Introduction to Unfolding in High Energy Physics

Mikael Kuusela

Institute of Mathematics, EPFL

Advanced Scientific Computing Workshop, ETH Zurich

July 15, 2014

Outline

Introduction

Basic unfolding methodology

- Maximum likelihood estimation
- Regularized frequentist techniques
- Bayesian unfolding

3 Challenges in unfolding

- Choice of the regularization strength
- Uncertainty quantification
- MC dependence in the smearing matrix

Unfolding with RooUnfold

Conclusions

Outline

Introduction

Basic unfolding methodology

- Maximum likelihood estimation
- Regularized frequentist techniques
- Bayesian unfolding

Challenges in unfolding

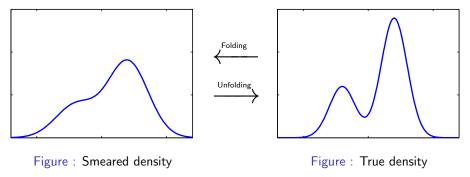
- Choice of the regularization strength
- Uncertainty quantification
- MC dependence in the smearing matrix

4 Unfolding with RooUnfold

5 Conclusions

The unfolding problem

- Unfolding refers to the problem of estimating the particle-level distribution of some physical quantity of interest on the basis of observations smeared by an imperfect measurement device
- What would the distribution look like when measured with a device having a perfect experimental resolution?
 - Cf. deconvolution in optics, image reconstruction in medical imaging



Mikael Kuusela (EPFL)

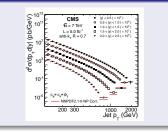
Unfolding is usually done to achieve one or more of the following goals:

- **O** Comparison of the measurement with future theories
- Output State St
- Input to a subsequent analysis
- Exploratory data analysis

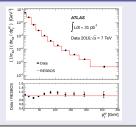
Unfolding is most often used in *measurement* analyses (as opposed to *discovery* analyses): QCD, electroweak, top, forward physics,...

Examples of unfolding in LHC data analysis

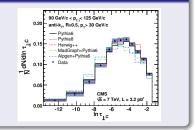
Inclusive jet cross section



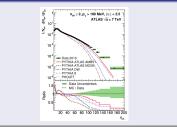
W boson cross section



Hadronic event shape



Charged particle multiplicity



Mikael Kuusela (EPFL)

July 15, 2014 6 / 66

Problem formulation

- Notation:
 - $oldsymbol{\lambda} \in \mathbb{R}^p_+$ bin means of the true histogram
 - $\mathbf{x} \in \mathbb{N}_0^{p}$ bin counts of the true histogram
 - $\mu \in \mathbb{R}^n_+$ bin means of the smeared histogram
 - $\mathbf{y} \in \mathbb{N}_0^n$ bin counts of the smeared histogram
- Assume that:
 - The true counts are independent and Poisson distributed

- The propagation of events to neighboring bins is multinomial conditional on x_i and independent for each true bin
- It follows that the smeared counts are also independent and Poisson distributed

• Here the elements of the smearing matrix $\mathbf{K} \in \mathbb{R}^{n imes p}$ are given by

 $K_{ij} = P(\text{smeared event in bin } i | \text{true event in bin } j)$

and assumed to be known

• The unfolding problem:

Problem statement

Given the smeared observations \boldsymbol{y} and the Poisson regression model

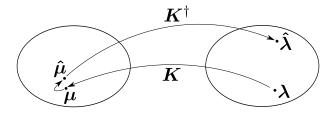
 $\mathbf{y}|\boldsymbol{\lambda} \sim \text{Poisson}(\mathbf{K}\boldsymbol{\lambda}),$

what can be said about the means λ of the true histogram?

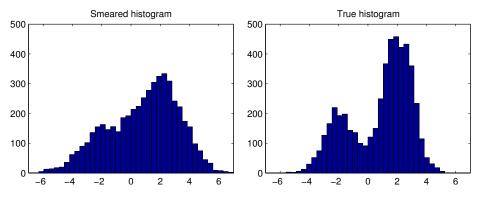
 $\bullet\,$ The problem here is that typically ${\bf K}$ is an ill-conditioned matrix

Unfolding is an ill-posed inverse problem

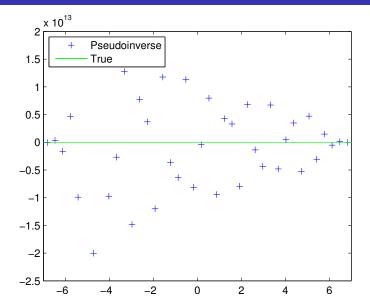
- The unfolding problem is typically ill-posed in the sense that the (pseudo)inverse of **K** is very sensitive to small perturbations in the data
- From $\mathbf{y}|oldsymbol{\lambda} \sim \operatorname{Poisson}(\mathsf{K}oldsymbol{\lambda})$ we have that $oldsymbol{\mu} = \mathsf{K}oldsymbol{\lambda}$
- We could naïvely estimate $\hat{oldsymbol{\lambda}} = {f K}^\dagger \hat{oldsymbol{\mu}} = {f K}^\dagger {f y}$
- But this can lead to catastrophic results!



Demonstration of the ill-posedness



Demonstration of the ill-posedness



Outline

Introduction

Basic unfolding methodology

- Maximum likelihood estimation
- Regularized frequentist techniques
- Bayesian unfolding

Challenges in unfolding

- Choice of the regularization strength
- Uncertainty quantification
- MC dependence in the smearing matrix

Unfolding with RooUnfold

5 Conclusions

Outline

Introduction

Basic unfolding methodology

- Maximum likelihood estimation
- Regularized frequentist techniques
- Bayesian unfolding

Challenges in unfolding

- Choice of the regularization strength
- Uncertainty quantification
- MC dependence in the smearing matrix

Unfolding with RooUnfold

5 Conclusions

• The likelihood function in unfolding is:

$$L(\boldsymbol{\lambda}) = p(\mathbf{y}|\boldsymbol{\lambda}) = \prod_{i=1}^{n} p(y_i|\boldsymbol{\lambda}) = \prod_{i=1}^{n} \frac{\left(\sum_{j=1}^{p} K_{ij} \lambda_j\right)^{y_i}}{y_i!} e^{-\sum_{j=1}^{p} K_{ij} \lambda_j}, \quad \boldsymbol{\lambda} \in \mathbb{R}_+^p$$

