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1 Introduction

Given the current landscape in experimental high-energy physics, these lec-
tures are focused on applications of event generators for hadron colliders like
the Tevatron and LHC. Much of it would also be relevant for e+e− machines
like LEP, ILC and CLIC, or e±p machines like HERA, but with some dif-
ferences not discussed here. Heavy-ion physics is not at all addressed, since
it involves rather different aspects, specifically the potential formation of a
quark–gluon plasma. Further, within the field of high-energy pp/pp collisions,
the emphasis will be on the common aspects of QCD physics that occurs in
all collisions, rather on those aspect that are specific to a particular physics
topic, such as B production or supersymmetry. Many of these topics are
instead covered by other lectures at this school.

Section 2 contains a first overview of the physics picture and the generator
landscape. Thereafter section 3 describes the usage of matrix elements, section
4 the important topics of initial- and final-state showers, and section 5 how
showers can be matched to different hard processes. The issue of multiparton
interactions and their role in mimimum-bias and underlying-event physics
is introduced in section 6, followed by some comments on hadronization in
section 7. The article concludes with an outlook on the ongoing generator-
development work in section 8.

Slides for these and other similar lectures (Sjöstrand 2009, MCnet 2007,
CTEQ–MCnet 2008, MCnet 2009) are complementary to this writeup in style
and contents, including many (colour) illustrations absent here.

2 Overview

In real life, machines produce events that are stored by the data acquisition
system of a detector. In the virtual reality, event generators like Herwig
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(Corcella et al 2001) and Pythia (Sjöstrand et al 2006) play the role of
machines like the Tevatron and LHC, and detector simulation programs like
Geant 4 the role of detectors like ATLAS or CMS. The real and virtual worlds
can share the same event reconstruction framework and subsequent physics
analysis. It is by understanding how an original physics input is distorted
step-by-step in the better-controlled virtual world that an understanding can
be gained of what may be going on in the real world. For approximate studies
the detector simulation and reconstruction steps can be shortcut, so that
generators can be used directly in the physics studies.

A number of physics analyses would not be feasible without generators.
Specifically, a proper understanding of the (potential) signal and background
processes is important to separate the two. The key aspect of generators here
is that they provide a detailed description of the final state so that, ideally,
any experimental observable or combination of observables can be predicted
and compared with data. Thereby generators can be used at various stages
of an experiment: when optimizing the detector and its trigger design to
the intended physics program, when estimating the feasibility of a specific
physics study, when devising analysis strategies, when evaluating acceptance
corrections, and so on.

However, it should always be kept in mind that generators are not perfect.
They suffer from having to describe a broad range of physics, some of which
is known from first principles, while other parts are modelled in different
frameworks. (In the latter case, a generator actually acts as a vehicle of
ideology, where ideas are disseminated in prepackaged form from theorists to
experimentalists.) Given the limited resources, different authors may also have
invested more or less time on specific physics topics, and therefore these may
be more or less well modelled. It always pays to compare several approaches
before drawing too definite conclusions. Blind usage of a generator is not
encouraged: then you are the slave rather than the master.

Why then Monte Carlo event generators? Basically because Einstein was
wrong: God does throw dice! In quantum meachanics, calculations provide
the probability for different outcomes of a measurement. Event-by-event, it is
impossible to know beforehand what will happen: anything that is at all al-
lowed could be next. It is only when averaging over large event samples that
the expected probability distributions emerge — provided we did the right
calculation to high enough accuracy. In generators, (pseuo)random numbers
are used to make choices intended to reproduce the quantum mechanical prob-
abilities for different outcomes at various stages of the process.

The buildup of the structure in an event occurs in several steps, and can
be summarized as follows:

• Initially two hadrons are coming in on a collision course. Each hadron
can be viewed as a bag of partons — quarks and gluons.

• A collision between two partons, one from each side, gives the hard
process of interest, be it for physics within or beyond the Standard
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Model: ug → ug, ud → W+, gg → h0, etc. (Actually, the bulk of the
cross section results in rather mundane events, with at most rather soft
jets. Such events usually are filtered away at an early stage, however.)

• When short-lived “resonances” are produced in the hard process, such as
the top, W± or Z0, their decay has to be viewed as part of this process
itself, since e.g. spin correlations are transferred from the production to
the decay stages.

• A collision implies accelerated colour (and often electromagnetic) charges,
and thereby bremsstrahlung can occur. Emissions that can be associ-
ated with the two incoming colliding partons are called Initial-State
Radiation (ISR). As we shall see, such emissions can be modelled by
so-called space-like parton showers.

• Emissions that can be associated with outgoing partons are instead
called Final-State Radiation (FSR), and can be approximated be time-
like parton showers. Often the distinction between a hard process and
ISR and FSR is ambiguous, as we shall see.

• So far we only extracted one parton from each incoming hadron to un-
dergo a hard collision. But the hadron is made up of a multitude of
further partons, and so further parton pairs may collide within one sin-
gle hadron–hadron collision — multiparton interactions (MPI). (Not to
be confused with pileup events, when several hadron pairs collide during
a bunch–bunch crossing, but with obvious analogies.)

• Each of these further collisions also may be associated with its ISR and
FSR.

• The colliding partons take a fraction of the energy of the incoming
hadrons, but much of the energy remains in the beam remnants, which
continue to travel essentially in the original directions. These remnants
also carry colours that compensate the colour taken away by the collid-
ing partons.

• As the partons created in the previous steps recede from each other,
confinement forces become significant. The structure and evolution of
these force fields cannot currently be described from first principles, so
models have to be introduced. One common approach is to assume that
a separate confinement field is stretched between each colour and its
matching anticolour, with each gluon considered as a simple sum of a
colour and an anticolour, and all colours distinguishable from each other
(the NC → ∞ limit).

• Such fields can break by the production of new quark–antiquark pairs
that screen the endpoint colours, and where a quark from one break



4 Torbjörn Sjöstrand

(or from an endpoint) can combine with an antiquark from an adjacent
break to produce a primary hadron. This process is called hadronization.

• Many of those primary hadrons are unstable and decay further at various
timescales. Some are sufficiently long–lived that their decays are visible
in a detector, or are (almost) stable. Thereby we have reached scales
where the event-generator description has to be matched to a detector-
simulation framework.

• It is only at this stage that experimental information can be obtained
and used to reconstruct back what may have happened at the core of
the process.

The Monte Carlo method allows these steps to be considered sequentially,
and within each step to define a set of rules that can be used iteratively to
construct a more and more complex state, ending with hundreds of particles
moving out in different directions. Since each particle contains of the order of
ten degrees of freedom (flavour, mass, momentum, production vertex, lifetime,
. . . ), thousands of choices are involved for a typical event. The aim is to
have a sufficiently realistic description of these choices that both the average
behaviour and the fluctuations around this average are well decribed.

Schematically, the cross section for a range of final states is provided by

σfinal state = σhard process Ptot,hard process→final state ,

properly integrated over the relevant phase-space regions and summed over
possible “paths” (of showering, hadronization, etc.) that lead from a hard pro-
cess to the final state. That is, the dimensional quantities are associated with
the hard process; subsequent steps are handled in a probabilistic approach.

The spectrum of event generators is very broad, from general-purpose ones
to more specialized ones. Herwig and Pythia are the two most commonly
used among the former ones, with Sherpa (Gleisberg et al 2009) coming
up. Among more specialized programs, many deal with the matrix elements
for some specific set of processes, a few with topics such as parton showers
or particle decays, but there are e.g. no freestanding programs that handle
hadronization. In the end, many of the specialized programs are therefore
used as “plugins” to the general-purpose ones.

