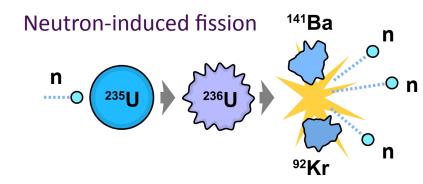
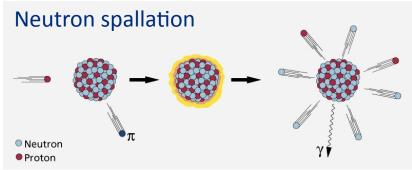

Banana Equivalent Dose

Bananas are a natural source of radioactive isotopes.


Eating one banana = 1 BED = $0.1 \mu Sv = 0.01$ mrem



Number of bananas	Equivalent exposure	
100,000,000	Fatal dose (death within 2 weeks)	
20,000,000	Typical targeted dose used in radiotherapy (one session)	
70,000	Chest CT scan	
20,000	Mammogram (single exposure)	
200 - 1000	Chest X-ray	
700	Living in a stone, brick or concrete building for one year	
400	Flight from London to New York	
100	Average daily background dose	
50	Dental X-ray	
I - 100	Yearly dose from living near a nuclear power station	

Neutron radiation

- Neutrons are components of atomic nucleus, zero electric charge, m_n ≈ m_p
- Sources of neutron radiation:
 - interaction of cosmic radiation with the atmosphere
 - neutron emission during fission (e.g. in nuclear reactors)
 - particle accelerators (spallation sources, e.g. ISIS, SNS)
- Interaction with matter:
 - neutron capture (n is captured by a nucleus and α or γ is emitted)
 - elastic scattering (recoiling nuclei collide and produce charge or scintillation light that can be detected)

Hydrogen-rich materials make the best neutron shielding: e.g. water, polyethylene, paraffin wax, concrete

Neutron RBE

RBE figures set by the International Commission on Radiological Protection (ICRP):

ICRP Publication 92 (2003)

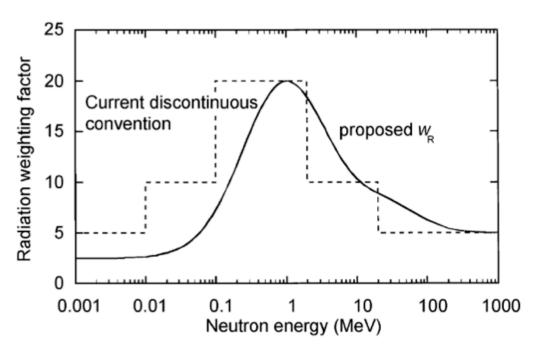


Fig. 1. The radiation weighting factor w_R for neutrons introduced in *Publication 60* (ICRP, 1991) as a discontinuous function of the neutron energy (- - -) and the proposed modification (—).

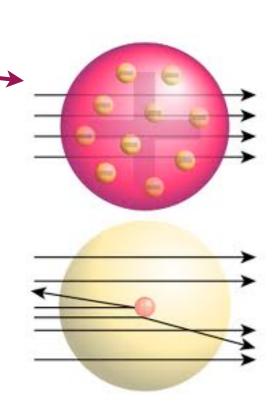
Radiation definitions and facts

Definitions:

- Radiation energy traveling in the form of particles or waves, for example:
 microwaves, radio waves, light, medical X-rays, alpha, beta, gamma radiation
- Radioactivity a natural process through which unstable atoms of an element radiate excess energy in the form of particles or waves
- Radioactive material material that emits radiation
- Radioactive contamination radioactive material in unwanted places

Important facts:

- Radiation is commonplace
- A person exposed to radiation does not become contaminated, except for neutron radiation which *can* induce radioactivity
- Contamination is the result of direct contact with removable radioactive material
- The distinction between harmful and safe depends on quantity. This is true about everything from paracetamol to arsenic
- Dose is important