- \bullet This function uses our Poisson regression model to link the observations ${\bf y}$ with the unknown ${\boldsymbol \lambda}$
 - The likelihood function plays a key role in all sensible unfolding methods
- In most statistical problems, the maximum of the likelihood, or equivalently the maximum of the log-likelihood, provides a good estimate of the unknown
 - In ill-posed problems, *this is usually not the case*, but the maximum likelihood solution still provides a good starting point

- Any histogram that maximizes the log-likelihood of the unfolding problem is called a *maximum likelihood estimator* $\hat{\lambda}_{\mathrm{MLE}}$ of λ
- Hence, we want to solve:

$$\max_{\boldsymbol{\lambda} \in \mathbb{R}^p_+} \log p(\mathbf{y}|\boldsymbol{\lambda}) = \sum_{i=1}^n \left[y_i \log \left(\sum_{j=1}^p K_{ij} \lambda_j \right) - \sum_{j=1}^p K_{ij} \lambda_j \right] + \text{const}$$

Theorem (Vardi et al. (1985))

Assume $K_{ij} > 0$ and $\mathbf{y} \neq \mathbf{0}$. Then the following hold for the log-likelihood log $p(\mathbf{y}|\boldsymbol{\lambda})$ of the unfolding problem:

- The log-likelihood has a maximum.
- The log-likelihood is concave and hence all the maxima are global maxima.
- The maximum is unique if and only if the columns of K are linearly independent
 - So a unique MLE exists when the columns of **K** are linearly independent but how do we find it?

Proposition

Let **K** be an invertible square matrix and assume that $\hat{\lambda} = \mathbf{K}^{-1}\mathbf{y} \ge \mathbf{0}$. Then $\hat{\lambda}$ is the MLE of λ .

- That is, matrix inversion gives us the MLE if **K** is invertible and the resulting estimate is positive
- Note that this result is more restrictive than it may seem
 - K is often non-square
 - Even if K was square, it is often not invertible
 - And even if **K** was invertible, $\mathbf{K}^{-1}\mathbf{y}$ often contains negative values
- Is there a general recipe for finding the MLE?

Maximum likelihood estimation

- The MLE can always be found computationally by using the *expectation-maximization (EM) algorithm* (Dempster et al. (1977))
 - This is a widely used iterative algorithm for finding maximum likelihood solutions in problems that can be seen as containing incomplete observations
- Starting from some initial value $\lambda^{(0)} > 0$, the EM iteration for unfolding is given by:

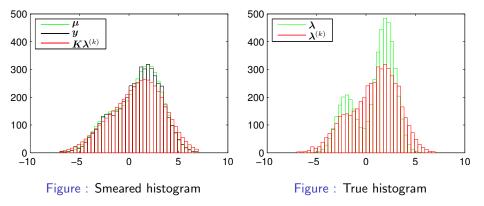
$$\lambda_{j}^{(k+1)} = \frac{\lambda_{j}^{(k)}}{\sum_{i=1}^{n} K_{ij}} \sum_{i=1}^{n} \frac{K_{ij}y_{i}}{\sum_{l=1}^{p} K_{il}\lambda_{l}^{(k)}}, \quad j = 1, \dots, p$$

• The convergence of this iteration to an MLE (i.e. $\lambda^{(k)} \xrightarrow{k \to \infty} \hat{\lambda}_{\text{MLE}}$) was proved by Vardi et al. (1985)

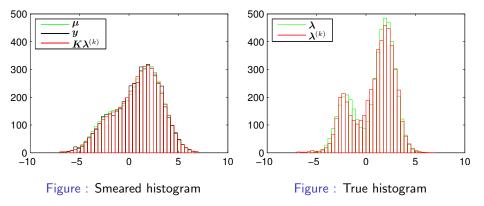
Maximum likelihood estimation

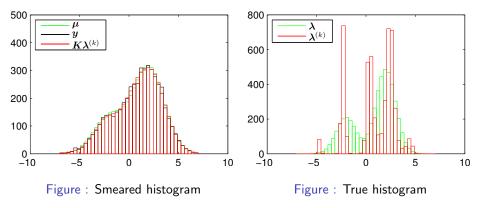
- The EM iteration for finding the MLE in Poisson regression problems has been rediscovered many times in different fields:
 - Optics: Richardson (1972)
 - Astronomy: Lucy (1974)
 - Tomography: Shepp and Vardi (1982); Lange and Carson (1984); Vardi et al. (1985)
 - HEP: Kondor (1983); Mülthei and Schorr (1987); Mülthei et al. (1987, 1989); D'Agostini (1995)
- In modern use, the algorithm is most often called *D'Agostini iteration* in HEP and *Lucy–Richardson deconvolution* in astronomy and optics
- In HEP, also the name "Bayesian unfolding" is used but this is an unfortunate misnomer
 - D'Agostini iteration is a fully frequentist technique for finding the MLE
 - There is nothing Bayesian about it!

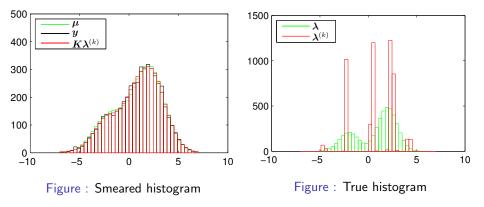
D'Agostini demo, k = 0



D'Agostini demo, k = 100







Outline

Introduction

Basic unfolding methodology

Maximum likelihood estimation

• Regularized frequentist techniques

Bayesian unfolding

Challenges in unfolding

- Choice of the regularization strength
- Uncertainty quantification
- MC dependence in the smearing matrix

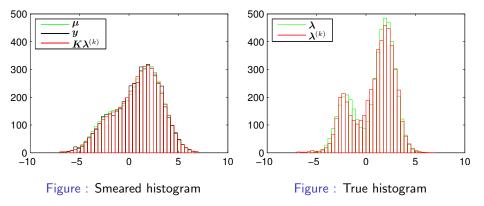
Unfolding with RooUnfold

5 Conclusions

Regularization by early stopping of the EM iteration

- We have seen that unfortunately the MLE itself is often useless
 - Due to the ill-posedness of the problem, it exhibits large, unphysical fluctuations
 - In other words, the likelihood function alone does not contain enough information to constrain the solution
- As the EM iteration proceeds, the solutions will typically first improve but will start to degrade at some point
 - $\bullet\,$ This is because the algorithm will start overfitting to the Poisson fluctuations in ${\bf y}\,$
- This behavior can be exploited by stopping the iteration before unphysical features start to appear
 - The number of iterations k now becomes a *regularization parameter* that controls the trade-off between fitting the data and taming unphysical features

