string.

Name Type Description

s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-153 Using External Code in LabVIEW

PStrCmp
int32 PStrCmp(s1, s2);

Purpose
Lexically compares two Pascal strings to determine whether one is less than, equal to, or
greater than the other. This comparison is case sensitive.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-154 www.ni.com

PStrCpy
PStr PStrCpy(dst, src);

Purpose
Copies the Pascal string src to the Pascal string dst. This function assumes dst is large enough
to contain src.

Parameters

Return Value
A copy of the destination Pascal string pointer.

Name Type Description

dst PStr Pointer to a Pascal string.

src PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-155 Using External Code in LabVIEW

PStrLen
Macro

uInt8 PStrLen(s);

Purpose
Returns the length of a Pascal string, that is, the value at the first byte at the specified address.

Parameters

Name Type Description

s PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-156 www.ni.com

PStrNCpy
PStr PStrNCpy(dst, src, n);

Purpose
Copies the Pascal string src to the Pascal string dst. If the source string is greater than n, this
function copies only n bytes. The function assumes dst is large enough to contain src.

Parameters

Return Value
A copy of the destination Pascal string pointer.

Name Type Description

dst PStr Pointer to a Pascal string.

src PStr Pointer to a Pascal string.

n int32 Maximum number of bytes you want to copy,
including the length byte.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-157 Using External Code in LabVIEW

PToCStr
int32 PToCStr(pstr, cstr);

Purpose
Converts a Pascal string to a C string. This function works even if the pointers pstr and cstr
refer to the same memory location. The function assumes cstr is large enough to contain pstr.

Parameters

Return Value
The length of the string.

Name Type Description

pstr PStr Pointer to a Pascal string.

cstr CStr Pointer to a C string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-158 www.ni.com

PToLStr
int32 PToLStr(pstr, lstrp);

Purpose
Converts a Pascal string to a long Pascal string. This function works even if the pointers pstr
and lstrp refer to the same memory location. The function assumes lstrp is large enough to
contain pstr.

Parameters

Return Value
The length of the string.

Name Type Description

pstr PStr Pointer to a Pascal string.

lstrp LStrPtr Pointer to a long Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-159 Using External Code in LabVIEW

QSort
void QSort(arrayp, n, elmtSize, compareProcP());

Purpose
Sorts an array of an arbitrary data type using the QuickSort algorithm. In addition to passing
the array you want to sort to this routine, you also pass a comparison procedure that this sort
routine then uses to compare elements in the array.

The comparison routine should return a number less than zero if a is less than b, zero if a is
equal to b, and a number greater than zero if a is greater than b.

You should declare the comparison routine to have the following parameters and return type.

int32 compareProcP(UPtr a, UPtr b);

Parameters

Name Type Description

arrayp Uptr Pointer to an array of data.

n int32 Number of elements in the array you want to
sort.

elmtSize int32 Size in bytes of an array element.

compareProcP CompareProcPtr Comparison routine you want QSort to use
to compare array elements. QSort passes
this routine the addresses of two elements
that it needs to compare.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-160 www.ni.com

RandomGen
void RandomGen(xp);

Purpose
Generates a random number between 0 and 1 and stores it at xp.

Parameters

Name Type Description

xp float64 * Location to store the resulting
double-precision floating-point random
number. Refer to the Pointers as Parameters
section in Chapter 3, CINs, for more
information about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-161 Using External Code in LabVIEW

SecsToDate
void SecsToDate(secs, dateRecordP);

Purpose
Converts the seconds since January 1, 1904, 12:00 AM, GMT into a data structure containing
numerical information about the date, including the year (1904 through 2040), the month
(1 through 12), the day as it corresponds to the current year (1 through 366), month
(1 through 31), and week (1 through 31), hour (0 through 23), the hour (0 through 23),
minute (0 through 59), and second (0 through 59) of that day, and a value indicating whether
the time specified uses daylight savings time.

Parameters

Name Type Description

secs uInt32 Seconds since January 1, 1904, 12:00 AM,
GMT.

dateRecordP DateRec * Pointer to a DateRec structure.
SecsToDate stores the converted date in the
fields of the date structure referred to by
dateRecordP. Refer to the Pointers as
Parameters section in Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-162 www.ni.com

SetALong
Macro

void SetALong(p,x);

Purpose
Stores an int32 at the address specified by a void pointer. In SPARCstation, this function can
retrieve an int32 at any address, even if it is not long word aligned.