3 Matrix elements and their usage

From the Lagrangian of a theory the Feynman rules can be derived, and from
them matrix elements can be calculated. Combined with phase space it allows
the calculation of cross sections. As a simple example consider the scattering
of quarks in QCD, say u(1) d(2) → u(3) d(4), a process similar to Rutherford
scattering but with gluon exchange instead of photon ditto. The Mandelstam
variables are defined as ŝ = (p1+p2)

2, t̂ = (p1−p3)
2 and û = (p1−p4)

2. In the
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cm frame of the collision ŝ is the squared total energy and t̂, û = −ŝ(1∓cos θ̂)/2

where θ̂ is the scattering angle. The differential cross section is then

dσ̂

dt̂
=

π

ŝ2

4

9
α2

s

ŝ2 + û2

t̂2
,

which diverges roughly like dp2
⊥

/p4
⊥

for transverse momentum p⊥ → 0. We
will come back to this issue when discussing multiparton interactions; for now
suffice to say that some lower cutoff p⊥min need to be introduced. Similar
cross sections, differing mainly by colour factors, are obtained for q g → q g
and g g → g g. A few further QCD graphs, like g g → q q, are less singular and
give smaller contributions. These cross sections then have to be convoluted
with the flux of the incoming partons i and j in the two incoming hadrons A
and B:

σ =
∑

i,j

∫∫∫

dx1 dx2 dt̂ f
(A)
i (x1, Q

2) f
(B)
j (x2, Q

2)
dσ̂ij

dt̂
. (1)

The parton density functions (PDFs) of gluons and sea quarks are strongly
peaked at small momentum fractions x1 ≈ Ei/EA, x2 ≈ Ej/EB. This further
enhances the peaking of the cross section at small p⊥ values.

In order to address the physics of interest a large number of processes,
both within the Standard Model and in various extensions of it, have to be
available in generators. Indeed many can also be found in the general-purpose
ones, but by far not enough. Further, often processes are there available only
to lowest order, while experimental interest may be in higher orders, with
more jets in the final state, either as a signal or as a potential background.
So a wide spectrum of matrix-element-centered programs are available, some
quite specialized and others more generic.

The way these programs can be combined with a general-purpose gener-
ator is illustrated in Fig. 1. In the study of Supersymmetry (SUSY) it is
customary to define a model in terms of a handful parameters, e.g. speci-
fied at some large Grand Unification scale. It is then the task of a spectrum
calculator to turn this into a set of masses, mixings and couplings for the
physical states to be searched for. Separately, the matrix elements can be
calculated with these properties as unknown parameters, and only when the
two are combined is it possible to speak of physically relevant matrix-element
expressions. These matrix elements now need to be combined with PDFs and
sampled in phase space, preferable with some preweighting procedure so that
regions with high cross sections are sampled more frequently. The primarily-
produced SUSY particles typically are unstable and undergo sequential decays
down to a lightest supersymmetric particle (LSP), again with branching ra-
tios and angular distributions that should be properly modelled. The LSP
would be neutral and escape undetected, while other decay products would
be normal quarks and leptons.

It is at this stage that general-purpose programs take over. They describe
the showering associated with the above process, the presence of additional
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Process Selection

Resonance Decays

Parton Showers

Multiparton Interactions

Beam Remnants

Hadronization

Ordinary Decays

Detector Simulation

ME Generator

ME Expression

SUSY/. . .

spectrum

calculation

Phase Space

Generation

PDF Library

τ Decays

B Decays

Figure 1. Example how different programs can be combined in the event-
generation chain.

interactions in the same hadron–hadron collision, the structure of beam rem-
nants, and the hadronization and decays. They would still rely on the exter-
nally supplied PDFs, and potentially make use of programs dedicated to τ and
B decays, where spin information and form factors require special encoding.
Even after the event has been handed on to the detector-simulation program
some parts of the generator may be used in the simulation of secondary in-
teractions and decays.

Several standards have been developed to further this interoperability.
The Les Houches Accord (LHA) for user processes (Boos et al 2001) specifies
how parton-level information about the hard process and sequential decays
can be encoded and passed on to a general-purpose generator. Originally
it was defined in terms of two Fortran commonblocks, but more recently a
standard Les Houches Event File format (Alwall et al 2007) offfers a language-
independent alternative approach. The Les Houches Accord Parton Density
Functions (LHAPDF) library (Borilkov et al 2006) makes different PDF sets
available in a uniform framework. The SUSY Les Houches Accord (SLHA)
(Skands et al 2004, Allanach et al 2009) allows a standardized transfer of
masses, mixings, couplings and branching ratios from spectrum calculators to
other programs. The HepMC C++ event record (Dobbs and Hansen 2001)
succeeds the HEPEVT Fortran one as a standard way to transfer information
from a generator on to the detector-simulation stage. One of the key building
blocks for several of these standards is the PDG codes for all the most common
particles (Amsler et al 2008), also in some scenarios for physics beyond the
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Standard Model.

The 2 → 2 processes we started out with above are about the simplest
one can imagine at a hadron collider. In reality one needs to go on to higher
orders. In O(α3

s ) two new kind of graphs enter. One kind is where one
additional parton is present in the final state, i.e. 2 → 3 processes. The cross
section for such processes is almost always divergent when one of the parton
energies vanish (soft singularities) or two partons become collinear (collinear
singularities). The other kind is loop graphs, with an additional intermediate
parton not present in the final state, i.e. a correction to the 2 → 2 processes.
This gives negative divergences that exactly cancel the positive ones above,
with only finite terms surviving. For inclusive event properties such next-to-
leading order (NLO) calculations lead to an improved accuracy of predictions,
but for more exclusive studies the mathematical cancellation of singularities
has to be supplemented by more physical techniques, which is far from trivial.

The tricky part of the calculations is the virtual corrections. NLO is now
state-of-the-art, with NNLO still in its infancy. If one is content with Born-
level diagrams only, i.e. without any loops, it is possible to go to quite high
orders, with eight or more partons in the final state. These partons have to
be kept well separated to avoid the phase-space regions where the divergences
become troublesome. In order to cover also regions where partons become
soft/colliner we therefore next turn our attention to parton showers.

4 Parton showers

As already noted, the emission rate for a branching such as q → qg diverges
when the gluon either becomes collinear with the quark or when the gluon
energy vanishes. The QCD pattern is similar to that for e → eγ in QED,
except with a larger coupling, and a coupling that increases for smaller relative
p⊥ in a branching, thereby further enhancing the divergence. Furthermore
the non-Abelian character of QCD leads to g → gg branchings with similar
divergences, without any correspondence in QED. The third main branching,
g → qq with its γ → e+e− QED equivalence, does not have the soft divergence
and is less important.

Now, if the rate for one emission of a gluon is big, then also the rate for
two or more will be big, and thus the need for high orders. With showers we
introduce two new concepts that make like easier,
(1) an iterative structure that allows simple expressions for q → qg, g → gg
and g → qq branchings to be combined to build up complex multiparton final
states, and
(2) a Sudakov factor that offers a physical way to handle the cancellation
between real and virtual divergences.
Neither of the simplifications is exact, but together they allow us to pro-
vide sensible approximate answers for the structure of emissions in soft and
collinear regions of phase space.
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4.1 The shower approach

The starting point is to “factorize” a complex 2 → n process, where n repre-
sents a large number of partons in the final state, into a simple core process,
maybe 2 → 2, convoluted with showers, Fig. 2. To begin with, in a simple
ud → ud process the incoming and outgoing quarks must be on the mass shell,
i.e. satisfy p2 = E2 − p2 = m2

q ∼ 0, at long timescales. By the uncertainty
principle, however, the closer one comes to the hard interaction, i.e the shorter
the timescales considered, the more off-shell the partons may be.

d

u

d

u

Q2

2 → 2

Q2
2

Q2
1

ISR

Q2
4

Q2
3

FSR

Figure 2. The “factorization” of a 2 → n process.

Thus the incoming quarks may radiate a succession of harder and harder
gluons, while the outgoing ones radiate softer and softer gluons. One definition
of hardness is how off-shell the quarks are, Q2 ∼ |p2| = |E2 − p2|, but we
will encounter other variants later. In the initial-state radiation (ISR) part
of the cascade these virtualities are spacelike, p2 < 0, hence the alternative
name spacelike showers. Correspondingly the final-state radiation (FSR) is
characterized by timelike virtualities, p2 > 0, and hence also called timelike
showers. The difference is a consequence of the kinematics in branchings.

The cross section for the whole 2 → n graph is associated with the cross
section of the hard subprocess, with the approximation that the other Q2

i

virtualities can be neglected in the matrix-element expression. In the limit
that all the Q2

i ≪ Q2 this should be a good approximation. In other words,
first the hard process can be picked without any reference to showers, and only
thereafter are showers added with unit probability. But, of course, the showers
do modify the event shape, so at the end of the day the cross section is affected.
For instance, the total transverse energy E⊥tot of an event is increased by ISR,
so the cross sections of events with a given E⊥tot is increased by the influx of
events that started out with a lower E⊥tot in the hard process.