D'Agostini demo, k = 100



Penalized maximum likelihood estimation

- Early stopping of the EM iteration seems a bit ad-hoc
 - Is there a more principled way of finding good solutions?
- Ideally we would like to find a solution that fits the data but at the same time seems physically plausible
- Let's consider a *penalized maximum likelihood* problem:

$$\max_{\boldsymbol{\lambda} \in \mathbb{R}^p_+} F(\boldsymbol{\lambda}) = \log p(\mathbf{y}|\boldsymbol{\lambda}) - \delta P(\boldsymbol{\lambda}),$$

- Here:
 - P(λ) is a *penalty function* which obtains large values for physically implausible solutions
 - $\delta > 0$ is a *regularization parameter* which controls the balance between maximizing the likelihood and minimizing the penalty
- Typically $P(\lambda)$ is a measure of the curvature of the solution
 - I.e., it penalizes for large oscillations

From penalized likelihood to Tikhonov regularization

• To simplify this optimization problem, we use a Gaussian approximation of the Poisson likelihood

$$\mathbf{y}|\boldsymbol{\lambda} \sim \operatorname{Poisson}(\mathbf{K}\boldsymbol{\lambda}) \approx N(\mathbf{K}\boldsymbol{\lambda}, \mathbf{\hat{C}}),$$

where $\boldsymbol{\hat{C}} = \operatorname{diag}(\boldsymbol{y})$

• Hence the objective function becomes:

$$F(\boldsymbol{\lambda}) = \log p(\mathbf{y}|\boldsymbol{\lambda}) - \delta P(\boldsymbol{\lambda})$$

= $\sum_{i=1}^{n} \left[y_i \log \left(\sum_{j=1}^{p} K_{ij} \lambda_j \right) - \sum_{j=1}^{p} K_{ij} \lambda_j \right] - \delta P(\boldsymbol{\lambda}) + \text{const}$
 $\approx -\frac{1}{2} (\mathbf{y} - \mathbf{K}\boldsymbol{\lambda})^{\mathsf{T}} \hat{\mathbf{C}}^{-1} (\mathbf{y} - \mathbf{K}\boldsymbol{\lambda}) - \delta P(\boldsymbol{\lambda}) + \text{const}$

• We furthermore drop the positivity constraint and absorb the factor 1/2 into the penalty to obtain

$$\begin{split} \hat{\boldsymbol{\lambda}} &= \operatorname*{arg\,max}_{\boldsymbol{\lambda} \in \mathbb{R}^{p}} - (\mathbf{y} - \mathbf{K}\boldsymbol{\lambda})^{\mathsf{T}} \hat{\mathbf{C}}^{-1} (\mathbf{y} - \mathbf{K}\boldsymbol{\lambda}) - \delta P(\boldsymbol{\lambda}) \\ &= \operatorname*{arg\,min}_{\boldsymbol{\lambda} \in \mathbb{R}^{p}} (\mathbf{y} - \mathbf{K}\boldsymbol{\lambda})^{\mathsf{T}} \hat{\mathbf{C}}^{-1} (\mathbf{y} - \mathbf{K}\boldsymbol{\lambda}) + \delta P(\boldsymbol{\lambda}) \end{split}$$

• We see that we have ended up with a penalized χ^2 problem • This is typically called *(generalized) Tikhonov regularization*

- The penalty term should reflect the analyst's a priori understanding of the desired solution
- Common choices include:
 - Norm of the solution: $P(\lambda) = \|\lambda\|^2$
 - Curvature of the solution: $P(\lambda) = \|L\lambda\|^2$, where L is a discretized 2nd derivative operator
 - SVD unfolding (Höcker and Kartvelishvili, 1996):

$$P(\boldsymbol{\lambda}) = \left\| \mathbf{L} \begin{bmatrix} \lambda_1 / \lambda_1^{\mathrm{MC}} \\ \lambda_2 / \lambda_2^{\mathrm{MC}} \\ \vdots \\ \lambda_p / \lambda_p^{\mathrm{MC}} \end{bmatrix}
ight\|^2,$$

where λ^{MC} is a MC prediction for λ • TUnfold¹ (Schmitt, 2012): $P(\lambda) = \|L(\lambda - \lambda^{MC})\|^2$

¹Also more general penalty terms are allowed in TUnfold

Least squares estimation with the pseudoinverse

• Consider the least squares problem

$$\min_{\mathbf{x}\in\mathbb{R}^p}\|\mathbf{A}\mathbf{x}-\mathbf{y}\|^2,$$

where $\mathbf{A} \in \mathbb{R}^{n imes p}$, $\mathbf{x} \in \mathbb{R}^p$ and $\mathbf{y} \in \mathbb{R}^n$

- This problem always has a solution, but it may not be unique
- A solution is always given by the Moore–Penrose pseudoinverse of A:

$$\hat{\mathbf{x}}_{\mathrm{LS}} = \mathbf{A}^{\dagger}\mathbf{y}$$

- When there are multiple solutions, the pseudoinverse gives the one with the smallest norm
- When A has full column rank, the solution is unique
 - In this special case, the pseudoinverse is given by $\mathbf{A}^{\dagger} = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}}$
 - Hence, the least squares solution is: $\hat{\mathbf{x}}_{LS} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$

Finding the Tikhonov regularized solution

• We will now find an explicit form of the Tikhonov regularized estimator

$$\hat{\boldsymbol{\lambda}} = \operatorname*{arg\,min}_{\boldsymbol{\lambda} \in \mathbb{R}^p} (\mathbf{y} - \mathbf{K}\boldsymbol{\lambda})^\mathsf{T} \hat{\mathbf{C}}^{-1} (\mathbf{y} - \mathbf{K}\boldsymbol{\lambda}) + \delta \|\mathbf{L}\boldsymbol{\lambda}\|^2$$

by rewriting this as a least squares problem

- $\bullet\,$ This approach also easily generalizes to penalty terms involving $\lambda^{\rm MC}$
- Let us rewrite:

$$\hat{\mathbf{C}}^{-1} = \operatorname{diag}\left(\frac{1}{y_1}, \dots, \frac{1}{y_n}\right)$$
$$= \underbrace{\operatorname{diag}\left(\frac{1}{\sqrt{y_1}}, \dots, \frac{1}{\sqrt{y_n}}\right)}_{:=\mathbf{A}} \underbrace{\operatorname{diag}\left(\frac{1}{\sqrt{y_1}}, \dots, \frac{1}{\sqrt{y_n}}\right)}_{:=\mathbf{A}}$$
$$= \mathbf{A}\mathbf{A} = \mathbf{A}^{\mathsf{T}}\mathbf{A}$$

