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The unfolding problem

Unfolding refers to the problem of estimating the particle-level
distribution of some physical quantity of interest on the basis of
observations smeared by an imperfect measurement device

What would the distribution look like when measured with a device
having a perfect experimental resolution?

Cf. deconvolution in optics, image reconstruction in medical imaging
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Why unfold?

Unfolding is usually done to achieve one or more of the following goals:

1 Comparison of the measurement with future theories

2 Comparison of experiments with different responses

3 Input to a subsequent analysis

4 Exploratory data analysis

Unfolding is most often used in measurement analyses (as opposed to
discovery analyses): QCD, electroweak, top, forward physics,...

Mikael Kuusela (EPFL) Unfolding in HEP July 15, 2014 5 / 66



Examples of unfolding in LHC data analysis
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Problem formulation

Notation:

λ ∈ Rp
+ bin means of the true histogram

x ∈ Np
0 bin counts of the true histogram

µ ∈ Rn
+ bin means of the smeared histogram

y ∈ Nn
0 bin counts of the smeared histogram

Assume that:
1 The true counts are independent and Poisson distributed

x|λ ∼ Poisson(λ), ⊥⊥ xi |λ

2 The propagation of events to neighboring bins is multinomial
conditional on xi and independent for each true bin

It follows that the smeared counts are also independent and Poisson
distributed

y|λ ∼ Poisson(Kλ), ⊥⊥ yi |λ
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Problem formulation

Here the elements of the smearing matrix K ∈ Rn×p are given by

Kij = P(smeared event in bin i | true event in bin j)

and assumed to be known

The unfolding problem:

Problem statement

Given the smeared observations y and the Poisson regression model

y|λ ∼ Poisson(Kλ),

what can be said about the means λ of the true histogram?

The problem here is that typically K is an ill-conditioned matrix
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Unfolding is an ill-posed inverse problem

The unfolding problem is typically ill-posed in the sense that the
(pseudo)inverse of K is very sensitive to small perturbations in the
data

From y|λ ∼ Poisson(Kλ) we have that µ = Kλ

We could näıvely estimate λ̂ = K†µ̂ = K†y

But this can lead to catastrophic results!
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Demonstration of the ill-posedness
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Demonstration of the ill-posedness
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The likelihood function

The likelihood function in unfolding is:

L(λ) = p(y|λ) =
n∏

i=1

p(yi |λ) =
n∏

i=1

(∑p
j=1 Kijλj

)yi
yi !

e−
∑p

j=1 Kijλj , λ ∈ Rp
+

This function uses our Poisson regression model to link the
observations y with the unknown λ

The likelihood function plays a key role in all sensible unfolding
methods

In most statistical problems, the maximum of the likelihood, or
equivalently the maximum of the log-likelihood, provides a good
estimate of the unknown

In ill-posed problems, this is usually not the case, but the maximum
likelihood solution still provides a good starting point
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Maximum likelihood estimation

Any histogram that maximizes the log-likelihood of the unfolding
problem is called a maximum likelihood estimator λ̂MLE of λ

Hence, we want to solve:

max
λ∈Rp

+

log p(y|λ) =
n∑

i=1

yi log

 p∑
j=1

Kijλj

− p∑
j=1

Kijλj

+ const
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Maximum likelihood estimation

Theorem (Vardi et al. (1985))

Assume Kij > 0 and y 6= 0. Then the following hold for the log-likelihood
log p(y|λ) of the unfolding problem:

1 The log-likelihood has a maximum.

2 The log-likelihood is concave and hence all the maxima are global
maxima.

3 The maximum is unique if and only if the columns of K are linearly
independent

So a unique MLE exists when the columns of K are linearly
independent but how do we find it?

Mikael Kuusela (EPFL) Unfolding in HEP July 15, 2014 16 / 66



Maximum likelihood estimation

Proposition

Let K be an invertible square matrix and assume that λ̂ = K−1y ≥ 0.
Then λ̂ is the MLE of λ.