It is important that the hard-process scale Q2 is picked to be the largest
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one, i.e. Q2 > Q2
i in Fig. 2. If e.g. Q2

1 > Q2 then instead the ug → ug
subgraph ought to be chosen as hard process, and the gluon of virtuality Q2

ought to be part of the ISR off the incoming d. Without such a criterion one
might doublecount a given graph.

4.2 Final-state radiation

Let us next turn to a more detailed presentation of the showering approach,
and begin with the simpler final-state stage. This is most cleanly studied in
the process e+e− → γ∗/Z0 → qq. The first-order correction here corresponds
to the emission of one additional gluon, by either of the two Feynman graphs
in Fig. 3. Neglect quark masses and introduce energy fractions xj = 2Ej/Ecm

in the rest frame of the process. Then the cross section is of the form

dσME

σ0
=

αs

2π

4

3

x2
1 + x2

2

(1 − x1)(1 − x2)
dx1 dx2 ,

where σ0 is the qq cross section, i.e. without the gluon emission.

0

q (1)

q (2)

i
g (3)

(a)

0

q (1)

q (2)

i
g (3)

(b)

Figure 3. The two Feynman graphs that contribute to γ∗/Z0(0) →
q(1) q(2) g(3)

Now study the kinematics in the limit x2 → 1. Since 1 − x2 = m2
13/E2

cm

we see that this corresponds to the “collinear region”, where the separation
between the q and g vanishes. Equivalently, the virtuality Q2 = Q2

i = m2
13

of the intermediate quark propagator i in Fig. 3a vanishes. Although the
full answer contains contributions from both graphs it is obvious that, in this
region, the amplitude of the one in Fig. 3a dominates over the one in Fig. 3b.
We can therefore view the process as γ∗/Z0 → qq followed by q → qg. Define
the energy sharing in the latter branching by Eq = zEi and Eg = (1 − z)Ei.
The kinematics relations then are

1 − x2 =
m2

13

E2
cm

=
Q2

E2
cm

=⇒ dx2 =
dQ2

E2
cm

x1 ≈ z =⇒ dx1 ≈ dz

x3 ≈ 1 − z
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so that

dP =
dσME

σ0
=

αs

2π

dx2

(1 − x2)

4

3

x2
2 + x2

1

(1 − x1)
dx1 ≈ αs

2π

dQ2

Q2

4

3

1 + z2

1 − z
dz (2)

Here dQ2/Q2 corresponds to the “collinear” or “mass” singularity and dz/(1−
z) = dEg/Eg to the soft-gluon singularity.

The interesting aspect of eq. (2) is that it is universal: whenever there
is a massless quark in the final state, this equation provides the probability
for the same final state except for the quark being replaced by an almost
collinear qg pair (plus some other slight kinematics adjustments to conserve
overall energy and momentum). That is reasonable: in a general process
any number of distinct Feynman graphs may contribute and interfere in a
nontrivial manner, but once we go to a collinear region only one specific graph
will contribute, and that graphs always has the same structure, in this case
with an intermediate quark propagator. Corresponding rules can be derived
for what happens when a gluon is replaced by a collinear gg or qq pair. These
rules are summarized by the DGLAP equations

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz (3)

where Pq→qg =
4

3

1 + z2

1 − z
,

Pg→gg = 3
(1 − z(1 − z))2

z(1 − z)
,

Pg→qq =
nf

2
(z2 + (1 − z)2) (nf = no. of quark flavours) .

Furthermore, the rules can be combined to allow for the successive emission in
several steps, e.g. where a q → qg branching is followed by further branchings
of the daughters. That way a whole shower develops.

Such a picture should be reliable in cases where the emissions are strongly
ordered, i.e. Q2

1 ≫ Q2
2 ≫ Q2

3 . . .. Showers would not be useful if they only
could be applied to strongly-ordered parton configurations, however. A fur-
ther study of the γ∗/Z0 → qqg example shows that the simple sum of the
q → qg and q → qg branchings reproduce the full matrix elements, with in-
terference included, to better than a factor of 2 over the full phase space.
This is one of the simpler cases, and of course one should expect the accu-
racy to be worse for more complicated final states. Nevertheless, it is mean-
ingful to use the shower over the whole strictly-ordered, but not necessarily
strongly-ordered, region Q2

1 > Q2
2 > Q2

3 . . . to obtain an approximate answer
for multiparton topologies.

We did not yet tame the fact that probabilities blow up in the soft and
collinear regions. For sure, perturbation theory will cease to be meaning-
ful at so small Q2 scales that αs(Q

2) diverges; there confimenent effects and
hadronization phenomena take over. Typically therefore some lower cutoff
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at around 1 GeV is used to regulate both soft and collinear divergences: be-
low such a scale no further branchings are simulated. Whatever perturbative
effects may remain are effectively pushed into the parameters of the nonper-
turbative framework. That way we avoid the singularities, but we can still
have branching “probabilities” well above unity, which does not seem to make
sense.

This brings us to the second big concept of this section, the Sudakov (form)
factor. In the context of particle physics it has a specific meaning related to
the properties of virtual corrections, but more generally we can just see it as
a consequence of the conservation of total probability

P(nothing happens) = 1 − P(something happens) ,

where the former is multiplicative in a time-evolution sense:

Pnothing(0 < t ≤ T ) = Pnothing(0 < t ≤ T1) Pnothing(T1 < t ≤ T ) .

When these two are combined the end result is

dPfirst(T ) = dPsomething(T ) exp

(

−
∫ T

0

dPsomething(t)

dt
dt

)

.

That is, the probability for something to happen for the first time at time T
is the naive probability for this to happen, times the probability that this did
not yet happen.

A common example is that of radioactive decay. If the number of unde-
cayed radioactive nuclei at time t is N (t), with initial number N0 at time t = 0,
then a naive ansatz would be dN/dt = −cN0, where c parametrizes the decay
likelihood per unit of time. This equation has the solution N (t) = N0(1− ct),
which becomes negative for t > 1/c, because by then the probability for hav-
ing had a decay exceeds unity. So what we made wrong was not to take into
account that only an undecayed nucleus can decay, i.e. that the equation ought
to have been dN/dt = −cN (t) with the solution N (t) = N0 exp(−ct). This is
a nicely well-behaved expression, where the total probability for decays goes
to unity only for t → ∞. If c had not been a constant but varied in time,
c = c(t), it is simple to show that the solution instead would have become

N (t) = N0 exp

(

−
∫ t

0

c(t′) dt

)

=⇒ dN
dt

= −c(t)N0 exp

(

−
∫ t

0

c(t′) dt

)

.

For a shower the relevant “time” scale is something like 1/Q, by the Heisen-
berg uncertainty principle. That is, instead of evolving to later and later times
we evolve to smaller and smaller Q2. Thereby the DGLAP eq. (3) becomes

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz exp



−
∑

b,c

∫ Q2
max

Q2

dQ′2

Q′2

∫

αs

2π
Pa→bc(z

′) dz′



 ,
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where the exponent (or simple variants thereof) is the Sudakov factor. As for
the radioactive-decay example above, the inclusion of a Sudakov ensures that
the total probability for a parton to branch never exceeds unity. Then you
may have sequential radioactive decay chains, and you may have sequential
parton branchings, but that is another story.

It is a bit deeper than that, however. Just as the standard branching
expressions can be viewed as approximations to the complete matrix elements
for real emission, the Sudakov is an approximation to the complete virtual
corrections from loop graphs. The divergences in real and virtual emissions,
so strange-looking in the matrix-element language, here naturally combine to
provide a physical answer everywhere. What is not described in the shower, of
course, is the non-universal finite parts of the real and virtual matrix elements.

The implementation of a cascade evolution now makes sense. Starting
from a simple qq system the q and q are individually evolved downwards
from some initial Q2

max until they branch. At a branching the mother parton
disappears and is replaced by two daughter partons, which in their turn are
evolved downwards in Q2 and may branch. Thereby the number of partons
increases, until the lower cutoff scale is reached.

This does not mean that everything is uniquely specified. In particular,
the choice of evolving in Q2 = |p2| is by no means obvious. Any alternative
variable P 2 = f(z)Q2 would work equally well, since dP 2/P 2 = dQ2/Q2.
Other evolution variables include the transverse momentum, p2

⊥
≈ z(1−z)m2,

and the energy-weighted emission angle E2θ2 ≈ m2/(z(1 − z)).
Both these two alternative choices are favourable when the issue of coher-

ence is introduced. Coherence means that emissions do not occur indepen-
dently. For instance, consider g1 → g2 g3, followed by an emission of a gluon
either from 2 or 3. When this gluon is soft it cannot resolve the individual
colour charges of g2 and g3, but only the net charge of the two, which of
course is the charge of g1. Thereby the multiplication of partons in a shower
is reduced relative to naive expectations. As it turns out, evolution in p⊥ or
angle automatically includes this reduction, while one in virtuality does not.