• Defining $\tilde{\mathbf{y}} := \mathbf{A}\mathbf{y}$ and $\tilde{\mathbf{K}} := \mathbf{A}\mathbf{K}$, our optimization problem becomes $\hat{\boldsymbol{\lambda}} = \operatorname*{arg\,min}_{\boldsymbol{\lambda} \in \mathbb{R}^p} (\tilde{\mathbf{y}} - \tilde{\mathbf{K}}\boldsymbol{\lambda})^{\mathsf{T}} (\tilde{\mathbf{y}} - \tilde{\mathbf{K}}\boldsymbol{\lambda}) + \delta \|\mathbf{L}\boldsymbol{\lambda}\|^2$

Finding the Tikhonov regularized solution

• We can rewrite the objective function as follows:

$$\begin{aligned} (\tilde{\mathbf{y}} - \tilde{\mathbf{K}} \boldsymbol{\lambda})^{\mathsf{T}} (\tilde{\mathbf{y}} - \tilde{\mathbf{K}} \boldsymbol{\lambda}) + \delta \| \mathbf{L} \boldsymbol{\lambda} \|^2 \\ &= \| \tilde{\mathbf{K}} \boldsymbol{\lambda} - \tilde{\mathbf{y}} \|^2 + \| \sqrt{\delta} \mathbf{L} \boldsymbol{\lambda} \|^2 \\ &= \left\| \begin{bmatrix} \tilde{\mathbf{K}} \boldsymbol{\lambda} - \tilde{\mathbf{y}} \\ \sqrt{\delta} \mathbf{L} \boldsymbol{\lambda} \end{bmatrix} \right\|^2 \\ &= \left\| \begin{bmatrix} \tilde{\mathbf{K}} \\ \sqrt{\delta} \mathbf{L} \end{bmatrix} \boldsymbol{\lambda} - \begin{bmatrix} \tilde{\mathbf{y}} \\ \mathbf{0} \end{bmatrix} \right\|^2 \end{aligned}$$

• Here we recognize a least squares problem, so a minimizer is given by

$$\hat{oldsymbol{\lambda}} = \begin{bmatrix} ilde{oldsymbol{\mathsf{K}}} \\ \sqrt{\delta} oldsymbol{\mathsf{L}} \end{bmatrix}^\dagger \begin{bmatrix} ilde{oldsymbol{\mathsf{y}}} \\ oldsymbol{\mathsf{0}} \end{bmatrix}$$

Finding the Tikhonov regularized solution

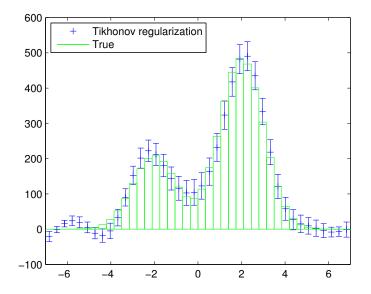
• Assuming that $\text{ker}(\tilde{K})\cap\text{ker}(L)=\{0\},$ the minimizer is unique and can be simplified as follows:

$$\begin{split} \hat{\boldsymbol{\lambda}} &= \begin{bmatrix} \tilde{\boldsymbol{K}} \\ \sqrt{\delta} \boldsymbol{L} \end{bmatrix}^{\dagger} \begin{bmatrix} \tilde{\boldsymbol{y}} \\ \boldsymbol{0} \end{bmatrix} \\ &= \left(\begin{bmatrix} \tilde{\boldsymbol{K}} \\ \sqrt{\delta} \boldsymbol{L} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \tilde{\boldsymbol{K}} \\ \sqrt{\delta} \boldsymbol{L} \end{bmatrix} \right)^{-1} \begin{bmatrix} \tilde{\boldsymbol{K}} \\ \sqrt{\delta} \boldsymbol{L} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \tilde{\boldsymbol{y}} \\ \boldsymbol{0} \end{bmatrix} \\ &= \left(\begin{bmatrix} \tilde{\boldsymbol{K}}^{\mathsf{T}} \sqrt{\delta} \boldsymbol{L}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \tilde{\boldsymbol{K}} \\ \sqrt{\delta} \boldsymbol{L} \end{bmatrix} \right)^{-1} \begin{bmatrix} \tilde{\boldsymbol{K}}^{\mathsf{T}} \sqrt{\delta} \boldsymbol{L}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \tilde{\boldsymbol{y}} \\ \boldsymbol{0} \end{bmatrix} \\ &= \left(\tilde{\boldsymbol{K}}^{\mathsf{T}} \tilde{\boldsymbol{K}} + \delta \boldsymbol{L}^{\mathsf{T}} \boldsymbol{L} \right)^{-1} \tilde{\boldsymbol{K}}^{\mathsf{T}} \tilde{\boldsymbol{y}} \\ &= \left(\boldsymbol{K}^{\mathsf{T}} \tilde{\boldsymbol{C}}^{-1} \boldsymbol{K} + \delta \boldsymbol{L}^{\mathsf{T}} \boldsymbol{L} \right)^{-1} \boldsymbol{K}^{\mathsf{T}} \tilde{\boldsymbol{C}}^{-1} \boldsymbol{y} \end{split}$$

• Hence we have obtained an explicit, closed-form solution for the Tikhonov regularization problem

Mikael Kuusela (EPFL)

Demonstration of Tikhonov regularization, $P(\boldsymbol{\lambda}) = \|\boldsymbol{\lambda}\|^2$



Mikael Kuusela (EPFL)

July 15, 2014 35 / 66

Outline

Basic unfolding methodology

- Maximum likelihood estimation
- Regularized frequentist techniques
- Bayesian unfolding

- Choice of the regularization strength
- Uncertainty guantification
- MC dependence in the smearing matrix

