next up previous
Next: Deep Inelastic Structure of Up: Signals and Backgrounds Previous: Signals and Backgrounds

Exclusive Production of Vector Mesons

The experimental signals are the exclusive production of the vector mesons in the following decay modes:

displaymath933

First results on tex2html_wrap_inline935 and higher vector mesons ( tex2html_wrap_inline937 and tex2html_wrap_inline939 ) are in the early analysis stages and first candidates for tex2html_wrap_inline941 are also appearing in the data.

The clean topology of these events results in typical errors on the measured quantities (t, M2, W2 and Q2), reconstructed in the tracking chambers, of order 5%. Containment within the tracking chambers corresponds to a W interval in the range tex2html_wrap_inline953  GeV. However, some analyses are restricted to a reduced range of W where the tracking and trigger systematics are well understood. Conversely, H1 have also used the shifted vertex data to extend the analysis of the tex2html_wrap_inline773 cross section to higher tex2html_wrap_inline959  GeV. At small t there are problems triggering and, to a lesser extent, reconstructing the decay products of the vector meson. In particular, the photoproduction of tex2html_wrap_inline781 mesons is limited to tex2html_wrap_inline965  GeV2, since the produced kaons are just above threshold and the available energy in the decay is limited. In order to characterise the t-dependence, a fit to the diffractive peak is performed. In the most straightforward approach, a single exponential fit to the t distribution, tex2html_wrap_inline973 for tex2html_wrap_inline975 GeV2 is adopted.

The contributions to the systematic uncertainties are similar in each of the measurements. For example, the uncertainties on acceptance of photoproduced tex2html_wrap_inline773 's are due to uncertainties on trigger thresholds ( tex2html_wrap_inline917  9%), variations of the input Monte Carlo distributions ( tex2html_wrap_inline917  9%) and track reconstruction uncertainties especially at low pT ( tex2html_wrap_inline917  6%). In particular for the tex2html_wrap_inline773 analysis, where the mass distribution is skewed compared to a Breit-Wigner shape, uncertainties arise due to the assumptions of the fit for the interference between the resonant signal and the non-resonant background contributions ( tex2html_wrap_inline917  7%). Other significant contributions to the uncertainty are contamination due to e-gas interactions ( tex2html_wrap_inline917  2-5%) and from higher mass dissociated photon states, such as elastic tex2html_wrap_inline997 and tex2html_wrap_inline781 decays ( tex2html_wrap_inline917  2-7%). The uncertainty due to neglecting radiative corrections can also be estimated to be tex2html_wrap_inline917 4-5% [7, 8].

Finally, one of the key problems in obtaining accurate measurements of the exclusive cross sections and the t slopes is the uncertainty on the double dissociation component, where the proton has also dissociated into a low mass nucleon system [14]. The forward calorimeters will see the dissociation products of the proton if the invariant mass of the nucleon system, MN, is above approximately 4 GeV. A significant fraction of double dissociation events produce a limited mass system which is therefore not detected. Proton remnant taggers are now being used further down the proton beamline to provide constraints on this fraction and, in the H1 experiment, further constraints are provided by measuring secondary interactions in the forward muon system. Based on tex2html_wrap_inline879 data one finds that the dissociated mass spectrum falls as dN/dMN2 = 1/MNn with n = 2.20 tex2html_wrap_inline1015 0.03 at tex2html_wrap_inline881  GeV from CDF measurements [15]. However it should be noted that this measurement corresponds to a restricted mass interval. The extrapolation to lower masses is subject to uncertainties and the universality of this dissociation is open to experimental question, given the different behaviour at the upper vertex. Precisely how the proton dissociates and whether the proton can be regarded as dissociating independently of the photon system is not a priori known. Currently, this uncertainty is reflected in the cross sections by allowing the value of n to vary from around 2 to 3, although this choice is somewhat arbitrary. The magnitude of the total double dissociation contribution is estimated to be typically tex2html_wrap_inline1021 prior to cuts on forward energy deposition, a value which can be cross-checked in the data with an overall uncertainty of tex2html_wrap_inline1023 which is due to the considerations above. Combining the above uncertainties, the overall systematic errors in the various cross sections are typically tex2html_wrap_inline1025 .