That is, matrix inversion gives us the MLE if K is invertible and the
resulting estimate is positive

Note that this result is more restrictive than it may seem

K is often non-square
Even if K was square, it is often not invertible
And even if K was invertible, K−1y often contains negative values

Is there a general recipe for finding the MLE?
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Maximum likelihood estimation

The MLE can always be found computationally by using the
expectation-maximization (EM) algorithm (Dempster et al. (1977))

This is a widely used iterative algorithm for finding maximum likelihood
solutions in problems that can be seen as containing incomplete
observations

Starting from some initial value λ(0) > 0, the EM iteration for
unfolding is given by:

λ
(k+1)
j =

λ
(k)
j∑n

i=1 Kij

n∑
i=1

Kijyi∑p
l=1 Kilλ

(k)
l

, j = 1, . . . , p

The convergence of this iteration to an MLE (i.e. λ(k) k→∞−→ λ̂MLE)
was proved by Vardi et al. (1985)
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Maximum likelihood estimation

The EM iteration for finding the MLE in Poisson regression problems
has been rediscovered many times in different fields:

Optics: Richardson (1972)
Astronomy: Lucy (1974)
Tomography: Shepp and Vardi (1982); Lange and Carson (1984); Vardi
et al. (1985)
HEP: Kondor (1983); Mülthei and Schorr (1987); Mülthei et al. (1987,
1989); D’Agostini (1995)

In modern use, the algorithm is most often called D’Agostini iteration
in HEP and Lucy–Richardson deconvolution in astronomy and optics

In HEP, also the name “Bayesian unfolding” is used but this is an
unfortunate misnomer

D’Agostini iteration is a fully frequentist technique for finding the MLE
There is nothing Bayesian about it!
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D’Agostini demo, k = 0
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D’Agostini demo, k = 100
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D’Agostini demo, k = 10000
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D’Agostini demo, k = 100000
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Regularization by early stopping of the EM iteration

We have seen that unfortunately the MLE itself is often useless

Due to the ill-posedness of the problem, it exhibits large, unphysical
fluctuations
In other words, the likelihood function alone does not contain enough
information to constrain the solution

As the EM iteration proceeds, the solutions will typically first improve
but will start to degrade at some point

This is because the algorithm will start overfitting to the Poisson
fluctuations in y

This behavior can be exploited by stopping the iteration before
unphysical features start to appear

The number of iterations k now becomes a regularization parameter
that controls the trade-off between fitting the data and taming
unphysical features
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D’Agostini demo, k = 100
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Penalized maximum likelihood estimation

Early stopping of the EM iteration seems a bit ad-hoc

Is there a more principled way of finding good solutions?

Ideally we would like to find a solution that fits the data but at the
same time seems physically plausible

Let’s consider a penalized maximum likelihood problem:

max
λ∈Rp

+

F (λ) = log p(y|λ)− δP(λ),

Here:

P(λ) is a penalty function which obtains large values for physically
implausible solutions
δ > 0 is a regularization parameter which controls the balance between
maximizing the likelihood and minimizing the penalty

Typically P(λ) is a measure of the curvature of the solution

I.e., it penalizes for large oscillations
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From penalized likelihood to Tikhonov regularization

To simplify this optimization problem, we use a Gaussian
approximation of the Poisson likelihood

y|λ ∼ Poisson(Kλ) ≈ N(Kλ, Ĉ),

where Ĉ = diag(y)

Hence the objective function becomes:

F (λ) = log p(y|λ)− δP(λ)

=
n∑

i=1

yi log

 p∑
j=1

Kijλj

− p∑
j=1

Kijλj

− δP(λ) + const

≈ −1

2
(y −Kλ)TĈ−1(y −Kλ)− δP(λ) + const
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From penalized likelihood to Tikhonov regularization

We furthermore drop the positivity constraint and absorb the factor
1/2 into the penalty to obtain

λ̂ = arg max
λ∈Rp

−(y −Kλ)TĈ−1(y −Kλ)− δP(λ)

= arg min
λ∈Rp

(y −Kλ)TĈ−1(y −Kλ) + δP(λ)

We see that we have ended up with a penalized χ2 problem

This is typically called (generalized) Tikhonov regularization
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How to choose the penalty?