Bayesian unfolding

- In Bayesian unfolding, the inferences about λ are based on the posterior distribution $p(\lambda|\mathbf{y})$
- This is obtained using Bayes' rule:

$$p(oldsymbol{\lambda}|oldsymbol{y}) = rac{p(oldsymbol{y}|oldsymbol{\lambda}) p(oldsymbol{\lambda})}{p(oldsymbol{y})} = rac{p(oldsymbol{y}|oldsymbol{\lambda}) p(oldsymbol{\lambda})}{\int_{\mathbb{R}^p_+} p(oldsymbol{y}|oldsymbol{\lambda}') p(oldsymbol{\lambda}') \, \mathrm{d}oldsymbol{\lambda}'}, \quad oldsymbol{\lambda} \in \mathbb{R}^p_+$$

where the likelihood $p(\mathbf{y}|\boldsymbol{\lambda})$ is the same as earlier and $p(\boldsymbol{\lambda})$ is a prior distribution for $\boldsymbol{\lambda}$

- The most common choices as a point estimator of λ are:
 - The posterior mean: $\hat{\lambda} = \mathsf{E}[\lambda|\mathsf{y}] = \int_{\mathbb{R}^p_+} \lambda p(\lambda|\mathsf{y}) \, \mathsf{d}\lambda$
 - The maximum a posteriori (MAP) estimator: $\hat{\lambda} = rg\max_{oldsymbol{\lambda} \in \mathbb{R}^p_+} p(oldsymbol{\lambda} | \mathbf{y})$
- The width of the posterior distribution $p(\lambda|\mathbf{y})$ can be used to quantify uncertainty regarding λ
 - But note that the interpretation of the resulting Bayesian *credible intervals* is different from frequentist confidence intervals

Regularization using the prior

- In the Bayesian approach, the prior density $p(\lambda)$ regularizes the otherwise ill-posed problem
 - It concentrates the probability mass of the posterior on physically plausible solutions
- The prior is typically of the form

$$p(oldsymbol{\lambda}) \propto \exp\left(-\delta P(oldsymbol{\lambda})
ight), \quad oldsymbol{\lambda} \in \mathbb{R}^p_+,$$

where $P(\lambda)$ is a function characterizing a priori plausible solutions and $\delta > 0$ is a *hyperparameter* controlling the scale of the prior density

For example, choosing P(λ) = ||Lλ||², where L a discretized 2nd derivative operator, leads to the positivity-constrained Gaussian smoothness prior

$$p(oldsymbol{\lambda}) \propto \exp\left(-\delta \| oldsymbol{\mathsf{L}} oldsymbol{\lambda} \|^2
ight), \quad oldsymbol{\lambda} \in \mathbb{R}^p_+$$

Connection between Bayesian unfolding and penalized MLE

• Notice that when $p(\lambda) \propto \exp(-\delta P(\lambda))$, the Bayesian MAP solution coincides with the penalized maximum likelihood estimator:

Â

$$egin{aligned} & {}_{\mathrm{MAP}} = rg\max_{oldsymbol{\lambda} \in \mathbb{R}^{\rho}_{+}} p(oldsymbol{\lambda} | oldsymbol{y}) \ & = rg\max_{oldsymbol{\lambda} \in \mathbb{R}^{\rho}_{+}} \log p(oldsymbol{\lambda} | oldsymbol{\lambda}) + \log p(oldsymbol{\lambda}) \ & = rg\max_{oldsymbol{\lambda} \in \mathbb{R}^{\rho}_{+}} \log p(oldsymbol{y} | oldsymbol{\lambda}) - \delta P(oldsymbol{\lambda}) \ & = \hat{oldsymbol{\lambda}}_{\mathrm{PMLE}} \end{aligned}$$

- So the penalty term $\delta P(\lambda)$ can either be interpreted as a Bayesian prior or as a frequentist regularization term
- The Bayesian interpretation has the advantage that we can visualize the prior $p(\lambda)$ by, e.g., drawing samples from it

Mikael Kuusela (EPFL)

Unfolding in HEP

A note about Bayesian computations

 To be able to compute the posterior mean E[λ|y] or form the Bayesian credible intervals, we need to be able to evaluate the posterior

$$p(\boldsymbol{\lambda}|\mathbf{y}) = rac{p(\mathbf{y}|\boldsymbol{\lambda})p(\boldsymbol{\lambda})}{\int_{\mathbb{R}^{p}_{+}} p(\mathbf{y}|\boldsymbol{\lambda}')p(\boldsymbol{\lambda}') \, \mathrm{d}\boldsymbol{\lambda}'}$$

- But the denominator is an intractable high-dimensional integral...
- Luckily, it turns out that it is possible to *sample* from the posterior without evaluating the denominator
 - The sample mean and sample quantiles can then be used to compute the posterior mean and the credible intervals
- The class of algorithms that enable this are called Markov chain Monte Carlo (MCMC) samplers and are based on a Markov chain whose equilibrium distribution is the posterior p(λ|y)
- The single-component Metropolis–Hastings sampler of Saquib et al. (1998) is particularly well-suited for the unfolding problem and seems to also work well in practice

- Maximum likelihood estimation
- Regularized frequentist techniques

Challenges in unfolding

- Choice of the regularization strength
- Uncertainty quantification
- MC dependence in the smearing matrix

- Maximum likelihood estimation
- Regularized frequentist techniques
- Bayesian unfolding

Challenges in unfolding

• Choice of the regularization strength

- Uncertainty guantification
- MC dependence in the smearing matrix

- All unfolding methods involve a free parameter controlling the strength of the regularization
 - The parameter δ in Tikhonov regularization and Bayesian unfolding, the number of iterations in D'Agostini
- This parameter is typically difficult to choose using only a priori information
 - But its value usually has a major impact on the unfolded spectrum
- Most LHC analyses choose the regularization parameter using MC studies
 - But this may create an undesired MC bias
- It would be better to choose the regularization parameter based on the observed data **y**

- Many methods for using the observed data **y** to choose the regularization strength have been proposed in the literature:
 - Goodness-of-fit test in the smeared space (Veklerov and Llacer, 1987)
 - Empirical Bayes estimation (Kuusela and Panaretos, 2014)
 - L-curve (Hansen, 1992)
 - (Generalized) cross validation (Wahba, 1990)
 - ...
- At the moment, we have very limited experience about the relative merits of these methods in HEP unfolding