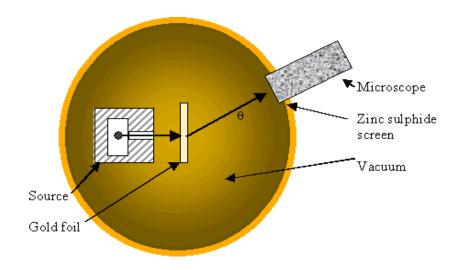

Dr. Dan Protopopescu

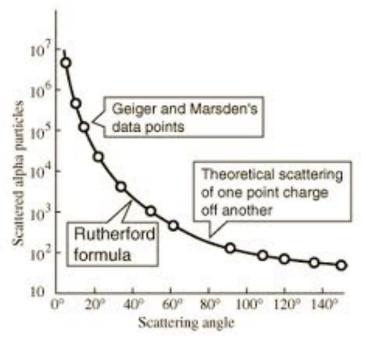
Kelvin Building, room 524

Dan.Protopopescu@glasgow.ac.uk

The discovery of the nucleus: Rutherford Scattering

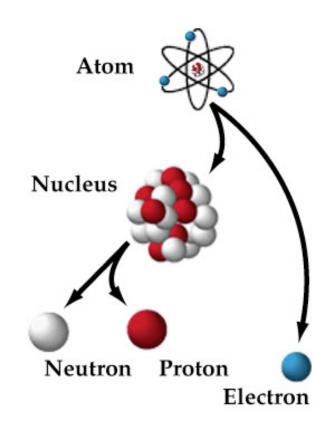
- The Thomson model of the atom (the plum pudding model)
 assumed that electrons were embedded in a positive charge with an atomic size ~10-10 m
- Firing α -particles at Au foil Geiger and Marsden (1909) were expecting to see the alphas passing through and undergoing only a small amount of scattering.
- However, they observed an amazing result: some of the alphas were scattered by very large angles up to almost 180°

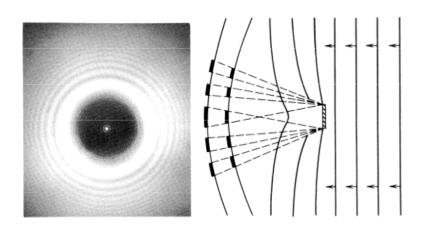

Rutherford Scattering

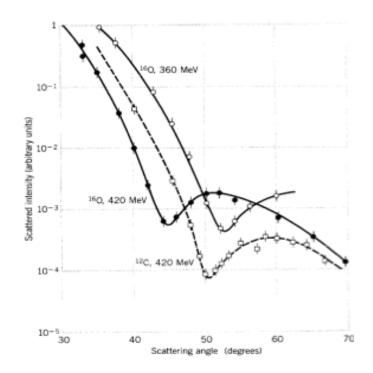

 Rutherford interpreted these results as the scattering of the alpha particle from a very small dense core of positive charge in the centre of the atom: the nucleus

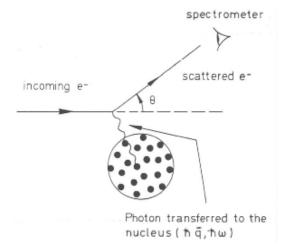
Ernest Rutherford:

"it was quite the most incredible event that ever happened to me in my life. It was almost as incredible as if you had fired a 15inch shell at a piece of tissue paper and it had come back and hit you"


- This was the basis for the Bohr model of the atom
- Chadwick later discovered the neutron




Atoms and nuclei


- Atoms are electrically neutral
 - Z electrons orbit a nucleus containing Z protons
 - Z is called the *atomic number*and is the key to chemistry
 - Atomic size ~10⁻¹⁰m
- Nuclei form the dense core of the atom – the nucleus
 - Consist of protons and neutrons
 - Size of the nucleus ~10⁻¹⁵ m

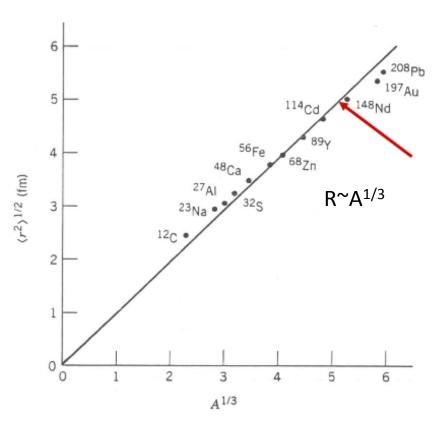
Measuring nuclear radii

- To 'see' a nucleus requires very small wavelengths -> one can use electrons
- Scattering electrons off a nucleus produces a diffraction pattern
- Note that this measures the *charge radius* since the electron scattering off the nucleus is governed by electromagnetic interaction

Numerical example

De Broglie wavelength is given by

$$\lambda = h/p$$


For an electron of 400 MeV energy, p = 400 MeV/c

 $\lambda = (4.13 \times 10^{-21} \text{ MeV} \cdot \text{s} \times 3 \times 10^{8})/400 \text{ MeV/c} \approx 3 \text{fm}$

where $1 \text{fm} = 10^{-15} \text{ m}$

This is comparable with the size of the nucleus.