In the study of FSR, e.g. at LEP, three algorithms have been commonly
used. The Herwig angular-ordered and Pythia mass-ordered ones are con-
ventional parton showers as described above, while the Ariadne (Gustafson
and Pettersson 1988, Lönnblad 1992) p⊥-ordered one is based on a picture
of dipole emissions. That is, instead of considering a → b c one studies
a b → c d e. One aspect of this is that, in addition to the branching parton,
Ariadne also explicitly includes a “recoil parton” needed for overall energy–
momentum conservation. Additionally emissions off a and b are combined in
a well-defined manner.

All three approaches have advantages and disadvantages. As already men-
tioned, Pythia does not inherently include coherence, but has to add that
approximately by brute force. Both Pythia and Herwig break Lorentz in-
variance slightly. The Herwig algorithm cannot cover the full phase space
with it emissions, but has to fill in some “dead zones” using higher-order ma-
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trix elements. The Ariadne dipole picture does not include g → qq branch-
ings in a natural way.

When all is said and done, it turns out that all three algorithms do quite
a decent job of describing LEP data, but typically Ariadne does best. In
recent years the p⊥-ordered approach has also gained ground, having been
introduced in Pythia (Sjöstrand and Skands 2005) and on its way for Sherpa
(Schumann and Krauss 2008, Winter and Krauss 2008). However, also the
angular-ordered showers are being further developed (Gieseke et al 2003).

4.3 Initial-state radiation

The structure of initial-state radiation (ISR) is more complicated than that of
FSR, since the nontrivial structure of the incoming hadrons enter the game.
A proton is made up out of three quarks, uud, plus the gluons that bind them
together. This picture is not static, however: gluons are continuously emitted
and absorbed by the quarks, and each gluon may in its turn temporarily split
into two gluons or into a qq pair. Thus a proton is teeming with activity, and
much of it in a nonperturbative region where we cannot calculate. We are
therefore forced to introduce the concept of a parton density fb(x, Q2) as an
empirical distribution, describing the probability to find a parton of species
b in a hadron, with a fraction x of the hadron energy–momentum when the
hadron is probed at a resolution scale Q2.

While fb(x, Q2) itself cannot be predicted, the change of fb with resolu-
tion scale can, once Q2 is large enough that perturbation theory should be
applicable:

dfb(x, Q2)

d(lnQ2)
=
∑

a

∫ 1

x

dz

z
fa(x

′, Q2)
αs

2π
Pa→bc

(

z =
x

x′

)

. (4)

This is actually nothing but our familiar DGLAP equations. Before they were
written in an exclusive manner: given a parton a, what is the probability that
it will branch to b c during a change dQ2? Here the formulation is instead
inclusive: given that the probability distributions fa(x, Q2) of all partons a
are known at a scale Q2, how is the distribution of partons b changed by the
set of possible branchings a → b (+c, here implicit). The splitting kernels
Pa→bc(z) are the same to leading order, but differ between ISR and FSR in
higher orders. In higher orders also the concept of fb(x, Q2) as a positive
definite probability is lost, additional complications that we will not consider
any further here.

Even though eqs. (3) and (4) are equivalent, the physics context is different.
In FSR the outgoing partons have been kicked to large timelike virtualities
by the hard process and then cascade downwards towards the mass shell. In
ISR we rather start out with a simple proton at early times and then allow
more and more spacelike virtualities as we get closer to the hard interaction.

So, when the hard scattering occurs, in some sense the initial-state cascade
is already there, as a virtual fluctuation. Had no collision occured the fluctua-
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tion would have collapsed back, but now one of the partons of the fluctuation
is kicked out in a quite different direction and can no longer recombine with
its sister parton from its last branching, nor with other partons in the cascade
that lead up to this particular parton. Post facto we therefore see that a chain
of branchings with increasing Q2 values built up an ISR shower, Fig. 4.

Figure 4. A cascade of successive branchings. The thick line represents the
main chain of spacelike partons leading in to the hard interaction (marked by
a cross). The thin lines are partons that cannot be recombined, while dashed
lines are further fluctuations that may (if spacelike) or may not (if timelike)
recombine. In this graph lines can represent both quarks and gluons.

The obvious way to simulate this situation would be to pick partons in
the two incoming hadrons from parton densities at some low Q2 scale, and
then use the exclusive formulation of eq. (3) to construct a complete picture
of partons available at higher Q2 scales, event by event. The two sets of
incoming partons could then be weighted by the cross section for the process
under study. A problem is that this may not be very efficient. We have
to evolve for all possible fluctuations, but at best one particular parton will
collide and most of the other fluctuations will collapse back. The cost may
become prohibitive when the process of interest has a constrained phase space,
like a light-mass Higgs which has to have the colliding partons matched up in
a very narrow mass bin.

There are ways to speed up this “forwards evolution” approach. However,
the most common solution is instead to adopt a “backwards evolution” point
of view. Here one starts at the hard interaction and then tries to reconstruct
what happened “before”. To be more precise, the cross-section formula in
eq. (1) already includes the summation over all possible incoming shower his-
tories by the usage of Q2-dependent parton densities. Therefore what remains
is to pick one exclusive shower history from the inclusive set that went into
the Q2-evolution. To do this, recast eq. (4) as

dPb =
dfb

fb

= |d(ln Q2)|
∑

a

∫

dz
x′fa(x′, t)

xfb(x, t)

αs

2π
Pa→bc

(

z =
x

x′

)

.

Then we have defined a conditional probability: if parton b is present at scale
Q2, what is the probability that it will turn out to have come from a branching
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a → b c at some infinitesimally smaller scale? (Recall that the original eq. (4)
was defined for increasing virtuality.) Like for FSR this expression has to be
modified by a Sudakov factor to preserve total probability, and this factor
is again the exponent of the real-emission expression with a negative sign,
integrated over Q2 from an upper starting scale Q2

max down to the Q2 of the
hypothetical branching.

The approach is now clear. First a hard scattering is selected, making
use of the Q2-evolved parton densities. Then, with the hard process as upper
maximum scale, a succession of ISR branchings are reconstructed at lower and
lower Q2 scales, going “backwards in time” towards the early low-virtuality
initiators of the cascades. Again some cutoff needs to be introduced when the
nonperturbative regime is reached.

Unfortunately the story does not end there. For FSR we discussed the
need to take into account coherence effects and the possibility to use different
variables. Such issues exist here as well, but also additional ones. For in-
stance, evolution need not be strictly ordered in Q2, and non-ordered chains
in some cases can be important. Another issue is that there can be so many
partons evolving inside a hadron that they become close-packed, which leads
to recombinations.

5 Combining matrix elements and parton show-

ers

As we have seen, both matrix elements (ME) and parton showers (PS) have
advantages and disadvantages.

To recall, ME allow a systematic expansion in powers of αs, and thereby
offer a controlled approach towards higher precision. Calculations can be done
with several partons in the final state, so long as only Born-level results are
asked for, and it is possible to tailor the phase-space cuts for these partons
precisely to the experimental needs. Loop calculations are much more diffi-
cult, on the other hand, and the mathematically correct cancellation between
real- and virtual-emission graphs in the soft/collinear regions is not physically
sensible. Therefore ME cannot be used to explore the internal structure of a
jet, and are difficult to match to hadronization models, which are supposed
to take over in the very soft/collinear region.

PS, on the other hand, clearly are approximate and do not come with a
guaranteed level of precision for well separated jets. You cannot steer the
probabilistic evolution of a shower too much, and therefore the efficiency for
obtaining events in a specific region of phase space can be quite low. On the
other hand, PS are universal, so for any new model you only need to provide
the basic hard process and then PS will turn that into reasonably realistic
multiparton topologies. The use of Sudakov factors ensures a physically sen-
sible behaviour in the soft/collinear regions, and it is also here that the PS
formalism is supposed to be as most reliable. It is therefore possible to obtain
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a good picture of the internal structure of jets, and to provide a good match
to hadronization models.