Goodness-of-fit for choosing the regularization strength

- We present here a simplified version of the procedure proposed by Veklerov and Llacer (1987)
- Let $\hat{\mu} = \mathsf{K} \hat{\lambda}$ be the estimated smeared mean
- Consider the χ^2 statistic

$$T = (\hat{\boldsymbol{\mu}} - \mathbf{y})^{\mathsf{T}} \mathbf{C}^{-1} (\hat{\boldsymbol{\mu}} - \mathbf{y}),$$

where $\mathbf{C} = ext{diag}(\hat{oldsymbol{\mu}})$

- If y ~ Poisson(μ̂), then asymptotically T ~ ^a χ²_n, where n is the number of bins in y
- Hence, $E[T] \approx n$
- This suggests that we should choose the regularization strength so that *T* is as close as possible to *n*
- Note that this provides a balance between overfitting (T < n) and underfitting (T > n) the data

- Maximum likelihood estimation
- Regularized frequentist techniques
- Bayesian unfolding

Challenges in unfolding

- Choice of the regularization strength
- Uncertainty quantification
- MC dependence in the smearing matrix

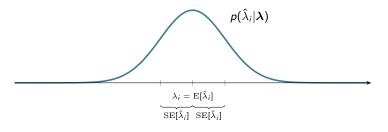
- Proper uncertainty quantification is one of the main challenges in unfolding
- By uncertainty quantification, we mean computing bin-wise frequentist confidence intervals at 1α confidence level:

$$\inf_{\boldsymbol{\lambda} \in \mathbb{R}^{p}_{+}} P_{\boldsymbol{\lambda}}[\hat{\lambda}_{i,L}(\mathbf{y}) \leq \lambda_{i} \leq \hat{\lambda}_{i,U}(\mathbf{y})] = 1 - \alpha$$

• In practice, we can only hope to satisfy this approximately for finite sample sizes

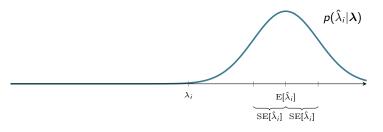
Uncertainty quantification

- Let $SE[\hat{\lambda}_i]$ be the standard error of $\hat{\lambda}_i$ (i.e., the standard deviation of the sampling distribution of $\hat{\lambda}_i$)
- In many situations, $\hat{\lambda}_i \pm \widehat{\rm SE}[\hat{\lambda}_i]$ provides a reasonable 68% confidence interval
 - But this is only true when $\hat{\lambda}_i$ is unbiased and has a symmetric sampling distribution
- But in regularized unfolding the estimators are always biased!
 - Regularization reduces variance by increasing the bias (*bias-variance trade-off*)
 - Hence the SE confidence intervals may have lousy coverage

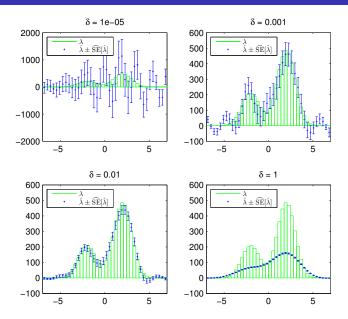


Uncertainty quantification

- Let $SE[\hat{\lambda}_i]$ be the standard error of $\hat{\lambda}_i$ (i.e., the standard deviation of the sampling distribution of $\hat{\lambda}_i$)
- In many situations, $\hat{\lambda}_i \pm \widehat{\rm SE}[\hat{\lambda}_i]$ provides a reasonable 68% confidence interval
 - But this is only true when $\hat{\lambda}_i$ is unbiased and has a symmetric sampling distribution
- But in regularized unfolding the estimators are always biased!
 - Regularization reduces variance by increasing the bias (*bias-variance trade-off*)
 - Hence the SE confidence intervals may have lousy coverage



Demonstration with Tikhonov regularization, $P(oldsymbol{\lambda}) = \|oldsymbol{\lambda}\|^2$



Mikael Kuusela (EPFL)

- The uncertainties returned by RooUnfold are estimates of the standard errors computed either using error propagation or resampling
 - Hence these uncertainties should be understood as estimates of the spread of the sampling distribution of $\hat{\lambda}$
 - These should only be understood as approximate confidence intervals if it can be shown that the bias is negligible
- Bootstrap resampling provides an attractive way of forming approximate confidence intervals that take into account the bias and the potential skewness of $p(\hat{\lambda}_i | \lambda)$ (Kuusela and Panaretos, 2014)

- Maximum likelihood estimation
- Regularized frequentist techniques

Challenges in unfolding

- Choice of the regularization strength
- Uncertainty guantification
- MC dependence in the smearing matrix

- $\bullet\,$ The smearing matrix ${\bf K}$ is typically estimated using Monte Carlo
- In addition to a statistical error due to the finite sample size, there are two sources of systematics in K:
 - **1** The matrix depends on the shape of the spectrum within each true bin

$$K_{ij} = \frac{\int_{F_i} \int_{E_j} k(y, x) f(x) \, \mathrm{d}x \, \mathrm{d}y}{\int_{E_j} f(x) \, \mathrm{d}x}, \quad i = 1, \dots, n, \quad j = 1, \dots, p$$

- The smearing of the variable of interest may depend on the MC distribution of some auxiliary variables
 - For example, the energy resolution of jets depends on the pseudorapidity distribution of the jets
- The first problem can be alleviated by making the true bins smaller at the cost of increased ill-posedness of the problem

- Maximum likelihood estimation
- Regularized frequentist techniques
- ٠

- Choice of the regularization strength
- Uncertainty guantification
- MC dependence in the smearing matrix

Unfolding with RooUnfold

Introduction to RooUnfold

- RooUnfold (Adye, 2011) an unfolding framework for ROOT that provides an interface for many standard unfolding methods
- Written by Tim Adye, Richard Claridge, Kerstin Tackmann and Fergus Wilson
- RooUnfold is currently the most commonly used unfolding framework among the LHC experiments although other implementations are also occasionally used
- RooUnfold includes the following unfolding techniques:
 - Matrix inversion
 - O'Agostini iteration
 - The SVD flavor of Tikhonov regularization
 - The TUnfold flavor of Tikhonov regularization
- There is also an implementation for the so-called bin-by-bin unfolding technique
 - This is an obsolete method that replaces the full response matrix ${\bf K}$ by a diagonal approximation and while doing so introduces a huge MC bias
 - This method should not be used!

