MICE Batch Simulation and Analysis

Ryan Bayes

Experimental Particle Physics

University of Glasgow

MICE CM42, 22 June 2015

Physics Block Analysis

Purpose of Exercise

- Evaluate step IV beam line settings.
- Test the scope of potential physics results.
- Prepare analysis in advance of data collection.
- Ensure that machinery for batch simulation exists.

Course of exercise

- Define settings for simulations.
- Ensure machinery for simulation is prepared.
 - MAUS
 - CDB
- Run simulations locally Ensure settings and software are valid.
- Run simulations on the grid Ensure production simulation works.
- **1** Produce "publication ready" plots from simulation.

Progress with Infrastructure

GRID Readiness (My Opinion)

- Simulation has been tested on the GRID from end to end
 - Have run a number of MAUS test jobs on the grid
 - Included an analysis equivalent to a full data run (but with correlated spills).
- Archival support has not been tested

G4beamline Generation

3π	6π	10π
140 MeV/c	140 MeV/c	140 MeV/c
3π	6π	10π
200 MeV/c	200 MeV/c	200 MeV/c
3π	6π	10π
240 MeV/c	240 MeV/c	240 MeV/c

- Optimization limited to downstream beam-line.
- Have begun simulations of a "beamline library"
 - Motivated by alignment runs and material studies.

Progress with Infrastructure

GRID Readiness (My Opinion)

- Simulation has been tested on the GRID from end to end
 - Have run a number of MAUS test jobs on the grid
 - Included an analysis equivalent to a full data run (but with correlated spills).
- Archival support has not been tested

G4beamline Generation

3π	6π	10π	
140 MeV/c	140 MeV/c 140 MeV/		
3π	6π	10π	
200 MeV/c	200 MeV/c	200 MeV/c	
3π	6π	10π	
240 MeV/c	240 MeV/c	240 MeV/c	

- Optimization limited to downstream beam-line.
- Have begun simulations of a "beamline library"
 - Motivated by alignment runs and material studies.

Batch Processing

Circulated Simulation

- Have generated and circulated an end to end simulation.
- Lacking an "official" location it was stored on personal webspace
 - has since been removed due to space considerations.
- Used G4beamline simulation with interface 1 m upstream of D2.
- Simulation/reconstruction with v0.9.2

Simulations Generated Since

- All simulations redone with MAUSv0.9.5.
- Improved beam matching to channel.
- Channel fields turned off for MCS studies.

Particle Selection

- Applied a simple trigger selection
 - ► Choose events that produce a single hit in TOF2
- Attempt a simple selection
 - ► Time of Flight: 26 ns< $t_{TOF1} - t_{TOF0}$ <42 ns.
 - There must be a single track upstream and downstream
 - Momentum: $140 < p_{tot} < 300 \text{ MeV/c}$
 - Considered a 5σ beam selection

	TOF1	TOF2	Selected
Field Off	44673	2096	130
Field On	40539	34274	26676
Match 1			22183

Emittance measurements

- Prediction for data obtained from the tracker reconstruction.
- No MC information used (including "corrections").

Match0 $6\pi200$ MeV/c Flip

	, , , , , , , , , , , , , , , , , , , ,	
	US	DS
< x > [mm]	22.0±0.2	20.3±0.3
< y > [mm]	13.8±0.2	6.9 ± 0.2
$< p_{\scriptscriptstyle X} > [{ m MeV/c}]$	-14.7±0.2	-5.5 ± 0.2
$< p_{\rm v} > [{\rm MeV/c}]$	7.2±0.2	-17.9 ± 0.2
$< p_z > [\text{MeV/c}]$	223.1±0.2	208.6 ± 0.2
$\epsilon_{4D} [mm]$	5.23±0.03	6.54 ± 0.04
$\beta(x,y)[mm]$	572±4	440±3
$\alpha(x,y)$	-0.625±0.004	-0.783 ± 0.004

Upstream Covariance Matrix

Downstream Covariance Matrix

	X	$p_{\scriptscriptstyle X}$	у	p_y		X	$p_{\scriptscriptstyle X}$	у	
X	1557	-271	145	840	X	1671	-191	203	
p_{x}		724	-788	4	$p_{\scriptscriptstyle X}$		826	680	
y			1266	-73	у			1233	
p_y				711	p_y				

Beam Phase Space at Trackers

- Particles after tracker matching and "PID" selection shown.
- Particle must create a (single) trigger in TOF2.
- Correlation in momentum and position off-axis elements flip with field.
- Explicit demonstration of quad-to-solenoid mis-match.