In a nutshell: ME are good for well separated jets, PS for the structure
inside jets. Clearly the two complement each other, and a marriage is highly
desirable. To do this, without doublecounting or gaps in the phase space cov-
erage, is less trivial, and several alternative approaches have been developed.
In the following we will discuss three main options: merging, vetoed parton
showers and NLO matching, roughly ordered in increasing complexity. Which
of these to use may well depend on the task at hand.

5.1 Merging

The aspiration of merging is to cover the whole phase space with a smooth
transition from ME to PS. The typical case would be a process where the
lowest-order (LO) ME is known, as well as the next-to-leading-order (NLO)
real-emission one, say of an additional gluon. The shower should then repro-
duce

WME =
1

σ(LO)

dσ(LO + g)

d(phasespace)
(5)

starting from a LO topology. If the shower populates phase space according
to WPS this implies that a correction factor WME/WPS need to be applied.

At first glance this does not apper to make sense: if all we do is get back
WME, then what did we gain? However, the trick is to recall that the PS
formula comes in two parts: the real-emission answer and a Sudakov factor
that ensures total conservation of probability. What we have called WPS

above should only be the real-emission part of the story. It is also this one that
we know will agree with WME in the soft and collinear regions. Actually, with
some moderate amount of effort it is often possible to ensure that WME/WPS

is of order unity over the whole phase space, and to adjust the showers in
the hard region so that the ratio always is below unity, i.e. so that standard
Monte Carlo rejection techniques can be used. What the Sudakov factor then
does is introduce some ordering variable Q2, so that the whole phase space is
covered starting from “hard” emissions and moving to “softer” ones. At the
end of the day this leads to a distribution over phase space like

WPS
actual(Q

2) = WME(Q2) exp

(

−
∫ Q2

max

Q2

WME(Q′2) dQ′2

)

.

That is, we have used the PS choice of evolution variable to provide an expo-
nentiated version of the ME answer. As such it agrees with the ME answer
in the hard region, where the Sudakov factor is close to unity, and with the
PS in the soft/collinear regions, where WME ≈ WPS.

In Pythia this approach is used for essentially all resonance decays in the
Standard Model and minimal supersymmetric extensions thereof (Norrbin
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and Sjöstrand 2001): γ∗/Z0 → qq, t → bW+, W+ → ud, H → bb, χ0 → q̃q,
q̃ → qg̃, . . . . It is also used in ISR to describe e.g. qq → γ∗/Z0/W±.

Merging is also used for several processes in Herwig, such as γ∗/Z0 → qq,
t → bW+ and qq → γ∗/Z0/W±. A special problem here is that the angular-
ordered algorithms, both for FSR and for ISR, leave some “dead zones” of
hard emissions that are kinematically forbidden for the shower to populate.
It is therefore necessary to start directly from higher-order matrix elements
in these regions. A consistent treatment still allows a smooth joining across
the boundary.

5.2 Vetoed parton showers

The objective of vetoed parton showers is again to combine the real-emission
behaviour of ME with the emission-ordering-variable-dependent Sudakov fac-
tors of PS. While the merging approach only works for combining the LO and
NLO expressions, however, the vetoed parton showers offer a generic approach
for combining several different orders.

To understand how the algorithm works, consider a lowest-order process
such as qq → W±. For each higher order one additional jet would be added
to the final state, so long as only real-emission graphs are considered: in first
order e.g. qq → W±g, in second order e.g. qq → W±gg, and so on. Call these
(differential) cross sections σ0, σ1, σ2, . . . . It should then come as no surprise
that each σi, i ≥ 1, contains soft and collinear divergences. We therefore
need to impose some set of ME phase-space cuts, e.g. on invariant masses
of parton pairs, or on parton energies and angular separation between them.
When these cuts are varied, so that e.g. the mass or energy thresholds are
lowered towards zero, all of these σi, i ≥ 1, increase without bounds.

The reason is that in the ME approach without virtual corrections there
is no “detailed balance”, wherein the addition of cross section to σi+1 is com-
pensated by a depletion of σi. That is, if you have an event with i jets at
some resolution scale, and a lowering of the minimal jet energy reveals the
presence of one additional jet, then you should reclassify the event from being
i-jet to being i + 1-jet. Add one, subtract one, with no net change in

∑

i σi.
So the trick is to use the Sudakovs of showers to ensure this detailed balance.
Of course, in a complete description the cancellation between real and virtual
corrections is not completely exact but leaves a finite net contribution, which
is not predicted in this approach.

A few alternative algorithms exist along these lines. All share the three
first steps as follows:
1) Pick a hard process within the ME-cuts-allowed phase-space region, in
proportions provided by the ME integrated over the respective allowed region,
σ0 : σ1 : σ2 : . . .. Use for this purpose a fix αs0 larger than the αs values that
will be used below.
2) Reconstruct an imagined shower history that describes how the event could
have evolved from the lowest-order process to the actual final state. That
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provides an ordering of emissions by whatever shower-evolution variable is
intended.
3) The “best-bet” choice of αs scale in showers is known to be the squared
transverse momentum of the respective branching. Therefore a factor Wα =
∏

branchings(αs(p
2
⊥i)/αs0), provides the probability that the event should be

retained.

Now the algorithms part way. In the CKKW and L approaches the sub-
sequent steps are:
4) Evaluate Sudakov factors for all the “propagator” lines in the shower his-
tory reconstructed in step 2, i.e. for intermediate partons that split into
further partons, and also for the evolution of the final partons down to the
ME cuts without any further emissions. This provides an acceptance weight
WSud =

∏

“propagators′′ Sudakov(Q2
beg, Q

2
end) where Q2

beg is the large scale

where a parton is produced by a branching and Q2
end either is the scale at

which the parton branches or the ME cuts, the case being.
4a) In the CKKW approach (Catani et al 2001) the Sudakovs are evaluated
by analytical formulae, which is fast.
4b) In the L approach (Lönnblad 2002) trial showers are used to evaluate
Sudakovs, which is slower but allows a more precise modelling of kinematics
and phase space than offered by the analytic expression.
5) Now the matrix-element configuration can be evolved further, to provide
additional jets below the ME cuts used. In order to avoid doublecounting
of emissions, any branchings that might occur above the ME cuts must be
vetoed.

The MLM approach (Mangano et al 2007) is rather different. Here the
steps instead are:
4’) Allow a complete parton shower to develop from the selected parton con-
figuration.
5’) Cluster these partons back into a set of jets, e.g. using a cone-jet algo-
rithm, with the same jet-separation criteria as used when the original parton
configuration was picked.
6’) Try to match each jet to its nearest original parton.
7’) Accept the event only if the number of clustered jets agrees with the num-
ber of original partons, and if each original parton is sensibly matched to its
jet. This would not be the case e.g. if one parton gave rise to two jets, or two
partons to one jet, or an original b quark migrated outside of the clustered
jet.
The point of the MLM approach is that the probability of not generating any
additional fatal jet activity during the shower evolution is provided by the
Sudakovs used in the step 4’.

The different approaches have been compared both on an experimental and
on a theoretical levet, to understand the differences and possible shortcomings
(Alwall et al 2008, Lavesson and Lönnblad 2008).
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5.3 NLO matching

Matching to next-to-leading order in some respects is the most ambitious
approach: it aims to get not only real but also virtual contributions correctly
included, so that cross sections are accurate to NLO, and that NLO results
are obtained for all observables when formally expanded in powers of αs.
Thus hard emissions should again be generated according to ME, while soft
and collinear ones should fall within the PS regime. There are two main
approaches on the market: MC@NLO and POWHEG.

For MC@NLO (Frixione and Webber 2002) the scheme works as follows
in simplfied terms:
1) Calculate the NLO ME corrections to an n-body process, including n + 1-
body real corrections and n-body virtual ones.
2) Calculate analytically how a first branching in a shower starting from a n-
body topology would populate n+1-body phase space, excluding the Sudakov
factor.
3) Subtract the shower expression from the n+1 ME one to obtain the “true”
n + 1 events, and consider the rest as belonging to the n-body class. The PS
and ME expressions agree in the soft and collinear limits, so the singularities
there cancel, leaving finite cross sections both for the n- and n+1-body event
classes.
4) Now add showers to both kinds of events.

Several processes have been considered, such as Z0, bb, tt and W+W−

production. A technical problem is that, although ME and PS converge in
the collinear region, it is not guaranteed that ME is everywhere above PS.
This is solved by having a small fraction of events with negative weights.