RooUnfold classes

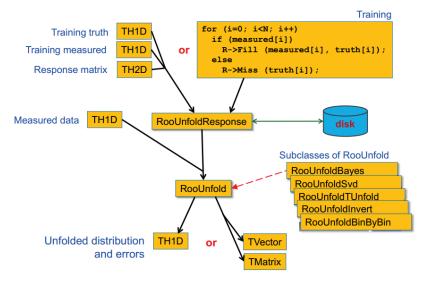


Figure from Adye (2011)

RooUnfoldInvert(const RooUnfoldResponse* res, const TH1*
meas, const char* name = 0, const char* title = 0)

- This is the most basic method: it estimates $oldsymbol{\lambda}$ using $\hat{oldsymbol{\lambda}} = {f K}^{-1} {f y}$
- ullet Remember that when $\hat{m{\lambda}}$ is positive, this is the MLE
- res contains the response matrix K
- meas contains the smeared data y
- ullet The standard error of $\hat{m{\lambda}}$ is estimated using error propagation

RooUnfoldBayes

RooUnfoldBayes(const RooUnfoldResponse* res, const TH1*
meas, Int_t niter = 4, Bool_t smoothit = false, const char*
name = 0, const char* title = 0)

- This implements the D'Agostini/Lucy-Richardson/EM iteration for finding the MLE
- Remember that despite the name this is not a Bayesian technique
- The iteration is started from the MC spectrum, i.e., $\lambda^{(0)}=\lambda^{\rm MC}$ contained in res
- niter is the number of iterations
 - For small niter, the solution is biased towards $\lambda^{\rm MC}$; for large niter, we get a solution close to the MLE
 - Note that the default niter = 4 is completely arbitrary and with no optimality guarantees
- smoothit can be used to enable a smoothed version of the EM iteration (outside the scope of this course)
- By default, the standard error of $\hat{\lambda}$ is estimated using error propagation at each iteration of the algorithm

Mikael Kuusela (EPFL)

RooUnfoldSvd

RooUnfoldSvd(const RooUnfoldResponse* res, const TH1* meas, Int_t kreg = 0, Int_t ntoyssvd = 1000, const char* name = 0, const char* title = 0)

• This implements the SVD flavor of Tikhonov regularization, i.e.,

$$\hat{\boldsymbol{\lambda}} = \underset{\boldsymbol{\lambda} \in \mathbb{R}^{p}}{\arg\min} (\mathbf{y} - \mathbf{K}\boldsymbol{\lambda})^{\mathsf{T}} \hat{\mathbf{C}}^{-1} (\mathbf{y} - \mathbf{K}\boldsymbol{\lambda}) + \delta \left\| \mathbf{L} \begin{bmatrix} \lambda_{1} / \lambda_{1}^{\mathrm{MC}} \\ \lambda_{2} / \lambda_{2}^{\mathrm{MC}} \\ \vdots \\ \lambda_{p} / \lambda_{p}^{\mathrm{MC}} \end{bmatrix} \right\|^{2},$$

where $oldsymbol{\lambda}^{\mathrm{MC}}$ is again contained in res

- This is a wrapper for the TSVDUnfold class by K. Tackmann
- \bullet kreg chooses the number of significant singular values in a certain transformation of the smearing matrix ${\bf K}$
 - $\bullet\,$ Small kreg corresponds to a large δ and a large kreg to a small $\delta\,$
- \bullet The standard error of $\hat{\lambda}$ is estimated by resampling <code>ntoyssvd</code> observations
 - ${\ensuremath{\,\circ\,}}$ Also includes a contribution from the uncertainty of ${\ensuremath{\mathsf{K}}}$

Mikael Kuusela (EPFL)

RooUnfoldTUnfold

RooUnfoldTUnfold(const RooUnfoldResponse* res, const TH1*
meas, TUnfold::ERegMode reg = TUnfold::kRegModeDerivative,
const char* name = 0, const char* title = 0)

• This implements the TUnfold flavor of Tikhonov regularization, i.e.,

$$\hat{\boldsymbol{\lambda}} = \operatorname*{arg\,min}_{\boldsymbol{\lambda} \in \mathbb{R}^{p}} (\boldsymbol{\mathsf{y}} - \boldsymbol{\mathsf{K}}\boldsymbol{\lambda})^{\mathsf{T}} \hat{\boldsymbol{\mathsf{C}}}^{-1} (\boldsymbol{\mathsf{y}} - \boldsymbol{\mathsf{K}}\boldsymbol{\lambda}) + \delta \| \boldsymbol{\mathsf{L}} (\boldsymbol{\lambda} - \boldsymbol{\lambda}^{\mathrm{MC}}) \|^{2},$$

where the minimizer is found subject to an additional area constraint²

- This is a wrapper for the TUnfold class by S. Schmitt
 - TUnfold actually provides a lot of extra functionality which cannot be accessed through RooUnfold
- The form of the matrix **L** is chosen using reg
 - The supported choices are identity, 1st derivative and 2nd derivative
- The regularization parameter δ is chosen using the SetRegParm(Double_t parm) method
 - If δ is not chosen manually, it is found automatically using the L-curve technique, but this only seems to work when $n \gg p$

 2 In the case of the TUnfold wrapper, the RooUnfold documentation is not explicit about the choice of $\lambda^{\rm MC}$ (it does not seem to come from res in this case)

RooUnfold practical

• Start by downloading the code template at:

www.cern.ch/mkuusela/ETH_workshop_July_2014/ RooUnfoldExercise.cxx

- A set of exercises based on this code can be found at: www.cern.ch/mkuusela/ETH_workshop_July_2014/ practical.pdf
- Useful supplementary material
 - These slides:

www.cern.ch/mkuusela/ETH_workshop_July_2014/ slides.pdf

RooUnfold website:

http://hepunx.rl.ac.uk/~adye/software/unfold/
RooUnfold.html

• RooUnfold class documentation:

http://hepunx.rl.ac.uk/~adye/software/unfold/ htmldoc/RooUnfold.html

- Maximum likelihood estimation
- Regularized frequentist techniques
- ٠

- Choice of the regularization strength
- Uncertainty guantification
- MC dependence in the smearing matrix

Conclusions

Conclusions

- Unfolding is a complex data analysis task that involves several assumptions and approximations
 - It is crucial to understand the ingredients that go into an unfolding procedure
 - Unfolding algorithms should never be used as black boxes!
- All unfolding methods are based on complementing the likelihood by additional information about physically plausible solutions
- The most popular techniques are the D'Agostini iteration and various flavors of Tikhonov regularization
- Beware when using RooUnfold that:
 - There is a MC dependence in both the smearing matrix and the regularization
 - The uncertainties should be understood as standard errors and do not necessarily provide good coverage properties
 - The regularization parameter has a major impact on the solution and should be chosen in a data-dependent way
- There is plenty room for further improvements in both unfolding methodology and software

- T. Adye. Unfolding algorithms and tests using RooUnfold. In H. B. Prosper and L. Lyons, editors, *Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding*, CERN-2011-006, pages 313–318, CERN, Geneva, Switzerland, 17–20 January 2011.
- G. D'Agostini. A multidimensional unfolding method based on Bayes' theorem. *Nuclear Instruments and Methods A*, 362:487–498, 1995.
- A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)*, 39(1):1–38, 1977.
- P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve. *SIAM Review*, 34(4):561–580, 1992.
- A. Höcker and V. Kartvelishvili. SVD approach to data unfolding. *Nuclear Instruments and Methods in Physics Research A*, 372:469–481, 1996.