Beam Phase Space at Trackers

- Particles after tracker matching and "PID" selection shown.
- Particle must create a (single) trigger in TOF2.
- Correlation in momentum and position off-axis elements flip with field.
- Explicit demonstration of quad-to-solenoid mis-match.

Virtual Plane Analysis

- Track the evolution of the beam through the full beam line.
- Used virtual planes in the simulation every 10 cm.

Approaches to Correcting Mis-match

New beam-line settings

- Being actively followed by Jaroslaw et al.
- Results have been promised but not yet seen.
- Data haas been collected to test one prospective setting.

Beam Selection

- "A solenoid beam exists in there, somewhere."
- A particle selection/re-weighting algorithm may select well matched beam manifolds.
- Has been pursued by Chris Rogers with weighting by beam moments or Voronoi tesselation.
- I have attempted elliptical cuts and selection on beam parameters
 - no great improvement observed.

Comparisons with New Beam Settings

- Jaroslaw has proposed new beam line settings that have been tested (data collected April 26).
- Ran the simulation with G4BL input.
- Compared the emittance and beta functions to evaluate matching.
- Matching appears to be worse.
- Efforts still ongoing.

Beam phase space with Match 1 Settings

- Particles after tracker matching and "PID" selection shown.
- Beam seems more diffuse than in the M0 settings.
- Explicit demonstration of quad-to-solenoid mis-match.
- Looking forward to new beamline settings

Beam phase space with Match 1 Settings

- Particles after tracker matching and "PID" selection shown.
- Beam seems more diffuse than in the M0 settings.
- Explicit demonstration of quad-to-solenoid mis-match.
- Looking forward to new beamline settings

Simulation Constraints

$1.4{ imes}10^7$ particles prior to D2

	TOF1	TOF2	Selected
Field Off	44673	2096	130
Field On	40539	34274	26676
Match 1	49044	30427	22183

- Existing statistics generated with from 10¹¹ simulated POT in G4Beamline.
- Requires $\mathcal{O}(10^4)$ CPU-hr for G4BI simulation.
- NB: MAUS simulation requires 26 min / 10⁴ particles.

Storage Considerations

- 1.4×10^7 particles prior to D2 creates $\mathcal{O}(10)$ GB.
 - This includes 2400 virtual planes.
- Selecting only trigger events this drops this to 2 GB.
- Careful consideration of archival information is required.

Options to reduce simulation inefficiencies

Use an analytical approach to generate beam

- Will need an accurate beam transport model (how accurate?).
- How does this model include backgrounds?

Use a predefined distribution to provide initial conditions

- These distributions have been generated from existing G4Beamline simulations.
- Can select events that survive to the end of the channel (or TOF0, TOF1 etc.)
- How general would be the distribution "library"?
- Can address the second point with existing simulations...

Beam at Interface Plane

- ullet Consider distribution of selected particles at $z=1\ \mathrm{m}.$
- Distributions with no selection at z=1 m.

Beam at Interface Plane

- Consider distribution of selected particles at z = 1 m.
- Distributions with no selection at z = 1 m.

Conclusions

- After false starts the batch simulation is now going ahead.
 - Running G4Beamline to create settings library.
 - Updated all extant simulations to use MAUSv0.9.5.
- New beam line settings are required.
 - Clear that there is poor beam matching with the M0 settings.
 - First attempt correction attempt did not solve the mis-match.
 - Work is still in progress.
- Infrastructure for simulations on the grid has been exercised in local simulations.
 - Includes CDB interface for cooling channel and simulation settings.
 - Archival framework has not been explicitly tested.
 - Local batch simulations do not have a home.