The penalty term should reflect the analyst’s a priori understanding of
the desired solution

Common choices include:

Norm of the solution: P(λ) = ‖λ‖2
Curvature of the solution: P(λ) = ‖Lλ‖2, where L is a discretized 2nd
derivative operator
SVD unfolding (Höcker and Kartvelishvili, 1996):

P(λ) =

∥∥∥∥∥∥∥∥∥L


λ1/λ

MC
1

λ2/λ
MC
2

...
λp/λ

MC
p


∥∥∥∥∥∥∥∥∥
2

,

where λMC is a MC prediction for λ
TUnfold1 (Schmitt, 2012): P(λ) = ‖L(λ− λMC)‖2

1Also more general penalty terms are allowed in TUnfold
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Least squares estimation with the pseudoinverse

Consider the least squares problem

min
x∈Rp
‖Ax− y‖2,

where A ∈ Rn×p, x ∈ Rp and y ∈ Rn

This problem always has a solution, but it may not be unique

A solution is always given by the Moore–Penrose pseudoinverse of A:

x̂LS = A†y

When there are multiple solutions, the pseudoinverse gives the one
with the smallest norm

When A has full column rank, the solution is unique

In this special case, the pseudoinverse is given by A† = (ATA)−1AT

Hence, the least squares solution is: x̂LS = (ATA)−1ATy
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Finding the Tikhonov regularized solution

We will now find an explicit form of the Tikhonov regularized estimator

λ̂ = arg min
λ∈Rp

(y −Kλ)TĈ−1(y −Kλ) + δ‖Lλ‖2

by rewriting this as a least squares problem
This approach also easily generalizes to penalty terms involving λMC

Let us rewrite:

Ĉ
−1

= diag

(
1

y1
, . . . ,

1

yn

)
= diag

(
1
√

y1
, . . . ,

1
√

yn

)
︸ ︷︷ ︸

:=A

diag

(
1
√

y1
, . . . ,

1
√

yn

)
︸ ︷︷ ︸

:=A

= AA = ATA

Defining ỹ := Ay and K̃ := AK, our optimization problem becomes

λ̂ = arg min
λ∈Rp

(ỹ − K̃λ)T(ỹ − K̃λ) + δ‖Lλ‖2
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Finding the Tikhonov regularized solution

We can rewrite the objective function as follows:

(ỹ − K̃λ)T(ỹ − K̃λ) + δ‖Lλ‖2

= ‖K̃λ− ỹ‖2 + ‖
√
δLλ‖2

=

∥∥∥∥[K̃λ− ỹ√
δLλ

]∥∥∥∥2
=

∥∥∥∥[ K̃√
δL

]
λ−

[
ỹ
0

]∥∥∥∥2
Here we recognize a least squares problem, so a minimizer is given by

λ̂ =

[
K̃√
δL

]† [
ỹ
0

]
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Finding the Tikhonov regularized solution

Assuming that ker(K̃) ∩ ker(L) = {0}, the minimizer is unique and
can be simplified as follows:

λ̂ =

[
K̃√
δL

]† [
ỹ
0

]

=

([
K̃√
δL

]T [
K̃√
δL

])−1 [
K̃√
δL

]T [
ỹ
0

]

=

([
K̃

T √
δLT

] [ K̃√
δL

])−1 [
K̃

T √
δLT

] [ỹ
0

]
=
(

K̃
T

K̃ + δLTL
)−1

K̃
T

ỹ

=
(

KTĈ
−1

K + δLTL
)−1

KTĈ
−1

y

Hence we have obtained an explicit, closed-form solution for the
Tikhonov regularization problem
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Demonstration of Tikhonov regularization, P(λ) = ‖λ‖2
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Bayesian unfolding

In Bayesian unfolding, the inferences about λ are based on the
posterior distribution p(λ|y)

This is obtained using Bayes’ rule:

p(λ|y) =
p(y|λ)p(λ)

p(y)
=

p(y|λ)p(λ)∫
Rp
+

p(y|λ′)p(λ′) dλ′
, λ ∈ Rp

+

where the likelihood p(y|λ) is the same as earlier and p(λ) is a prior
distribution for λ
The most common choices as a point estimator of λ are:

The posterior mean: λ̂ = E[λ|y] =
∫
Rp

+
λp(λ|y) dλ

The maximum a posteriori (MAP) estimator: λ̂ = arg max
λ∈Rp

+

p(λ|y)

The width of the posterior distribution p(λ|y) can be used to quantify
uncertainty regarding λ

But note that the interpretation of the resulting Bayesian credible
intervals is different from frequentist confidence intervals
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Regularization using the prior

In the Bayesian approach, the prior density p(λ) regularizes the
otherwise ill-posed problem

It concentrates the probability mass of the posterior on physically
plausible solutions

The prior is typically of the form

p(λ) ∝ exp (−δP(λ)) , λ ∈ Rp
+,

where P(λ) is a function characterizing a priori plausible solutions and
δ > 0 is a hyperparameter controlling the scale of the prior density

