Prompt Photons + Jets in DIS

Peter Bussey, David Saxon, Ian Skillicorn, Oleg Kuprash, <u>Nataliia Zhmak</u>

(Glasgow / DESY / Kiev National University)

05. April 2011 PCOOR meeting

Outline

- Data and MC samples
- Event selection cuts
- $ightharpoonup Q^2$ reweighting procedure redone!
- Control plot
- $\blacksquare f_{max}$, δz fits
- Differential cross sections
- 1st and 2nd analysis comparison
- Summary

DIS ep collision

- Prompt photons are high transverse energy final state photons which are emitted directly during the hard scattering process
- Prompt photons do not undergo the hadronization process, therefore theoretical calculations can be done with better precision
- The final state photon is a particle which arrives in the detector after participating in the actual hard scattering process and so it can provide direct information of the process and the proton structure
- Must take account of ISR reffered as LL-diagrams

Used Data and MC samples

Data

- 040506e, 0607p
- $\int Ldt = 332 \text{ pb}^{-1}$

MC

- PYTHIA (signal)
- ARIADNE (background)

Notations

- LL = photons from leptons
- QQ = photons from quarks

Event Selection Cuts Phase Space

 $10 < Q^2 < 350 \text{GeV}^2$

Cleaning Cuts

- $-40 < Z_{\rm vtx}/cm < 40$
- $\blacksquare 35~\mathrm{GeV} < E p_z < 65~\mathrm{GeV}$

Electron Cuts

- Siecorr > 10 GeV
- $140^{\circ} < \theta_{el} < 180^{\circ}$
- $-14.8 < e_x/\text{cm} < 14.8$
- $-14.6 < e_y/\text{cm} < 12.5$

Triggers

- SPP02 trigger for 0405e
- SPP09 trigger for 06e, 0607p

Prompt Photon Phase Space

- $4 < E_{T,\gamma}/\text{GeV} < 15$
- $-0.7 < \eta_{\gamma} < 0.9$

Prompt Photon Cleaning Cuts

- $\Delta r < 0.2$
- $\frac{E_{EMC}}{E_{HAC} + E_{EMC}} > 0.9$
- $\frac{E_{\gamma}}{E_{\text{jet containing }\gamma}} > 0.9$
- $Im f_{max} > 0.05$

Jet Selection

- based on zufos
- $E_{T,iet}^{corr} > 2.5 \text{GeV}$
- $-1.5 < \eta_{jet} < 1.8$
- take highest $E_{T,jet}$ jet within η range in the event

- ullet Q^2 -reweighting procedure has been improved since last meeting. Instead of reweighting MC after inclusive DIS selection to inclusive DIS Data:
- Split data events after full event selection into two parts: with $\delta Z>0.35$ (more background events) and with $\delta Z<0.35$ (more signal events)

- \bullet reweight non-radiative Ariadne background to the part of data with $\delta Z>0.35$
- ullet reweight signal Pythia MC to the part with $\delta Z < 0.35$
- do not reweight LL Ariadne at all, since it is well theoretically understood

- Left four plots are before reweighting
- Right four plots are after reweighting
- Linear fit for Pythia and polynomial of order two for Ariadne
- Compared hadronic level of MC with Data corrected for acceptance effects
- Data and MC summed over periods

• Control plots before Q²-reweighting

 \bullet Control plots after $Q^2\text{-reweighting:}$ better description of Data by MC for Q^2 and x

Cross-section comparison with/without Q^2 reweighting (1/2)

• Discrepancy is typically less then 1%

Cross-section comparison with/without Q^2 reweighting (1/2)

• Influence on Q^2 cross-section is tiny

Control Plot

 \bullet Q^2 -reweighting has been applied here and on the further plots

f_{max} , δz definition

- \bullet f_{max} ratio of the energy in the highest energy cell of a cluster to the total energy of a cluster
- δz energy weighted mean width of the electromagnetic cluster in Z direction:

$$\delta z = \frac{\sum_{i} |Z_{i} - Z_{cluster}| *E_{i}}{W_{cell} \sum_{i} E_{i}}$$

- The δz distribution has the more detailed structure and was chosen to define the prompt photon fraction in Data, as in the previous analysis
- LL = predicted value of lepton high-energy radiation
- QQ = predicted value of prompt photons

fits: $\delta z/Et$

fits: f_{max} /Et

Differential cross sections

Cross sections as functions of jet variables

Comparison of 1st and 2nd analysis, 0405e (1/3)

- Distributions of selected events with photon + jet are compared
- Agreement in 1st and 2nd analysis is excellent

Comparison of 1st and 2nd analysis, 0405e (2/3)

- Distributions of selected events with photon + jet are compared
- Perfect agreement of 1st and 2nd analysis

Comparison of 1st and 2nd analysis, 0405e (3/3)

- Distributions of selected events with photon + jet are compared
- Agreement in 1st and 2nd analysis is excellent

Summary

- Differential cross sections for prompt photon + jets production have been measured.
- We are waiting for promised theoretical predictions.

These plots to be made preliminary, fits: $\delta z/Et$

These plots to be made preliminary, fits: f_{max} /Et

These plots to be made preliminary, fits: $\delta z/Q^2$

These plots to be made preliminary, fits: f_{max}/Q^2

These plots to be made preliminary, fits: $\delta z/\eta$

These plots to be made preliminary, fits: f_{max}/η

These plots to be made preliminary, fits: $\delta z/x$

These plots to be made preliminary, fits: f_{max}/x

These plots to be made preliminary, fits: $\delta z/E_{T,jet}$

These plots to be made preliminary, fits: $f_{max}/E_{T,jet}$

These plots to be made preliminary, fits: $\delta z/\eta_{jet}$

These plots to be made preliminary, fits: f_{max}/η_{jet}

Stretch calibration: description (from M.Forrest's PHD thesis)

- 1. Area normalise the data and MC histograms to unity.
- Form the cumulative integral distribution of X for both data and MC, see Figure 6.14(b).
- Invert the cumulative distribution so that X is on the y-axis and the integral is on the x-axis, see Figure 6.14(c).
- Read off the value of X for data and MC (X_{data} and X_{MC} respectively) at finely spaced intervals and tabulate them as illustrated in Table 6.1.
- 5. Plot $X_{\rm data}$ against $X_{\rm MC}$ at each point and interpolate to produce a calibration curve as seen in Figure 6.14(d).
- To correct a given value of X_{MC}, simply read off the corresponding value of X_{data} from the calibration curve.

Stretch calibration (from M.Forrest's PHD thesis)

Percentile	X_{data}	X_{MC}
0.0%	0.0	0.0
1.25%	0.449633	0.459171
2.5%	0.484134	0.492759
3.75%	0.506804	0.512258
5.0%	0.528282	0.531042
6.25%	0.549042	0.552366
100%	1.0	1.0

Table 6.1: Example of tabulated $X_{\rm data}$ and $X_{\rm MC}$ for stretch calibration procedure.

Stretch calibration: result

• Better fit of Data distributions after applying stretch calibration