Nuclear charge radius

FIELD THEORY 208 Pb 90 Zr 48Ca 40 Ca Q (r) (e.fm⁻³) × 10⁻² 10 160 12_C 10 r (fm)

The central density is the same for all nuclei

$$R = R_0 A^{\frac{1}{3}}$$
 where $R_0 = 1.2 \, fm$

Nuclear nomenclature

$$_{Z}^{A}X_{N}$$

- X = chemical symbol
- Z = number of protons
- N = number of neutrons
 - (this often not quoted as it is redundant)
- A = mass numberA = Z + N

Lead-208:

 $^{208}_{82}Pb_{126}$

82 protons 126 neutrons (= 208 - 82)

Carbon-12:

 $^{12}_{6}C_{6}$

Some more nomenclature

Isotopes:

 Nuclei with the same number of protons Z (same chemical element) but different numbers of neutrons

$$^{35}_{17}Cl_{18}$$

$$^{37}_{17}Cl_{20}$$

Isotones:

 Nuclei with the same number of neutrons but different proton number

$$^{114}_{48}Cd_{66}$$
 $^{115}_{49}In_{66}$

Isobars:

 Nuclei with the same mass number but different numbers of protons and neutrons

$$^{14}_{6}C_{8}$$
 $^{14}_{7}N_{7}$ $^{14}_{8}O_{6}$

Nuclear masses

Nuclear masses

- Are measured using mass spectrometers
- Masses are measured in atomic mass units: u
- 12C is defined to be exactly 12.0u

insulator electron beam ion source ions that are too light bend too much source slits to vacuum pump bend too little flight tube only ions of the right mass can enter the detector detector slits
probe sample sample recorder

ions that are too heavy

	Charge	Mass (u)	Mass (MeV/c²)	
Proton	+1e	1.00727647	938.280	
Neutron	0	1.00866501	939.573	
Electron	-1e	5.48580x10 ⁻³	0.511003	

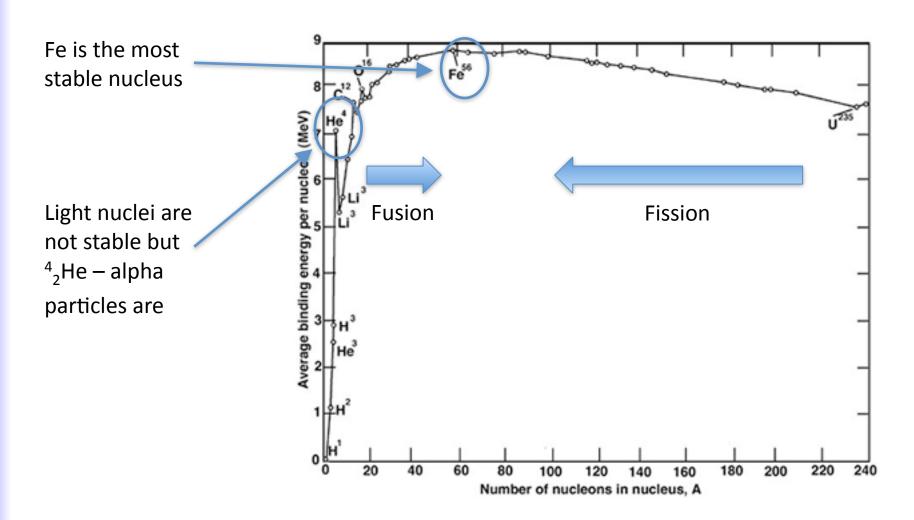
Nuclear mass and binding energy

The mass of a nucleus can be written as:

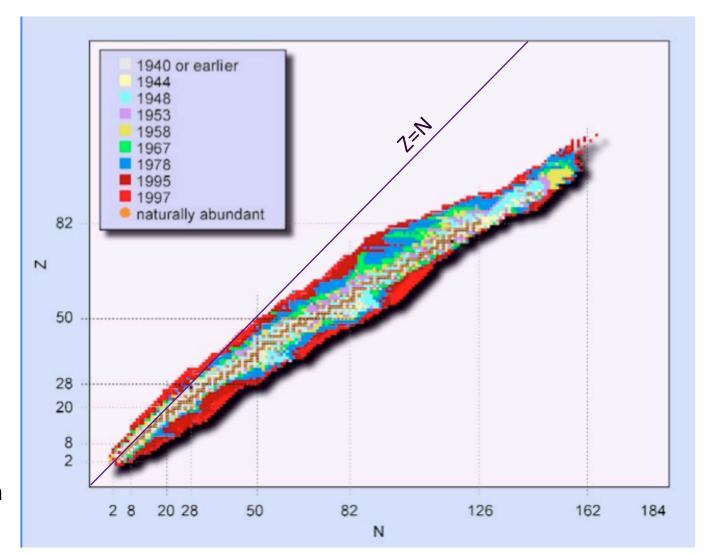
$$m_N c^2 = m_A c^2 - Z m_e c^2 + \sum_{i=1}^Z B_e$$
 Atomic mass Electron mass Electron binding energy energy energy

Electron binding energy can be ignored compared to the atomic mass energy

Electronic binding energy/atomic mass energy ~10-100keV/A x 1000MeV


How stable is a nucleus? Binding energy

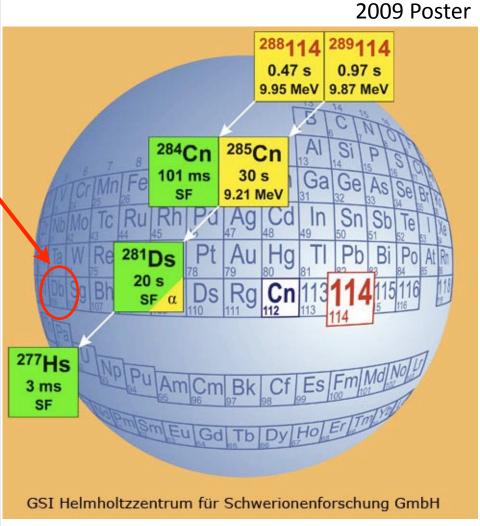
- The binding energy, B, of a nucleus is the difference in mass energy between the free particles and the bound state
- This is related to the stability of nuclei, the greater the binding energy the more stable the nucleus
- It is often useful to look at binding energy/nucleon: B/A i.e. the energy required to remove a nucleon from the nucleus, similar to atomic ionisation energy


$$B = \left\{ Zm_p + Nm_n - \left[m\binom{A}{X} - Zm_e \right] \right\} c^2$$
Free nucleons Bound state

$$B = \left[Zm \binom{1}{1} H \right) + Nm_n - m \binom{A}{1} C^2$$

Binding energy per nucleon

What nuclei exist?

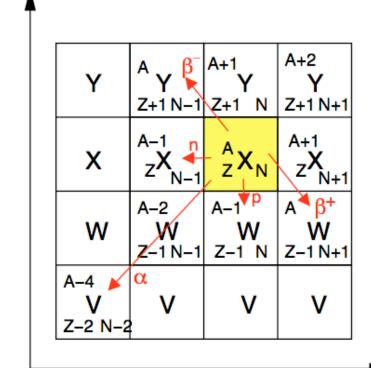


There are 214 stable nuclides, up to Z=82 (Pb)

There are 3896 nuclides known today

The search for new elements

Number	Name	Longest-lived isotope	Half-life
100	Fermium	²⁵⁷ Fm	101 days
101	Mendelevium	²⁵⁸ Md	52 days
102	Nobelium	²⁵⁹ No	58 minutes
103	Lawrencium	²⁶² Lr	3.6 hours
104	Rutherfordium	²⁶⁷ Rf	1.3 hours
105	Dubnium	²⁶⁸ Db	29 hours
106	Seaborgium	²⁷¹ Sg	1.9 minutes
107	Bohrium	²⁷⁰ Bh	61 seconds
108	Hassium	²⁷⁷ Hs	~12 minutes
109	Meitnerium	²⁷⁸ Mt	7.6 seconds
110	Darmstadtium	²⁸¹ Ds	11 seconds
111	Roentgenium	²⁸¹ Rg	26 seconds
112	Copernicium	²⁸⁵ Cn	29 seconds
113	Ununtrium	²⁸⁶ Uut	19.6 seconds
114	Ununquadium	²⁸⁹ Uuq	2.6 seconds
115	Ununpentium	²⁸⁹ Uup	220 ms
116	Ununhexium	²⁹³ Uuh	61 ms
117	Ununseptium	²⁹⁴ Uus	78 ms