The POWHEG approach (Nason 2004, Frixione et al 2007) is very closely
related to the merging approach presented earlier, but is more differential in
phase space:

dσ = B̄(v)dΦv

[

R(v, r)

B(v)
exp

(

−
∫

p⊥

R(v, r′)

B(v)
dΦ′

r

)

dΦr

]

(6)

where

B̄(v) = B(v) + V (v) +

∫

dΦr[R(v, r) − C(v, r)] ,

and
v, dΦv are the Born-level n-body variables and differential phase space,
r, dΦr are extra n + 1-body variables and differential phase space,
B(v) the Born-level cross section,
V (v) the virtual corrections,
R(v, r) the real-emission cross section, and
C(v, r) the counterterms for collinear factorization of parton densities.
The basic idea is to pick the real emission with the largest transverse momen-
tum according to complete ME’s, including the Sudakov factor derived from
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an exponentiation of the real-emission expression, with the NLO normaliza-
tion as a prefactor. (Note that the expression inside the square bracket of
eq. (6) integrates to unity for any v if real emissions are allowed down to the
soft/collinear singularities. With some effective cutoff a few events will not
have any emissions at all above this cut.) Thereafter normal showers can be
used to do the subsequent evolution downwards from the p⊥ scale picked by
the above equations.

The MC@NLO and POWHEG methods are formally equivalent to NLO,
but not beyond, so differences are useful for exploring higher orders. The latter
approach may be more appealing, since it eliminates the negative-weights
problem and agrees with the concept of p⊥ as the natural hardness scale, also
e.g. for showers. However, as of now, MC@NLO has been worked out for
more processes.

Note that the real-emission n+1-body part is only handled to LO accuracy,
and higher-order jet topologies not at all. The NLO methods thus are useful
for precision measurements of the total cross section of a process such as Z0 or
top production, but for studies of multiparton topologies the vetoed showers
are more appropriate. Each tool to its task.

6 Multiparton interactions

The cross section for 2 → 2 QCD parton processes is dominated by t-channel
gluon exchange, as we already mentioned, and thus diverges like dp2

⊥
/p4

⊥
for

p⊥ → 0. Introduce a lower cut p⊥min and integrate the interaction cross sec-
tion above this, properly convoluted with parton densities. At LHC energies
this σint(p⊥min) reaches around 100 mb for p⊥min = 5 GeV, and 1000 mb at
around 2 GeV. Since each interaction gives two jets to lowest order, the jet
cross section is twice as big. This should be compared with an expected total
cross section of the order of 100 mb. In addition, at least a third of the total
cross section is related to elastic scattering pp → pp and low-mass diffractive
states pp → pX that could not contain jets.

So can it really make sense that σint(p⊥min) > σtot? Yes, it can! The
point is that each incoming hadron is a bunch of partons. You can have
several (more or less) independent parton–parton interactions when these two
bunches pass through each other. And then an event with n interactions above
p⊥min counts once for the total cross section but once for each interaction
when the interaction rate is calculated. That is,

σtot =

∞
∑

n=0

σn while σint =

∞
∑

n=0

n σn ,

where σn is the cross section for events with n interactions. Thus σint > σtot is
equivalent to 〈n〉 > 1, that each event on the average contains more than one
interaction. Furthermore, if interactions do occur independently when two
hadron pass by each other, then one would expect a Poissonian distribution,
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Pn = 〈n〉n exp(−〈n〉)/n!, so that several interactions could occur occasionally
also when σint(p⊥min) < σtot, e.g. for a larger p⊥min cut. Energy–momentum
conservation ensures that interactions never are truly independent, and also
other effects enter (see below), but the Poissonian ansatz is still a useful
starting point.

Multiparton interactions (MPI) can only be half the solution, however.
The divergence for p⊥min → 0 would seem to imply an infinite average number
of interactions. But what one should realize is that, in order to calculate
the dσ̂/dt̂ matrix elements within standard perturbation theory, it has to
be assumed that free quark and gluon states exist at negative and positive
infinity. That is, the confinement of colour into hadrons of finite size has not
been taken into account. So obviously perturbation theory has to have broken
down by

p⊥min ≃ h−

rp

≈ 0.2 GeV · fm
0.7 fm

≈ 0.3 GeV ≃ ΛQCD .

The nature of the breakdown is also easy to understand: a small-p⊥ gluon,
to be exchanged between the two incoming hadrons, has a large transverse
wavelength and thus almost the same phase across the extent of each hadron.
The contributions from all the colour charges in a hadron thus add coherently,
and that means that they add to zero since the hadron is a colour singlet.

What is then the typical scale of such colour screening effects, i.e. at what
p⊥ has the interaction rate dropped to ∼half of what it would have been if the
quarks and gluons of a proton had all been free to interact fully independently?
That ought to be related to the typical separation distance between a given
colour and its opposite anticolour. When a proton contains many partons this
characteristic screening distance can well be much smaller than the proton
radius. Empirically we need to introduce a p⊥min scale of the order of 2 GeV
to describe Tevatron data, i.e. of the order of 0.1 fm separation. It is not
meaningful to take this number too seriously without a detailed model of the
space–time structure of a hadron, however.

The 2 GeV number is very indirect and does not really tell exactly how
the dampening occurs. One can use a simple recipe, with a step-function
cut at this scale, or a physically more reasonable dampening by a factor
p4
⊥

/(p2
⊥0 + p⊥)2, plus a corresponding shift of the αs argument,

dσ̂

dp2
⊥

∝ α2
s (p

2
⊥

)

p4
⊥

→ α2
s (p

2
⊥0 + p2

⊥
)

(p2
⊥0 + p2

⊥
)2

, (7)

with p⊥0 a dampening scale that also lands at around 2 GeV. This translates
into a typical number of 2–3 interactions per event at the Tevatron and 4–5
at LHC. For events with jets or other hard processes the average number is
likely to be higher.
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6.1 Multiparton-interactions models

A good description of Tevatron data has been obtained with a simple model
(Sjöstrand and van Zijl 1987) based on the following principles:
1) Only address MPI for inelastic nondiffractive events, with cross section σnd,
which form the bulk of what is triggered as minimum bias.
2) Dampen the perturbative jet cross section using the smooth turnoff of
eq. (7), to cover the whole p⊥ range down to p⊥ = 0.
3) Hadrons are extended, and therefore partons are distributed in (trans-
verse) coordinates. To allow a flexible parametrization and yet have an easy-
to-work-with expression, a double Gaussian ρmatter(r) = N1 exp

(

−r2/r2
1

)

+

N2 exp
(

−r2/r2
2

)

is used, where N2/N1 and r2/r1 are tunable parameters.
4) The matter overlap during a collision, calculated by

O(b) =

∫

d3xdt ρboosted
1,matter(x, t)ρboosted

2,matter(x, t) ,

directly determines the average activity in events at different impact param-
eter b: 〈n(b)〉 ∝ O(b). That is, central collisions tend to have more activity,
peripheral less.
5) An event has to contain at least one interaction to be an event at all. This
provides a natural dampening of the cross section at large impact parameters.
Normalizations have to be picked such that the b-integrated probability for
having at least one interaction gives σnd, while the b-integrated rate of all
interactions gives the (dampened) jet cross section. Further, p⊥0 has to be
selected sufficiently small that σint > σnd.
6) To first approximation the number of interactions at a given impact pa-
rameter obeys a Poissonian distribution, with the 0-interaction rate removed.
Since central collisions have a larger mean and peripheral ones a smaller, the
end result is a distribution broader than a Poissonian.
7) The interactions are generated in an ordered sequence of decreasing p⊥
values: p⊥1 > p⊥2 > p⊥3 > . . .. This is possible with the standard Sudakov
kind of trick:

dP
dp⊥i

=
1

σnd

dσ

dp⊥
exp

[

−
∫ p⊥(i−1)

p⊥

1

σnd

dσ

dp′
⊥

dp′⊥

]

,

with a starting p⊥0 = Ecm/2.
8) The ordering of emissions allows parton densities to be rescaled in x after
each interaction, so that energy–momentum is not violated. Thereby the tail
towards large multiplicities is reduced.
9) For technical reasons the model was simplified after the first interaction,
so that there only gg or qq outgoing pairs were allowed, and no showers were
added to these further 2 → 2 interactions.
Already this simple Pythia-based model is able to “explain” a large set of
experimental data.
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More recently a number of improvements have been included (Sjöstrand
and Skands 2004 and 2005, Corke and Sjöstrand 2009).
1) The introduction of junction fragmentation, wherein the confinement field
between the three quarks in a baryon is described as a Y-shaped topology,
now allows the handling of topologies where several valence quarks are kicked
out, thus allowing arbitrary flavours and showering in all interactions in an
event.
2) Parton densities are not only rescaled for energy–momentum conservation,
but also to take into account the number of remaining valence quarks, or that
sea quarks have to occur in qq pairs.
3) The introduction of p⊥-ordered showers allows the selection of new ISR
and FSR branchings and new interactions to be interleaved in one common
sequence of falling p⊥ values. Thereby the competition between especially ISR
and MPI, which both remove energy from the incoming beams, is modelled
more realistically.
4) Rescattering is optionally allowed, wherein one parton may undergo suc-
cessive scatterings.