Parameters

Name Type Description

p void * Address at which you want to store an
int32. Refer to the Pointers as Parameters
section in Chapter 3, CINs, for more
information about using this parameter.

x int32 Value you want to store at the specified
address.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-163 Using External Code in LabVIEW

SetCINArraySize
MgErr SetCINArraySize (Uhandle dataH, int32 paramNum, int32 newNumElmts)

Purpose
Resizes a data handle based on the data structure of an argument that you pass to the CIN.
This function does not set the array dimension field.

Parameters

Return Value
mgErr, which can contain the following errors:

NoErr No error.

MFullErr Not enough memory to perform the operation.

mZoneErr Handle or pointer not in specified zone.

Name Type Description

dataH UHandle Handle you want to resize.

paramNum int32 Number for this parameter in the argument
list to the CIN.

newNumElmts int32 New number of elements to which the handle
refers.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-164 www.ni.com

StrCat
int32 StrCat(s1, s2);

Purpose
Concatenates a C string, s2, to the end of another C string, s1, returning the result in s1. This
function assumes s1 is large enough to contain the resulting string.

Parameters

Return Value
The length of the resulting string.

Name Type Description

s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-165 Using External Code in LabVIEW

StrCmp
int32 StrCmp(s1, s2);

Purpose
Lexically compares two strings to determine whether one is less than, equal to, or greater than
the other.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-166 www.ni.com

StrCpy
CStr StrCpy(dst, src);

Purpose
Copies the C string src to the C string dst. This function assumes dst is large enough to
contain src.

Parameters

Return Value
A copy of the destination C string pointer.

Name Type Description

dst CStr Pointer to a C string.

src CStr Pointer to a C string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-167 Using External Code in LabVIEW

StrLen
int32 StrLen(s);

Purpose
Returns the length of a C string.

Parameters

Return Value
The number of characters in the C string, not including the NULL terminating character.

Name Type Description

s CStr Pointer to a C string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-168 www.ni.com

StrNCaseCmp
int32 StrNCaseCmp(s1, s2, n);

Purpose
Lexically compares two strings to determine whether one is less than, equal to, or greater than
the other, limiting the comparison to n characters. This comparison ignores differences in
case.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

n uInt32 Maximum number of characters you want to
compare.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-169 Using External Code in LabVIEW

StrNCmp
int32 StrNCmp(s1, s2, n);

Purpose
Lexically compares two strings to determine whether one is less than, equal to, or greater than
the other, limiting the comparison to n characters.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

n uInt32 Maximum number of characters you want to
compare.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-170 www.ni.com

StrNCpy
CStr StrNCpy(dst, src, n);

Purpose
Copies the C string src to the C string dst. If the source string is less than n characters, the
function pads the destination with NULL characters. If the source string is greater than n, only
n characters are copied. This function assumes dst is large enough to contain src.

Parameters

Return Value
A copy of the destination C string pointer.

Name Type Description

dst CStr Pointer to a C string.

src CStr Pointer to a C string.

n int32 Maximum number of characters you want to
copy.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-171 Using External Code in LabVIEW

SwapBlock
void SwapBlock(ps, pd, size);

Purpose
Swaps size bytes between the section of memory referred to by ps and pd. The source and
destination memory blocks should not overlap.

Parameters

Name Type Description

ps UPtr Pointer to source.

pd UPtr Pointer to destination.

size int32 Number of bytes you want to move.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-172 www.ni.com

TimeCString
CStr TimeCString(secs, fmt);

Purpose
Returns a pointer to a string representing the time of day corresponding to t seconds after
January 1, 1904, 12:00 AM, GMT. In SPARCstation, this function accounts for international
conventions for representing dates.

Note This function was formerly called TimeString.

Parameters

Return Value
The time as a C string.

Name Type Description

secs uInt32 Seconds since January 1, 1904, 12:00 AM,
GMT.

fmt int32 Indicates the format of the returned time
string, using the following values:

• 0—hh:mm format, where hh is the
hour (0 through 23, with 0 as
midnight), and the mm is the minute
(0 through 59).

• 1—hh:mm:ss format, where hh
is the hour, mm is the minute
(0 through 59), and ss is the second
(0 through 59).

Chapter 6 Function Descriptions

© National Instruments Corporation 6-173 Using External Code in LabVIEW

TimeInSecs
uint32 TimeInSecs();

Return Value
The current date and time in seconds relative to January 1, 1904, 12:00 AM, GMT.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-174 www.ni.com

ToLower
uChar ToLower(c);

Purpose
Returns the lowercase value of c if c is an uppercase alphabetic character. Otherwise, this
function returns c unmodified. In SPARCstation, this function also works for international
characters (Ä to ä, and so on).