Nuclear decay and radioactivity

Change in nuclear state ⇔ Radiation

Nuclei decay via:

- α -decay
- β-decay
- γ-decay
 - nuclei have energy levels like atoms, γ-rays are emitted when an nucleus de-excites
 - does not change Z or N
- Nucleon emission
 - Emission of n or p, via a process similar to α -decay
- Spontaneous fission

Alpha decay

$$^{A}_{Z}X_{N} \rightarrow ^{A-4}_{Z-2}Y_{N-2} + ^{4}_{2}He_{2}$$

$$^{240}_{94}Pu_{146} \rightarrow ^{236}_{92}U_{144} + ^{4}_{2}He_{2}$$

$$^{240}_{94}Pu_{146} \rightarrow ^{236}_{92}U_{144} + ^{4}_{2}He_{2}$$

$$^{240}_{Quantum tunnelling}$$

$$^{240}_{Quantum tunnelling}$$

$$^{240}_{Quantum tunnelling}$$

$$^{240}_{Quantum tunnelling}$$

Beta decays

$$β$$
-decay: $n \rightarrow p + e^- + v$

$${}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z+1}Y_{N-1} + e^- + \overline{v}_e$$

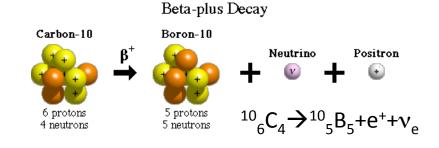
Carbon-14

Nitrogen-14

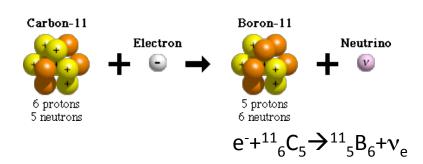
Antineutrino
Flectron

6 protons
8 neutrons

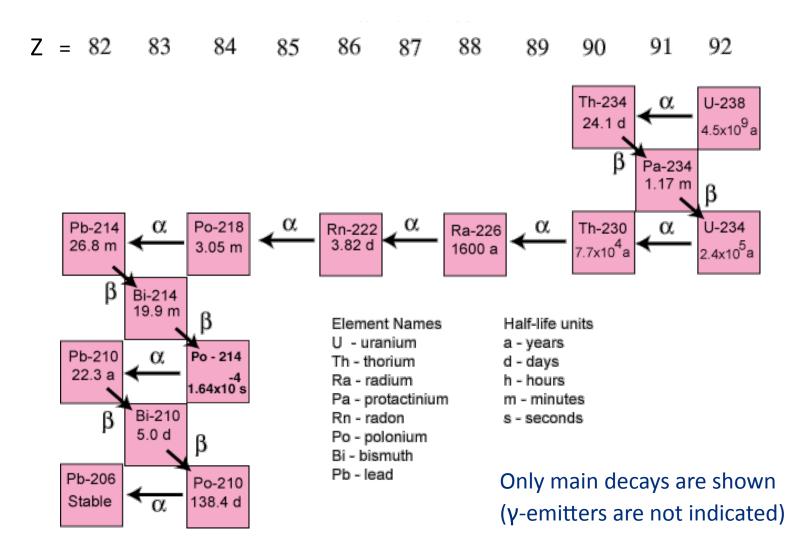
7 protons
7 neutrons

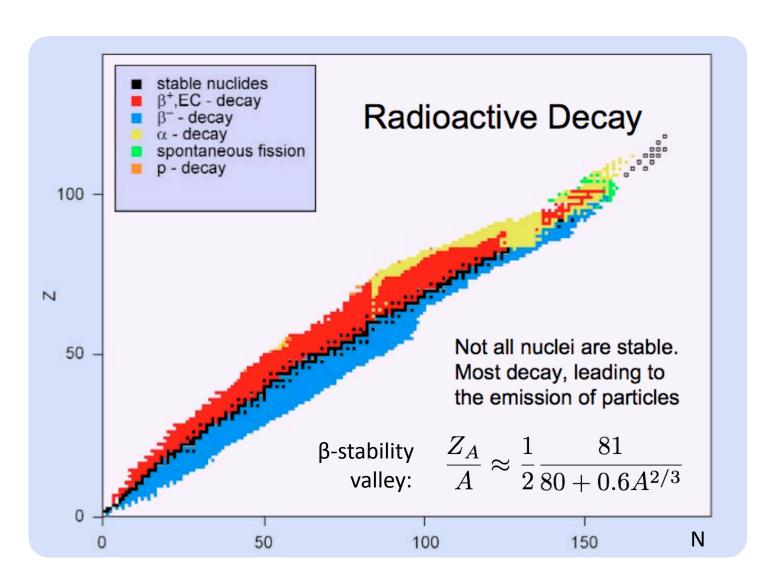

14

$$C_8 \rightarrow 14$$