- A. Kondor. Method of convergent weights An iterative procedure for solving Fredholm's integral equations of the first kind. *Nuclear Instruments and Methods*, 216:177–181, 1983.
- M. Kuusela and V. M. Panaretos. Empirical Bayes unfolding of elementary particle spectra at the Large Hadron Collider. arXiv:1401.8274 [stat.AP], 2014.
- K. Lange and R. Carson. EM reconstruction algorithms for emission and transmission tomography. *Journal of Computer Assisted Tomography*, 8(2): 306–316, 1984.
- L. B. Lucy. An iterative technique for the rectification of observed distributions. *Astronomical Journal*, 79(6):745–754, 1974.
- H. N. Mülthei and B. Schorr. On an iterative method for the unfolding of spectra. *Nuclear Instruments and Methods in Physics Research A*, 257:371–377, 1987.
- H. N. Mülthei, B. Schorr, and W. Törnig. On an iterative method for a class of integral equations of the first kind. *Mathematical Methods in the Applied Sciences*, 9:137–168, 1987.

- H. N. Mülthei, B. Schorr, and W. Törnig. On properties of the iterative maximum likelihood reconstruction method. *Mathematical Methods in the Applied Sciences*, 11:331–342, 1989.
- W. H. Richardson. Bayesian-based iterative method of image restoration. *Journal* of the Optical Society of America, 62(1):55–59, 1972.
- S. S. Saquib, C. A. Bouman, and K. Sauer. ML parameter estimation for Markov random fields with applications to Bayesian tomography. *IEEE Transactions on Image Processing*, 7(7):1029–1044, 1998.
- S. Schmitt. TUnfold, an algorithm for correcting migration effects in high energy physics. *Journal of Instrumentation*, 7:T10003, 2012.
- L. A. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission tomography. *IEEE Transactions on Medical Imaging*, 1(2):113–122, 1982.
- Y. Vardi, L. Shepp, and L. Kaufman. A statistical model for positron emission tomography. *Journal of the American Statistical Association*, 80(389):8–20, 1985.

- E. Veklerov and J. Llacer. Stopping rule for the MLE algorithm based on statistical hypothesis testing. *IEEE Transactions on Medical Imaging*, 6(4): 313–319, 1987.
- G. Wahba. Spline Models for Observational Data. SIAM, 1990.

Uncertainty quantification with the bootstrap

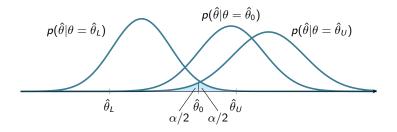
- The bootstrap sample can be obtained as follows:
 - **1** Unfold **y** to obtain $\hat{\lambda}$
 - 2 Fold $\hat{\lambda}$ to obtain $\hat{\mu} = \mathsf{K}\hat{\lambda}$
 - **③** Obtain a resampled observation $\mathbf{y}^* \sim \mathrm{Poisson}(\hat{\boldsymbol{\mu}})$
 - ${f 0}$ Unfold ${f y}^*$ to obtain $\hat{m \lambda}^*$
 - S Repeat *R* times from 3
- The bootstrap sample ${\{\hat{\lambda}^{*(r)}\}_{r=1}^{R}}$ follows the sampling distribution of $\hat{\lambda}$ if the true value of λ was the observed value of our estimator
 - I.e., it is our best understanding of the sampling distribution of $\hat{\lambda}$ for the data at hand
- This procedure also enables us to take into account the data-dependent choice of the regularization strength
 - This is very difficult to do using competing methods

Uncertainty quantification with the bootstrap

 The bootstrap sample can be used to compute 1 – α basic bootstrap intervals to serve as approximate 1 – α confidence intervals for λ_i:

$$[\hat{\lambda}_{i,L}, \hat{\lambda}_{i,U}] = [2\hat{\lambda}_i - \hat{\lambda}^*_{i,1-\alpha/2}, 2\hat{\lambda}_i - \hat{\lambda}^*_{i,\alpha/2}]$$

where $\hat{\lambda}_{i,\alpha}^*$ denotes the α -quantile of the bootstrap sample $\{\hat{\lambda}_i^{*(r)}\}_{r=1}^R$ • This can be understood as the bootstrap analogue of the Neyman construction of confidence intervals

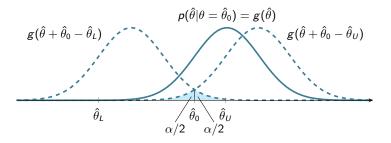


Uncertainty quantification with the bootstrap

 The bootstrap sample can be used to compute 1 – α basic bootstrap intervals to serve as approximate 1 – α confidence intervals for λ_i:

$$[\hat{\lambda}_{i,L}, \hat{\lambda}_{i,U}] = [2\hat{\lambda}_i - \hat{\lambda}^*_{i,1-\alpha/2}, 2\hat{\lambda}_i - \hat{\lambda}^*_{i,\alpha/2}],$$

where $\hat{\lambda}_{i,\alpha}^*$ denotes the α -quantile of the bootstrap sample $\{\hat{\lambda}_i^{*(r)}\}_{r=1}^R$ • This can be understood as the bootstrap analogue of the Neyman construction of confidence intervals



Demonstration

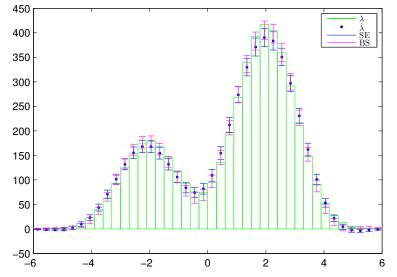


Figure : Tikhonov regularization with 95% bin-wise confidence intervals. The SE intervals cover in 23 bins out of 40, while the bootstrap intervals cover in 32 bins.

Mikael Kuusela (EPFL)