Parameters

Return Value
The lowercase value of c.

Name Type Description

c int32 Character you want to analyze.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-175 Using External Code in LabVIEW

ToUpper
uChar ToUpper(c);

Purpose
Returns the uppercase value of c if c is a lowercase alphabetic character. Otherwise, this
function returns c unmodified. In SPARCstation, this function also works for international
characters (ä to Ä, and so on).

Parameters

Return Value
The uppercase value of c.

Name Type Description

c int32 Character you want to analyze.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-176 www.ni.com

Unused
Macro

void Unused(x)

Purpose
Indicates that a function parameter or local variable is not used by that function. This is useful
for suppressing compiler warnings for many compilers. This macro does not use a semicolon.

Parameters

Name Type Description

x — Unused parameter or local variable.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-177 Using External Code in LabVIEW

Word
Macro

int16 Word(hi, lo);

Purpose
Creates an int16 from two int8 parameters.

Parameters

Return Value
The resulting int16.

Name Type Description

hi int8 High int8 for the resulting int16.

lo int8 Low int8 for the resulting int16.

© National Instruments Corporation A-1 Using External Code in LabVIEW

A
Common Questions

What languages can I use to write DLLs?

Any language can be used to write DLLs as long as the DLL can be called
using one of the calling conventions that LabVIEW supports (stdcall or C).

Why is it no longer possible to build external subroutines in
LabVIEW?

External subroutines provided a solution for users who wanted to share
code among multiple CINs. At the time that LabVIEW first provided for
external subroutines, shared libraries (DLLs) were not yet commonplace.
Since shared libraries are now widely used, and since they provide all the
functionality that external subroutines did, National Instruments decided to
drop support for the creation of external subroutines. Users who want to
share code among multiple CINs should use shared libraries.

Why does the “Function Name” ring contain an empty list of functions
for certain DLLs?

On Windows platforms, the most likely reason is that the DLL is 16-bit.
LabVIEW cannot call 16-bit DLLs. It is also possible, though unlikely, that
the DLL has no exported functions. The UNIX platforms do not implement
this functionality.

Why does the function I wish to call not appear in the “Function
Name” ring of the Call Library Function configuration dialog?

The most likely reason is that the function has not been exported. See the
documentation for your compiler for information about how to mark
functions for export.

Why does LabVIEW crash when I call a function in my DLL?

The most likely causes are: 1) an error in the calling convention you have
specified in the Call Library Function configuration dialog; 2) one of the
function parameters being of incorrect type; and 3) an error in the code of
the DLL, such as dereferencing a null pointer.

Chapter A Common Questions

Using External Code in LabVIEW A-2 www.ni.com

In the Function Prototype section of the Call Library Function
configuration dialog, why does the function name have unusual
characters appended?

The function name that appears in the function prototype section will have
characters such as “@” appended if the function was “decorated” when the
DLL was built. This is most common with C++ compilers. This is normal
and not a cause for concern. The undecorated name will appear in the
Function Name ring of the configuration dialog.

Why do I receive memory.cpp errors when I call a function in my
DLL?

The cause is almost always an error in the code of the DLL, such as writing
past the end of the memory allocated for an array. Note that these kinds of
crashes may or may not occur at the time the DLL call actually executes on
the block diagram.

Is it possible to return a pointer from a call to a function in a DLL?

Strictly speaking, this is not possible, because there are no pointer types in
LabVIEW. However, you can specify the return type to be an integer that is
the same size as the pointer. LabVIEW will then treat the address as a
simple integer.

Is it possible to allocate memory using malloc inside a CIN?

Yes, but the pointer that results from the malloc call should be assigned to
a variable that is local to the CIN code, rather than to a variable passed from
the LabVIEW diagram. You should use LabVIEW memory manager
functions if you wish to create or resize memory associated with a variable
passed from the LabVIEW diagram.

Can CINs be written in a language other than C?

This is technically possible if the CIN entry points (i.e. CINRun, CINLoad,
etc.) are declared as extern "C". However, National Instruments
recommends using a DLL rather than a CIN if you wish to use a language
other than C or C++.

What are the advantages of using a CIN rather than a DLL?

The advantages are: 1) the CIN code is integrated into the code of the VI,
so there is no extra file to maintain when the VI is distributed; 2) CINs
provide certain special entry points (CINLoad, CINSave, etc.).