The traditional Herwig soft underlying event (SUE) approach to this
issue has its origin in the UA5 Monte Carlo. In it a number of clusters are
distributed almost independently in rapidity and transverse momentum, but
shifted so that energy–momentum is conserved, and the clusters then decay
isotropically. The multiplicity distribution of clusters and their y and p⊥
spectra are tuned to give the observed inclusive hadron spectra. No jets are
produced in this approach.

The Jimmy program (Butterworth et al 1996) started as an add-on to
Herwig, but is nowadays an integrated part (Bähr et al 2008b). It replaces
the SUE model with a MPI-based one more similar to the Pythia ones above,
e.g. with an impact-parameter-based picture for the multiparton-interactions
rate. Many technical differences exist, e.g. Jimmy interactions are not picked
to be p⊥-ordered and thus energy–momentum issues are handled differently.

The DPMjet/DTUjet/PhoJet family of programs (Aurenche et al
1994, Engel and Ranft 1996, Roesler et al 2000) come from the “historical”
tradition of soft physics, wherein multiple p⊥ ≈ 0 “pomeron” exchanges fill
a role somewhat similar to the hard MPI above. Jet physics was originally
not included, but later both hard and soft interactions have been allowed.
One strong point is that this framework also allows diffractive events to be
included as part of the same basic machinery.

6.2 Multiparton-interactions studies

How do we know that MPI exist? The key problem is that it is not possible
to identify jets coming from p⊥ ≈ 2 GeV partons. Therefore we either have
to use indirect signals for the presence of interactions at this scale or we have
to content ourselves with studying the small fraction of events where two
interactions occur at visibly large p⊥ values.
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An example of the former is the total charged multiplicity distribution
in high-energy pp/pp collision. This distribution is very broad, and is even
getting broader with increasing energy, meaured in terms of the width over the
average, σ(nch)/〈nch〉. By contrast, recall that for a Poissonian this quantity
scales like 1/

√
nch and thus is getting narrower. Simple models, with at most

one interaction and with a fragmentation framework in agreement with LEP
data, cannot explain this: they are way to narrow, and have the wrong energy
behaviour. If MPI are included the additional variability in the number of
interactions per event offers the missing piece. The variable impact parameter
improves the description further.

Another related example is forward–backward correlations. Consider the
charged multiplicity nf and nb in a forward and a backward rapidity bin, each
of width one unit, separated by a central rapidity gap of size ∆y. It is not
unnatural that nf and nb are somewhat correlated in two-jet events, and for
small ∆y one may also be sensitive to the tails of jets. But the correlation
coefficient, although falling with ∆y, still is appreciable even out to ∆y = 5,
and here again traditional one-interaction models come nowhere near. In a
MPI scenario each interaction provides additional particle production over a
large rapidity range, and this additional number-of-MPI variability leads to
good agreement with data.

Direct evidence comes from the study of four-jet events. These can be
caused by two separate interactions, but also by a single one where higher
orders (call it ME or PS) has allowed two additional branchings in a basic
two-jet topology. Fortunately the kinematics should be different. Assume the
four jets are ordered in p⊥, p⊥1 > p⊥2 > p⊥3 > p⊥4. If coming from two
separate interactions the jets should pair up into two separately balancing
sets, |p⊥1 + p⊥2| ≈ 0 and |p⊥3 + p⊥4| ≈ 0. If an azimuthal angle ϕ is
introduced between the two jet axes this also should be flat if the interactions
are uncorrelated. By contast the higher-order graph offers no reason why
the jets should occur in balanced pairs, and the ϕ distribution ought to be
peaked at small values, corresponding to the familiar collinear singularity.
The first to observe an MPI signal this way was the AFS collaboration at
ISR (pp at 62 GeV), but with large uncertainties. A more convincing study
was made by CDF, who obtained a clear signal in a sample with three jets
plus a photon. In fact the deduced rate was almost a factor of three higher
than naive expectations, but quite in agreement with the impact-parameter-
dependent picture, wherein correlations of this kind are enhanced. Recently
also D0 have shown a comparable signal with even higher statistics.

A topic that has been quite extensively studied in CDF is that of the jet
pedestal (Field 1999–2009), i.e. the increased activity seen in events with a
jet, even away from the jet itself, and away from the recoiling jet that should
be there. Some effects come from the showering activity, i.e. the presence of
additional softer jets, but much of it rather finds its explanation in MPI, as a
kind of “trigger bias” effect, as follows.
(1) Central collisions tend to produce many interactions, peripheral ones few.
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(2) If an event has n interactions there are n chances that one of them is
hard.
Combine the two and one concludes that events with hard jets are biased
towards central collisions and many additional interactions. The rise of the
pedestal with triggger-jet energy saturates once σint(p⊥min = p⊥jet) ≪ σnd,
however, because by then events are already maximally biased towards small
impact parameter. And this is indeed what is observed in the data: a rapid
rise of the pedestal up to p⊥jet ≈ 10 GeV, and then a slower increase that is
mainly explained by showering contributions.

In more detailed studies of this kind of pedestal effects there are also some
indications of a jet substructure in the pedestal, i.e. that indeed the pedestal
is associated with the production of additional (soft) jet pairs.

In spite of many qualitative successes, and even some quantitative ones,
one should not be lead to believe that all is understood. Possibly the most
troublesome issue is how colours are hooked up between all the outgoing par-
tons that come from several different interactions. A first, already difficult,
question is how colours are correlated between all the partons that are taken
out from an incoming hadron. These colours are then mixed up by the re-
spective scattering, in principle (approximately) calculable. But, finally, all
the outgoing partons will radiate further and overlap with each other on the
way out, and how much that may mess up colours is an open question.

A sensitive quantity is 〈p⊥〉(nch), i.e. how the average transverse momen-
tum of charged particles varies as a function of their multiplicity. If inter-
actions are uncorrelated in colour this curve tends to be flat: each further
interaction adds about as much p⊥ as nch. If colours somehow would rear-
range themselves, so that the confinement colour fields would not have to run
criss-cross in the event, then the multiplicity would not rise as fast for each
further interaction, and so a positive slope would result. The embarrassing
part is that the CDF tunes tend to come up with values that are about 90%
on the way to being maximally rearranged, which is way more than one would
have guessed. Obviously further modelling and tests are necessary here.

Another issue is whether the p⊥0 regularization scale should be energy-
dependent. In olden days there was no need for this, but it became necessary
when HERA data showed that parton densities rise faster at small x values
than had commonly been assumed. This means that the partons become more
close-packed and that the colour screening increases faster with increasing
collision energy. Therefore an energy-dependent p⊥0 is not unreasonable, but
also cannot be predicted. If one assumes that p⊥0 ∝ Ep

cm, with some power
p, then the debate has centered on the range p = 0.16 − 0.26, with current
best tunes (Skands 2009, Buckley et al 2009) leaning towards the higher end
of this range. Recall that a larger p implies a larger p⊥0 at LHC energies, and
thus a smaller multiplicity. Realistically we must still allow for some range of
uncertainty, however.
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7 Hadronization

The physics mechanisms discussed so far are mainly being played out on the
partonic level, while experimentalists observe hadrons. In between exists the
very important hadronization phase, where all the outgoing partons end up
confined inside hadrons of a typical 1 GeV mass scale. This phase cannot (so
far?) be described from first principles, but has to involve some modelling.
The main approaches in use today are string fragmentation (Andersson et al
1983) and cluster fragmentation (Webber 1984).

Hadronization models start from some ideologically motivated principles,
but then have to add “cookbook recipes” with free parameters to arrive at a
complete picture of all the nitty gritty details. This should come as no surprise,
given that there are hundereds of known hadron species to take into account,
each with its mass, width, wavefunction, couplings, decay patterns and other
properties that could influence the structure of the observable hadronic state,
and with many of those properties being poorly or not at all known. In that
sense, it is sometimes more surprising that models can work as well as they
do than that they fail to describe everything.