For example, choosing P(λ) = ‖Lλ‖2, where L a discretized 2nd
derivative operator, leads to the positivity-constrained Gaussian
smoothness prior

p(λ) ∝ exp
(
−δ‖Lλ‖2

)
, λ ∈ Rp

+
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Connection between Bayesian unfolding and penalized MLE

Notice that when p(λ) ∝ exp (−δP(λ)), the Bayesian MAP solution
coincides with the penalized maximum likelihood estimator:

λ̂MAP = arg max
λ∈Rp

+

p(λ|y)

= arg max
λ∈Rp

+

log p(λ|y)

= arg max
λ∈Rp

+

log p(y|λ) + log p(λ)

= arg max
λ∈Rp

+

log p(y|λ)− δP(λ)

= λ̂PMLE

So the penalty term δP(λ) can either be interpreted as a Bayesian
prior or as a frequentist regularization term

The Bayesian interpretation has the advantage that we can visualize
the prior p(λ) by, e.g., drawing samples from it
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A note about Bayesian computations

To be able to compute the posterior mean E[λ|y] or form the Bayesian
credible intervals, we need to be able to evaluate the posterior

p(λ|y) =
p(y|λ)p(λ)∫

Rp
+

p(y|λ′)p(λ′) dλ′

But the denominator is an intractable high-dimensional integral...
Luckily, it turns out that it is possible to sample from the posterior
without evaluating the denominator

The sample mean and sample quantiles can then be used to compute
the posterior mean and the credible intervals

The class of algorithms that enable this are called Markov chain
Monte Carlo (MCMC) samplers and are based on a Markov chain
whose equilibrium distribution is the posterior p(λ|y)

The single-component Metropolis–Hastings sampler of Saquib et al.
(1998) is particularly well-suited for the unfolding problem and seems
to also work well in practice
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Choice of the regularization strength

All unfolding methods involve a free parameter controlling the
strength of the regularization

The parameter δ in Tikhonov regularization and Bayesian unfolding,
the number of iterations in D’Agostini

This parameter is typically difficult to choose using only a priori
information

But its value usually has a major impact on the unfolded spectrum

Most LHC analyses choose the regularization parameter using MC
studies

But this may create an undesired MC bias

It would be better to choose the regularization parameter based on
the observed data y
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Data-dependent choice of the regularization strength

Many methods for using the observed data y to choose the
regularization strength have been proposed in the literature:

Goodness-of-fit test in the smeared space (Veklerov and Llacer, 1987)
Empirical Bayes estimation (Kuusela and Panaretos, 2014)
L-curve (Hansen, 1992)
(Generalized) cross validation (Wahba, 1990)
...

At the moment, we have very limited experience about the relative
merits of these methods in HEP unfolding
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Goodness-of-fit for choosing the regularization strength

We present here a simplified version of the procedure proposed by
Veklerov and Llacer (1987)

Let µ̂ = Kλ̂ be the estimated smeared mean

Consider the χ2 statistic

T = (µ̂− y)TC−1(µ̂− y),

where C = diag(µ̂)

If y ∼ Poisson(µ̂), then asymptotically T
a∼ χ2

n, where n is the
number of bins in y

Hence, E[T ] ≈ n

This suggests that we should choose the regularization strength so
that T is as close as possible to n

Note that this provides a balance between overfitting (T < n) and
underfitting (T > n) the data
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Uncertainty quantification

Proper uncertainty quantification is one of the main challenges in
unfolding

By uncertainty quantification, we mean computing bin-wise
frequentist confidence intervals at 1− α confidence level:

inf
λ∈Rp

+

Pλ[λ̂i ,L(y) ≤ λi ≤ λ̂i ,U(y)] = 1− α

In practice, we can only hope to satisfy this approximately for finite
sample sizes
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Uncertainty quantification

Let SE[λ̂i ] be the standard error of λ̂i (i.e., the standard deviation of
the sampling distribution of λ̂i )

In many situations, λ̂i ± ŜE[λ̂i ] provides a reasonable 68% confidence
interval

But this is only true when λ̂i is unbiased and has a symmetric sampling
distribution

But in regularized unfolding the estimators are always biased!
Regularization reduces variance by increasing the bias (bias-variance
trade-off)
Hence the SE confidence intervals may have lousy coverage

SE[λ̂i ] SE[λ̂i ]

p(λ̂i |λ)

λi = E[λ̂i ]