Chapter A Common Questions

© National Instruments Corporation A-3 Using External Code in LabVIEW

What are the advantages of using a DLL rather than a CIN?

The advantages are: 1) you can change the DLL without changing any of
the VIs that link to the DLL (provided you do not modify the function
prototypes); 2) Practically all modern development environments provide
excellent support for creating DLLs, while LabVIEW supports only a
subset of development environments for creating CINs.

Is it possible to call the LabVIEW manager functions from a DLL?

Yes. You need to #include extcode.h in any files that use manager functions,
and you must link to labview.lib. You should also set your compiler's
structure alignment to 1 byte. Note that some of the manager functions,
such as SetCINArraySize, are CIN-specific and may not be called from
a DLL.

Is it faster to call a DLL or a CIN, assuming the underlying code is the
same?

There is no difference in speed.

One or more of the parameters of the function I wish to call in a DLL
are of types that do not exist in LabVIEW. Can I still call this function
from LabVIEW?

You can call the function, but you must ensure that each parameter is passed
to the function in a way that allows the DLL to correctly interpret the data.
Starting in LabVIEW 6.0, the Call Library Function allows you to create a
skeleton .c file from its current configuration. By viewing this C file, you
can determine whether LabVIEW will pass the data in a manner compatible
with the DLL function, and make necessary adjustments.

© National Instruments Corporation B-1 Using External Code in LabVIEW

B
Technical Support Resources

Web Support
National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
questions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of www.ni.com

NI Developer Zone
The NI Developer Zone at zone.ni.com is the essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education
National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of www.ni.com for online course schedules,
syllabi, training centers, and class registration.

System Integration
If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of www.ni.com

Appendix B Technical Support Resources

Using External Code in LabVIEW B-2 www.ni.com

Worldwide Support
National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of www.ni.com. Branch office web sites
provide up-to-date contact information, support phone numbers, e-mail
addresses, and current events.

If you have searched the technical support resources on our Web site and
still cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.

© National Instruments Corporation G-1 Using External Code in LabVIEW

Glossary

A

ANSI American National Standards Institute.

application zone See AZ.

asynchronous
execution

Mode in which multiple processes share processor time, one executing
while the others, for example, wait for interrupts, as while performing
device I/O or waiting for a clock tick.

AZ (application zone) Memory allocation section that holds all data in a VI except execution
data.

B

Bundle node Function that creates clusters from various types of elements.

C

C string (CStr) A series of zero or more unsigned characters, terminated by a zero,
used in the C programming language.

CIN source code Original, uncompiled text code. See object code. See Code Interface
Node.

Code Interface Node Special block diagram node through which you can link conventional,
text-based code to a VI.

code resource Resource containing executable machine code. You link code
resources to LabVIEW through a CIN.

concatenated Pascal string
(CPStr)

A list of Pascal-type strings concatenated into a single block of
memory.

CPStr See concatenated Pascal string (CPStr).

Glossary

Using External Code in LabVIEW G-2 www.ni.com

D

data type descriptor Code that identifies data types, used in data storage and representation.

diagram window VI window containing the VI’s block diagram code.

dimension Size and structure attribute of an array.

E

executable A stand-alone piece of code that will run, or execute.

I

icon pane Region in the upper right-hand corner of the front panel and block
diagram windows that displays the VI icon.

IDE Integrated development environment for developing computer
applications, for example, Visual Basic, Visual C++, and LabVIEW.

inplace When the input and output data of an operation use the same memory
space.

L

LabVIEW string The string data type (LStr) that LabVIEW block diagrams use.

M

MB Megabytes of memory.

MPW Macintosh Programmer’s Workshop.

MSB Most significant bit.

O

object code Compiled version of source code. Object code is not standalone
because you must load it into LabVIEW to run it.

Glossary

© National Instruments Corporation G-3 Using External Code in LabVIEW

P

Pascal string (PStr) A series of unsigned characters, with the value of the first character
indicating the length of the string. Used in the Pascal programming
language.

portable Able to compile on any platform that supports LabVIEW.

private data structures Data structures whose exact format is not described; usually subject to
change.

R

RAM Random Access Memory.

reentrant execution Mode in which calls to multiple instances of a subVI can execute in
parallel with distinct and separate data storage.

relocatable Able to be moved by the memory manager to a new memory location.

S

sink terminal Terminal that absorbs data. Also called a destination terminal.

shortcut menu Menu that you access by right-clicking an object. Menu options
pertain to that object specifically.

source code Original, uncompiled text code.

source terminal Terminal that emits data.

