Simulations of minimum bias and the underlying event, MC tuning and predictions for the LHC

Craig Buttar, Arthur Moraes, Ian Dawson University of Sheffield

Outline

- Multi-parton scattering
- Tuning of PYTHIA
- Tuning using Jetweb
- LHC predictions
- Energy extrapolation and comparison with PHOJET
- Application to central jet veto in Higgs searches
- Summary+future work

Evidence for multi-parton interactions

PYTHIA model

Multiple interactions solve total xsect problem Need to tame the PT divergence over QCD crosssection

Parameters of the model:

• p_T -min \longrightarrow Abrupt vs smooth cut- \longrightarrow Number of interactions off

Impact parameter Matter distribution Number of interactions and fluctuations

•energy dependence
$$p_{t0} = 1.9 \text{GeV}\left(\frac{\sqrt{s}}{1\text{TeV}}\right)^{0.16}$$

Parameters not looked at: string drawing, effect of ISR (CDF)

Minimum bias data:

Multiplicity information: ‹n_{ch}›, dN/dη, KNO, FB, etc.

	Experiment References -		Colliding beams	
able	CERN – ISR	Phys. Rev. D 30 528 (1984)	pp at √s = 30.4, 44.5, 52. and 62.2 GeV	
A ^U st		Phys. Rep. 154(5,6) 247 (1987)		
and	UA5 – SPS	Z. Phys. C 37, 191 (1988)	pp̄ at √s = 200, 546 and 900GeV	
⁰ , K ⁰		Z. Phys. C 43, 357 (1989)		
Set 7	CDF - Tevatron	Phys. Rev. D 41 2330 (1990)	pp̄ at √s = 1.8TeV	
	E735 - Tevatron	Phys. Lett. B 435 453 (1998)		

Use 'complex' scenario with smooth cut-off

Use 'double-gaussian' Matter distribution

6

Pt-min is ~1.9GeV default value

7

The underlying event requires less activity => higher pt Lose 'unification' of min-bias and underlying event

> CDF Run 1 underlying event analysis Phys. Rev. D, **65** 092002 (2002)

> > Craig Buttar ISMD 2003

Alternatively increase the core size This reduces the core density-reducing activity Charged Jet #1

The rapidity distributions are insensitive to the matter distribution

Agreement with KNO improves As it reduces the large fluctuations in multiplicity

9

PYTHIA Tuning (AM Tune)

Jetweb

Jetweb is a database tool for tuning MCs J Butterworth and S Butterworth: Comput. Phys. Commun. 153 (2003) 164-178

http://jetweb.hep.ucl.ac.uk

•Collection of plots from OPAL, H1, ZEUS, CDF, D0, UA5 publications, stored as distributions

•Generates events using (currently PYTHIA or HERWIG) and uses HBOOK to generate histograms to compare to data

• χ^2/DF calculated for distributions

•Fits are stored for future reference and comparison to different

Jetweb fits generated by B. Waugh, UCL

ber ber

Craig Buttar ISMD 2003

cms energy

LHC predictions

PYTHIA vs PHOJET: Minimum bias

PYTHIA vs PHOJET: Underlying event

Extrapolation to the LHC-Comparison with PHOJET

VBF Signal ($H \rightarrow WW \rightarrow l\nu l\nu$)

Prospects for the search for a standard model Higgs boson in ATLAS using VBF, S.Asai et al, SN-ATLAS-2003-024 -> EPJ

•forward tagging jets

Tag jet cuts

•Candidates are two highest P_T jets in opposite hemispheres; $|\Delta \eta|$ >3.8

- •P_T¹ > 40GeV; P_T²>20GeV
- •Mjj>550GeV

Important discovery channel For Higgs in mass range 120-200GeV

 p_{T} non-tagged jets (GeV/ θ)

Model	CJV efficiency	Significance
Default pythia	82%	8.1
Default DG	71%	7.5
AM tuning	76%	7.6
Paper	86%	8.2

 $e-\mu$ channel only

M_H=160GeV

Jetweb comparison Preliminary

ZEUS precision di-jet Photoproduction data

	$d\sigma/dx\gamma \chi^2/DF$	
Jet ET-range	Default	AM tune
35-90	1.4	3.1
25-35	6.8	2.0
17-25	0.9	1.0
14-17	4.0	7.5

Default Pythia

Tuned Pythia

Increasing sensitivity Underlying event

Summary and conclusions

- PYTHIA(+PHOJET) can be 'tuned' to give a good description of minimum bias and underlying event data from 200GeV-1800GeV main parameters are: p_T-min and the proton matter distribution
- PYTHIA overestimates particle multiplicities predicted by extrapolations of data, and predictions from PHOJET at LHC energies
- Underlying event activity at the LHC greater than at Tevatron by ~x3 using tuned PYTHIA
- Compare to tunings using initial state radiation (suggested by R Field (CDF))
- Use Jetweb to compare to wider range of data: HERA, other Tevatron data