Mikael Kuusela (EPFL) Unfolding in HEP July 15, 2014 48 / 66



Uncertainty quantification

Let SE[λ̂i ] be the standard error of λ̂i (i.e., the standard deviation of
the sampling distribution of λ̂i )
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Demonstration with Tikhonov regularization, P(λ) = ‖λ‖2
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λ̂± ŜE[λ̂]

−5 0 5
−100

0

100

200

300

400

500

600

δ = 1

 

 

λ

λ̂± ŜE[λ̂]
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Uncertainty quantification

The uncertainties returned by RooUnfold are estimates of the
standard errors computed either using error propagation or resampling

Hence these uncertainties should be understood as estimates of the
spread of the sampling distribution of λ̂
These should only be understood as approximate confidence intervals if
it can be shown that the bias is negligible

Bootstrap resampling provides an attractive way of forming
approximate confidence intervals that take into account the bias and
the potential skewness of p(λ̂i |λ) (Kuusela and Panaretos, 2014)
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MC dependence in the smearing matrix

The smearing matrix K is typically estimated using Monte Carlo

In addition to a statistical error due to the finite sample size, there are
two sources of systematics in K:

1 The matrix depends on the shape of the spectrum within each true bin

Kij =

∫
Fi

∫
Ej

k(y , x)f (x) dx dy∫
Ej

f (x) dx
, i = 1, . . . , n, j = 1, . . . , p

2 The smearing of the variable of interest may depend on the MC
distribution of some auxiliary variables

For example, the energy resolution of jets depends on the
pseudorapidity distribution of the jets

The first problem can be alleviated by making the true bins smaller at
the cost of increased ill-posedness of the problem
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Introduction to RooUnfold

RooUnfold (Adye, 2011) an unfolding framework for ROOT that
provides an interface for many standard unfolding methods

Written by Tim Adye, Richard Claridge, Kerstin Tackmann and
Fergus Wilson

RooUnfold is currently the most commonly used unfolding framework
among the LHC experiments although other implementations are also
occasionally used
RooUnfold includes the following unfolding techniques:

1 Matrix inversion
2 D’Agostini iteration
3 The SVD flavor of Tikhonov regularization
4 The TUnfold flavor of Tikhonov regularization

There is also an implementation for the so-called bin-by-bin unfolding
technique

This is an obsolete method that replaces the full response matrix K by
a diagonal approximation and while doing so introduces a huge MC bias
This method should not be used!
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RooUnfold classes

Figure from Adye (2011)
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RooUnfoldInvert

RooUnfoldInvert(const RooUnfoldResponse* res, const TH1*

meas, const char* name = 0, const char* title = 0)

This is the most basic method: it estimates λ using λ̂ = K−1y

Remember that when λ̂ is positive, this is the MLE

res contains the response matrix K

meas contains the smeared data y

The standard error of λ̂ is estimated using error propagation
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RooUnfoldBayes

RooUnfoldBayes(const RooUnfoldResponse* res, const TH1*

meas, Int t niter = 4, Bool t smoothit = false, const char*

name = 0, const char* title = 0)

This implements the D’Agostini/Lucy-Richardson/EM iteration for
finding the MLE
Remember that despite the name this is not a Bayesian technique
The iteration is started from the MC spectrum, i.e., λ(0) = λMC

contained in res
niter is the number of iterations

For small niter, the solution is biased towards λMC; for large niter,
we get a solution close to the MLE
Note that the default niter = 4 is completely arbitrary and with no
optimality guarantees

smoothit can be used to enable a smoothed version of the EM
iteration (outside the scope of this course)
By default, the standard error of λ̂ is estimated using error
propagation at each iteration of the algorithm
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RooUnfoldSvd

RooUnfoldSvd(const RooUnfoldResponse* res, const TH1* meas,

Int t kreg = 0, Int t ntoyssvd = 1000, const char* name = 0,

const char* title = 0)

This implements the SVD flavor of Tikhonov regularization, i.e.,

λ̂ = arg min
λ∈Rp

(y −Kλ)TĈ−1(y −Kλ) + δ

∥∥∥∥∥∥∥∥∥L


λ1/λ

MC
1

λ2/λ
MC
2

...
λp/λ

MC
p


∥∥∥∥∥∥∥∥∥
2

,

where λMC is again contained in res

This is a wrapper for the TSVDUnfold class by K. Tackmann
kreg chooses the number of significant singular values in a certain
transformation of the smearing matrix K