T

type descriptor See data type descriptor.

	Using External Code in�LabVIEW
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction
	Calling Code in Various Platforms
	Characteristics of the Two Calling Approaches
	Details of Call Library Function
	Details of a CIN

	Chapter 2 Shared Libraries (DLLs)
	Calling Shared Libraries
	Figure 2-1. Call Library Function Dialog Box
	Calling Conventions (Windows)
	Parameters
	Calling Functions That Expect Other Data Types

	Building a Shared Library (DLL)
	Task 1: Build the Function Prototype in LabVIEW
	Task 2: Complete the .c File
	Required Libraries

	Task 3: Build a Library Project in an External IDE
	Microsoft Visual C++ 6.0 on 32-bit on Windows Platforms
	Figure 2-2. Creating a Project in Visual C++
	Figure 2-3. Setting the Use run-time library control, Microsoft Visual C++
	Gnu C or C++ Compilers on Solaris, Linux, or HP-UX
	Metrowerks CodeWarrior on Power Macintosh

	Calling External APIs
	Common Pitfalls with the Call Library Function
	Incorrect Function Name
	Data Types
	Constants
	Calling Conventions

	Example 1: Call a Shared Library that You Built
	Configuration of Call Library Function
	Create Front Panel
	Create the Block Diagram

	Example 2: Call a Hardware Driver API
	Figure 2-4. VI That Calls Hardware

	Example 3: Call the Win32 API
	Table 2-1. Mapping Win32 Data Types to Standard C Data Types
	Table 2-2. Mapping Win32 Data Types to LabVIEW Data Types
	Constants
	Table 2-3. Selected Constants for MessageBox
	Figure 2-5. Combining Function Constants in LabVIEW
	Determining the Proper Library and Function Name
	Unicode Versions and ANSI Versions of Functions
	Configuring a Call to the Win32 API
	Figure 2-6. Configuring Call Library Function to call the Win32 API
	Figure 2-7. Block Diagram for a Call to the Win32 API
	Figure 2-8. Running a LabVIEW Call to the Win32 API

	Additional Examples of LabVIEW Calls to DLLs
	Debugging DLLs and Calls to DLLs
	Troubleshooting the Call Library Function
	Troubleshooting your DLL
	Troubleshooting Checklist

	Module Definition Files
	Array and String Options
	Arrays of Numeric Data
	String Data
	Figure 2-9. The LabVIEW String Format
	Figure 2-10. The Pascal String Format
	Figure 2-11. The C String Format

	Array and String Tip

	Chapter 3 CINs
	Supported Languages
	Macintosh
	Microsoft Windows
	Solaris, Linux, and HP-UX

	Resolving Multithreading Issues
	Making LabVIEW Recognize a CIN as Thread Safe
	Using C Code that is Thread Safe

	Creating a CIN
	Step 1. Set Up Input and Output Terminals for a CIN
	Input-Output Terminals
	Output-Only Terminals

	Step 2. Wire the Inputs and Outputs to the CIN
	Step 3. Create a .c File
	Step 4. Compile the CIN Source Code
	Compile on Macintosh
	Microsoft Windows
	Solaris 2.x
	HP-UX and Linux
	gcc Compiler

	Step 5. Load the CIN Object Code

	LabVIEW Manager Routines
	Pointers as Parameters

	Debugging External Code
	DbgPrintf
	Windows
	UNIX

	Chapter 4 Programming Issues for CINs
	Passing Parameters
	Parameters in the CIN .c File
	Passing Fixed-Size Data to CINs
	Scalar Numerics
	Scalar Booleans
	Refnums
	Clusters of Scalars

	Return Value for CIN Routines
	Examples with Scalars
	Creating a CIN That Multiplies Two Numbers
	Comparing Two Numbers, Producing a Boolean Scalar

	Passing Variably Sized Data to CINs
	Alignment Considerations
	Arrays and Strings
	Paths
	Clusters Containing Variably Sized Data
	Resizing Arrays and Strings
	SetCINArraySize
	NumericArrayResize

	Examples with Variably Sized Data
	Concatenating Two Strings
	Computing the Cross Product of Two Two�Dimensional Arrays
	Working with Clusters

	Manager Overview
	Basic Data Types
	Scalar
	char
	Dynamic
	Memory-Related
	Constants

	Memory Manager
	Memory Allocation
	Memory Zones
	Using Pointers and Handles

	File Manager
	Identifying Files and Directories
	Path Specifications
	File Descriptors
	File Refnums
	Support Manager