While non-perturbative QCD is not solved, lattice QCD studies lend sup-
port to a linear confinement picture (in the absence of dynamical quarks),
i.e. the energy stored in the colour dipole field between a charge and an
anticharge increases linearly with the separation between the charges, if the
short-distance Coulomb term is neglected. This is quite different from the
behaviour in QED, and is related to the presence of a three-gluon vertex in
QCD. The details are not yet well understood, however.

The assumption of linear confinement provides the starting point for the
string model, most easily illustrated for the production of a back-to-back qq
jet pair. As the partons move apart, the physical picture is that of a colour
flux tube (or maybe colour vortex line) being stretched between the q and
the q. The transverse dimensions of the tube are of typical hadronic sizes,
roughly 1 fm. If the tube is assumed to be uniform along its length, this
automatically leads to a confinement picture with a linearly rising potential.
In order to obtain a Lorentz covariant and causal description of the energy
flow due to this linear confinement, the most straightforward way is to use
the dynamics of the massless relativistic string with no transverse degrees
of freedom. The mathematical, one-dimensional string can be thought of as
parametrizing the position of the axis of a cylindrically symmetric flux tube.
From hadron spectroscopy, the string constant, i.e. the amount of energy per
unit length, is deduced to be κ ≈ 1 GeV/fm.

As the q and q move apart, the potential energy stored in the string in-
creases, and the string may break by the production of a new q′q′ pair, so that
the system splits into two colour singlet systems qq′ and q′q. If the invari-
ant mass of either of these string pieces is large enough, further breaks may
occur. In the Lund string model, the string break-up process is assumed to
proceed until only on-mass-shell hadrons remain, each hadron corresponding
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to a small piece of string.
In order to generate the quark–antiquark pairs q′q′, which lead to string

break-ups, the Lund model invokes the idea of quantum mechanical tunnelling.
This leads to a flavour-independent Gaussian spectrum for the transverse
momentum of q′q′ pairs. Tunnelling also implies a suppression of heavy quark
production, u : d : s : c ≈ 1 : 1 : 0.3 : 10−11. Charm and heavier quarks hence
are not expected to be produced in the soft fragmentation.

A tunnelling mechanism can also be used to explain the production of
baryons. This is still a poorly understood area. In the simplest possible
approach, a diquark in a colour antitriplet state is just treated like an ordi-
nary antiquark, such that a string can break either by quark–antiquark or
antidiquark–diquark pair production. A more complex scenario is the ‘pop-
corn’ one, where diquarks as such do not exist, but rather quark–antiquark
pairs are produced one after the other.

In general, the different string breaks are causally disconnected. This
means that it is possible to describe the breaks in any convenient order, e.g.
from the quark end inwards. Results, at least not too close to the string
endpoints, should be the same if the process is described from the q end
or from the q one. This ‘left–right’ symmetry constrains the allowed shape
of fragmentation functions f(z), where z is the fraction of E + pL that the
next particle will take out of whatever remains. Here pL is the longitudinal
momentum along the direction of the respective endpoint, opposite for the q
and the q. Two free parameters remain, which have to be determined from
data.

If several partons are moving apart from a common origin, the details of
the string drawing become more complicated. For a qqg event, a string is
stretched from the q end via the g to the q end, i.e. the gluon is a kink
on the string, carrying energy and momentum. As a consequence, the gluon
has two string pieces attached, and the ratio of gluon/quark string forces is
2, a number that can be compared with the ratio of colour charge Casimir
operators, NC/CF = 2/(1 − 1/N2

C) = 9/4. In this, as in other respects, the
string model can be viewed as a variant of QCD, where the number of colours
NC is not 3 but infinite. Fragmentation along this kinked string proceeds
along the same lines, as sketched for a single straight string piece. Therefore
no new fragmentation parameters have to be introduced.

The concept of cluster fragmentation offers the great promise of a simple,
local and universal description of hadronization. At the end of the shower
evolution all gluons are split into qq pairs, and qq′ colour singlets can be formed
from them by keeping track of the colour flow in the event. Typically the q and
q′ of such a singlet were formed in adjacent shower branches, and therefore
tend to have a rather small mass. These so-called clusters are assumed to
be the basic units from which the hadrons are produced. A cluster is ideally
only characterized by its total mass and total flavour content, i.e. unlike a
string it does not possess an internal structure. If the shower-evolution cutoff
is chosen such that most clusters have a mass of a few GeV, the cluster mass
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spectrum may be thought of as a superposition of fairly broad (i.e. short-lived)
resonances. Phase-space aspects may then be expected to dominate the decay
properties. This applies both for the selection of decay channels, and for the
kinematics of the decay. Thus a decay is assumed to be isotropic in the rest
frame of the cluster. This gives a compact description with few parameters.
This approach has been successful in explaining the particle composition in
terms of very few parameters. The momentum distributions and correlations
are a bit more tricky, and in practice some string ideas are needed, e.g. to
break large-mass clusters into smaller ones along a string direction.

One general conclusion is that neither of the two models is well constrained
from first principles. In the string model many parameters are needed for
the flavour composition setup, while the energy–momentum (and space–time)
picture is very economical. In the cluster model it is the other way around.

8 Summary and outlook

In these lectures we have followed the flow of generators roughly “inwards
out”, i.e. from short-distance processes to long-distance ones. At the core lies
the hard process, described by matrix elements. It is surrounded by initial-
and final-state showers, that should be properly matched to the hard process.
Multiple parton–parton interactions can occur, and the colour flow is tied
up with the structure of beam remnants. At longer timescales the partons
turn into hadrons, many of which are unstable and decay further. This basic
pattern is likely to remain in the future, but many aspects will change.

One such aspect, that stands a bit apart, is that of languages. The tra-
ditional event generators, like Pythia and Herwig, have been developed in
Fortran — up until the end of the LEP era this was the main language in
high-energy physics. But now the experimental community has switched to
C++ for heavy compting. The older generators are still being used, hidden
under C++ wrappers, but this can only be a temporary solution, for several
reasons. One is that younger experimentalists often need to look into the code
of generators and tailor some parts to specific needs of theirs, and if then the
code is in an unknown language this will not work. Another is that theory
students who apply for non-academic positions are much better off if their
resumés say “object-oriented programming guru” rather than “Fortran fan”.

A conversion program thus has begun on many fronts. Sherpa, as the
youngest of the general-purpose generators, was conceived from the onset as
a C++ package and thus is some steps ahead of the other programs in this
respect. Herwig++ (Bähr et al 2008a) is a complete reimplementation of
Herwig, as is Pythia 8 (Sjöstrand et al 2008) of Pythia 6. Both conversions
have taken longer than originally hoped, but by now the new programs are
fully operational and starting to be used by the LHC collaborations. ThePEG
(Lönnblad 2006) is a generic toolkit for event generators, used in particular
by Herwig++.
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The authors of these event generators have joined in MCnet, which cur-
rently is funded by the European Union as a Marie Curie Research Training
Network. In addition a few other projects are pursued, notably the Rivet
package that implements various experimental analyses from the literature,
and the Professor framework (Buckley et al 2009) that takes Rivet input
as the starting point for semiautomatic tuning of event generators. MCnet
arranges summer schools each year (MCnet 2007, CTEQ–MCnet 2008, MC-
net 2009), alone or in collaboration with the CTEQ school. There are also
funds to allow graduate students in theory and experiment to come and work
with a generator author on a specific project for a few months. If you are
interested, have a look at http://www.montecarlonet.org/

To summarize these lectures, there are many aspects where we have seen
progress in recent years and can hope for more:

• Faster, better and more user-friendly general-purpose matrix-element
generators with an improved sampling of phase space.

• New ready-made libraries of physics processes, in particular with full
NLO corrections included.

• More precise parton showers.

• Better matching between matrix elements and parton showers.

• Improved models for minimum-bias physics and underlying events.

• Some upgrades of hadronization models and decay descriptions.

In general one would say that generators are getting better all the time, but
at the same time the experimental demands are also getting higher, so it is
a tight race. However, given that typical hadronic final states at LHC will
contain hundreds of particles and quite complex patterns buried in that, it is
difficult to see that there are any alternatives to the Monte Carlo generator
approach.
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