Small kreg corresponds to a large δ and a large kreg to a small δ

The standard error of λ̂ is estimated by resampling ntoyssvd
observations

Also includes a contribution from the uncertainty of K
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RooUnfoldTUnfold

RooUnfoldTUnfold(const RooUnfoldResponse* res, const TH1*

meas, TUnfold::ERegMode reg = TUnfold::kRegModeDerivative,

const char* name = 0, const char* title = 0)

This implements the TUnfold flavor of Tikhonov regularization, i.e.,

λ̂ = arg min
λ∈Rp

(y −Kλ)TĈ−1(y −Kλ) + δ‖L(λ− λMC)‖2,

where the minimizer is found subject to an additional area constraint2

This is a wrapper for the TUnfold class by S. Schmitt
TUnfold actually provides a lot of extra functionality which cannot be
accessed through RooUnfold

The form of the matrix L is chosen using reg
The supported choices are identity, 1st derivative and 2nd derivative

The regularization parameter δ is chosen using the
SetRegParm(Double t parm) method

If δ is not chosen manually, it is found automatically using the L-curve
technique, but this only seems to work when n� p

2In the case of the TUnfold wrapper, the RooUnfold documentation is not explicit
about the choice of λMC (it does not seem to come from res in this case)
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RooUnfold practical

Start by downloading the code template at:

www.cern.ch/mkuusela/ETH_workshop_July_2014/

RooUnfoldExercise.cxx

A set of exercises based on this code can be found at:
www.cern.ch/mkuusela/ETH_workshop_July_2014/

practical.pdf

Useful supplementary material
These slides:

www.cern.ch/mkuusela/ETH_workshop_July_2014/

slides.pdf

RooUnfold website:

http://hepunx.rl.ac.uk/~adye/software/unfold/

RooUnfold.html

RooUnfold class documentation:

http://hepunx.rl.ac.uk/~adye/software/unfold/

htmldoc/RooUnfold.html
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Conclusions

Unfolding is a complex data analysis task that involves several
assumptions and approximations

It is crucial to understand the ingredients that go into an unfolding
procedure
Unfolding algorithms should never be used as black boxes!

All unfolding methods are based on complementing the likelihood by
additional information about physically plausible solutions
The most popular techniques are the D’Agostini iteration and various
flavors of Tikhonov regularization
Beware when using RooUnfold that:

There is a MC dependence in both the smearing matrix and the
regularization
The uncertainties should be understood as standard errors and do not
necessarily provide good coverage properties
The regularization parameter has a major impact on the solution and
should be chosen in a data-dependent way

There is plenty room for further improvements in both unfolding
methodology and software
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Backup
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Uncertainty quantification with the bootstrap

The bootstrap sample can be obtained as follows:
1 Unfold y to obtain λ̂
2 Fold λ̂ to obtain µ̂ = Kλ̂
3 Obtain a resampled observation y∗ ∼ Poisson(µ̂)
4 Unfold y∗ to obtain λ̂∗

5 Repeat R times from 3

The bootstrap sample {λ̂∗(r)}Rr=1 follows the sampling distribution of

λ̂ if the true value of λ was the observed value of our estimator

I.e., it is our best understanding of the sampling distribution of λ̂ for
the data at hand

This procedure also enables us to take into account the
data-dependent choice of the regularization strength

This is very difficult to do using competing methods
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Uncertainty quantification with the bootstrap

The bootstrap sample can be used to compute 1− α basic bootstrap
intervals to serve as approximate 1− α confidence intervals for λi :

[λ̂i ,L, λ̂i ,U ] = [2λ̂i − λ̂∗i ,1−α/2, 2λ̂i − λ̂
∗
i ,α/2],

where λ̂∗i ,α denotes the α-quantile of the bootstrap sample {λ̂∗(r)i }Rr=1

This can be understood as the bootstrap analogue of the Neyman
construction of confidence intervals

α/2 α/2

p(θ̂|θ = θ̂0)

p(θ̂|θ = θ̂U)p(θ̂|θ = θ̂L)

θ̂L θ̂0 θ̂U
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α/2 α/2
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g(θ̂ + θ̂0 − θ̂U)g(θ̂ + θ̂0 − θ̂L)
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Demonstration
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Figure : Tikhonov regularization with 95% bin-wise confidence intervals. The SE
intervals cover in 23 bins out of 40, while the bootstrap intervals cover in 32 bins.
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