 $C_8 \rightarrow 14$
 $C_8 \rightarrow$

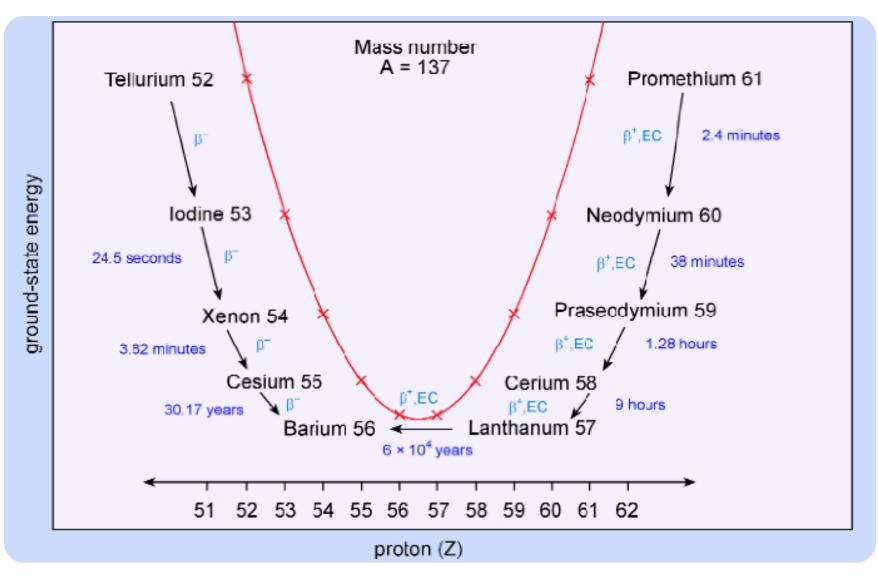

Beta-minus Decay

$$\beta^+$$
-decay: $p \rightarrow n + e^+ + v$


$${}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z-1}Y_{N+1} + e^+ + v_e$$


Electron capture:
$$e^-+p \rightarrow n+v$$

 $e^-+A_Z X_N \rightarrow A_{Z-1} Y_{N+1} + v_e$


The ²³⁸U Decay Chain

What nuclei exist

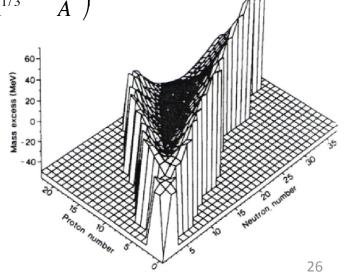
Stability

Beta-stability valley

Using the semi-empirical equation for the binding energy:

$$B_{tot}(Z,A) = a_v A - a_s A^{2/3} - a_c \frac{Z^2}{A^{1/3}} - a_a \frac{(A - 2Z)^2}{A}$$

$$M(Z,A) = Z \cdot M_p + (A - Z)M_n - B_{tot}(Z,A)$$


$$a_a \frac{(A-2Z)^2}{A} = a_a \frac{A^2 - 4AZ + 4Z^2}{A} = a_a \left(A - 4Z + \frac{4Z^2}{A}\right)$$

$$M = A \left[M_n - a_v + \frac{a_s}{A^{1/3}} + a_a \right] + Z \left[M_p - M_n - 4Za_a \right] + Z^2 \left(\frac{a_c}{A^{1/3}} + \frac{4a_a}{A} \right)$$

This the equation of a parabola $M(Z) = a + bZ + cZ^2$

$$\left(\frac{\partial M}{\partial Z}\right)_A = 0 = b + 2cZ_A$$

$$\frac{Z_A}{A} \approx \frac{1}{2} \frac{81}{80 + 0.6A^{2/3}}$$

