2 A)

a) Complete the missing entries in the following table that outline the fermions of the standard model. {4}

Generation	?	Mass	?	Mass
1	u	$\sim 300 \text{ MeV/c}^2$	e	?
	?	$\sim 300 \text{ MeV/c}^2$?	0
?	?	1.1 GeV/c^2	?	100 MeV
	S	?	v_{μ}	?
3	t	?	τ	?
	?	$5 \text{ GeV/ } c^2$?	0

b) Draw Feynman diagrams for $e^+e^- \to Z^0 \to f\bar{f}$ where f are all possible fermions to which Z^0 can decay.

Take the e^+e^- centre of mass energy to be 90 GeV. {4}

- c) Sketch the layout of the sensitive parts of the ALEPH detector in an $r-\phi$ (beam's eye) view. {3}
- d) Choose one possible visible decay mode for the Z^0 and describe with a diagram what the particles look like in the detector. $\{4\}$
- e) The quantity R_z is defined as

$$R_z = \frac{\Sigma\Gamma(Z \to \text{hadrons})}{\Gamma(Z \to \mu\mu)}$$

What value of R_z would you expect if it is assumed that the coupling of the Z to all fermions is the same?

Compute the value of R_z assuming that the fermion coupling depends on the electric charge. The true value of R_z is $R_z = 21$. What does this imply about the coupling of the Z^0 to fermions? {5}

f) Describe how the number of generations was determined at LEP. {4}