	Chapter 5 Advanced Applications
	CIN Routines
	Data Spaces and Code Resources
	One Reference to the CIN in a Single VI
	Loading a VI
	Unloading a VI
	Loading a New Resource into the CIN
	Compiling a VI
	Running a VI
	Saving a VI
	Aborting a VI

	Multiple References to the Same CIN in a Single VI
	Multiple References to the Same CIN in Different VIs
	Single-Threaded Operating Systems
	Multithreaded Operating Systems

	Code Globals and CIN Data Space Globals
	Examples

	Chapter 6 Function Descriptions
	Memory Manager Functions
	Support Manager Functions
	Mathematical Operations

	Abs
	ASCIITime
	AZCheckHandle/DSCheckHandle
	AZCheckPtr/DSCheckPtr
	AZDisposeHandle/DSDisposeHandle
	AZDisposePtr/DSDisposePtr
	AZGetHandleSize/DSGetHandleSize
	AZHandAndHand/DSHandAndHand
	AZHandToHand/DSHandToHand
	AZHeapCheck/DSHeapCheck
	AZHLock
	AZHNoPurge
	AZHPurge
	AZHUnlock
	AZMaxMem/DSMaxMem
	AZMemStats/DSMemStats
	AZNewHandle/DSNewHandle
	AZNewHClr/DSNewHClr
	AZNewPClr/DSNewPClr
	AZNewPtr/DSNewPtr
	AZPtrAndHand/DSPtrAndHand
	AZPtrToHand/DSPtrToHand
	AZPtrToXHand/DSPtrToXHand
	AZRecoverHandle/DSRecoverHandle
	AZSetHandleSize/DSSetHandleSize
	AZSetHSzClr/DSSetHSzClr
	BinSearch
	BlockCmp
	Cat4Chrs
	ClearMem
	CPStrBuf
	CPStrCmp
	CPStrIndex
	CPStrInsert
	CPStrLen
	CPStrRemove
	CPStrReplace
	CPStrSize
	CToPStr
	DateCString
	DateToSecs
	FAddPath
	FAppendName
	FAppPath
	FArrToPath
	FCopy
	FCreate
	FCreateAlways
	FDepth
	FDirName
	FDisposePath
	FDisposeRefNum
	FEmptyPath
	FExists
	FFlattenPath
	FFlush
	FGetAccessRights
	FGetDefGroup
	FGetEOF
	FGetInfo
	FGetPathType
	FGetVolInfo
	FileNameCmp
	FileNameIndCmp
	FileNameNCmp
	FIsAPath
	FIsAPathOfType
	FIsAPathOrNotAPath
	FIsARefNum
	FIsEmptyPath
	FListDir
	FLockOrUnlockRange
	FMakePath
	FMClose
	FMOpen
	FMove
	FMRead
	FMSeek
	FMTell
	FMWrite
	FName
	FNamePtr
	FNewDir
	FNewRefNum
	FNotAPath
	FPathCmp
	FPathCpy
	FPathToArr
	FPathToAZString
	FPathToDSString
	FPathToPath
	FRefNumToFD
	FRefNumToPath
	FRelPath
	FRemove
	FSetAccessRights
	FSetEOF
	FSetInfo
	FSetPathType
	FStrFitsPat
	FStringToPath
	FTextToPath
	FUnFlattenPath
	FVolName
	GetALong
	HexChar
	Hi16
	HiByte
	HiNibble
	IsAlpha
	IsDigit
	IsLower
	IsUpper
	Lo16
	LoByte
	Long
	LoNibble
	LStrBuf
	LStrCmp
	LStrLen
	LToPStr
	Max
	MilliSecs
	Min
	MoveBlock
	NumericArrayResize
	Offset
	Pin
	PPStrCaseCmp
	PPStrCmp
	Printf
	PStrBuf
	PStrCaseCmp
	PStrCat
	PStrCmp
	PStrCpy
	PStrLen
	PStrNCpy
	PToCStr
	PToLStr
	QSort
	RandomGen
	SecsToDate
	SetALong
	SetCINArraySize
	StrCat
	StrCmp
	StrCpy
	StrLen
	StrNCaseCmp
	StrNCmp
	StrNCpy
	SwapBlock
	TimeCString
	TimeInSecs
	ToLower
	ToUpper
	Unused
	Word

	Appendix A Common Questions
	Appendix B Technical Support Resources
	Glossary
	A-C
	D-O
	P-T