Photoproduction processes have been extensively studied in fixed-target experiments, providing a large range in W over which to study the cross sections. The key features are the weak dependence of the cross section on W, an exponential dependence on t with a slope which shrinks with increasing W and the retention of the helicity of the photon by the vector meson. The t dependence of the tex2html_wrap_inline773 photoproduction data is illustrated in Figure 2 where the H1 and ZEUS data are compared to a compilation of lower energy data [16]. The data are consistent with a shrinkage of the t slope with increasing tex2html_wrap_inline1041 , where tex2html_wrap_inline771 is the photon energy in the proton rest frame, as indicated by the curve for soft pomeron exchange [17].

  figure79
Figure 2: Dependence of the exponential slope parameter b as a function of tex2html_wrap_inline771 for exclusive tex2html_wrap_inline773 photoproduction compared to the soft pomeron exchange prediction of Schuler and Sjöstrand.

The measured t slopes are tex2html_wrap_inline1053  GeV-2 (H1) [7] and tex2html_wrap_inline1057  GeV-2 (ZEUS) [8] for the tex2html_wrap_inline773 (where similar single-exponential fits have been applied). These values can be compared to tex2html_wrap_inline1063  GeV-2 (ZEUS) [10] for the tex2html_wrap_inline781 and tex2html_wrap_inline1069  GeV-2 (H1) [13] for the tex2html_wrap_inline1073 . Physically, the slope of the t dependence in diffractive interactions tells us about the effective radius of that interaction, R: if d tex2html_wrap_inline1079 , then b tex2html_wrap_inline917 1/4 R2. The range of measured b slopes varies from around 4 GeV-2 ( tex2html_wrap_inline1089  fm) to 10 GeV-2 ( tex2html_wrap_inline1093  fm). Further, the interaction radius can be approximately related to the radii of the interacting proton and vector meson, tex2html_wrap_inline1095 . Given tex2html_wrap_inline1097  fm, then this variation in b slopes corresponds to a significant change in the effective radius of the interacting vector meson from tex2html_wrap_inline1101  fm to tex2html_wrap_inline1103  fm.

  figure95
Figure 3: W dependence of the exclusive vector meson and total photoproduction cross sections compared to various power law dependences discussed in the text.

Integrating over the measured t dependence, the W dependence of the results on exclusive vector meson photoproduction cross sections are shown in Figure 3 [18]. From the experimental perspective, there is generally good agreement on the measured cross sections. The tex2html_wrap_inline1111 total cross section is also shown in Figure 3, rising with increasing energy as in hadron-hadron collisions and consistent with a value of tex2html_wrap_inline875 i.e. the total cross section increases as W0.16.

Given the dominance of the pomeron trajectory at high W and an approximately exponential behaviour of the |t| distribution with slope tex2html_wrap_inline1121 , whose mean tex2html_wrap_inline1123 value is given by 1/b, the diffractive cross section rise is moderated from

displaymath1127

to

displaymath1129

Here tex2html_wrap_inline1131 characterises the effective energy dependence after integration over t. The observed shrinkage of the diffractive peak therefore corresponds to a relative reduction of the diffractive cross section with increasing energy. Such a dependence describes the general increase of the tex2html_wrap_inline773 , tex2html_wrap_inline997 and tex2html_wrap_inline781 vector meson cross sections with increasing W. However, the rise of the tex2html_wrap_inline1073 cross section is clearly not described by such a W dependence, the increase being described by an effective W0.8 dependence. Whilst these effective powers are for illustrative purposes only, it is clear that in exclusive tex2html_wrap_inline1073 production a new phenomenon is occurring.

Qualitatively, the W0.8 dependence, corresponding to tex2html_wrap_inline1153 , could be ascribed to the rise of the gluon density observed in the scaling violations of F2. The tex2html_wrap_inline1073 mass scale, M2, is larger than the QCD scale tex2html_wrap_inline901 , and it is therefore possible to apply pQCD techniques. Quantitatively, the theoretical analysis predicts that the rise of the cross section is proportional to the square of the gluon density at small-x and allows discrimination among the latest parametrisations of the proton structure function [19]. We also know from measurements of the DIS tex2html_wrap_inline1165 total cross section that application of formula (1) results in a value of tex2html_wrap_inline903 which increases with increasing Q2, with tex2html_wrap_inline1171 0.2 to 0.25 at tex2html_wrap_inline1173  GeV2 [18]. The fact that the corresponding relative rise of F2 with decreasing x can be described by pQCD evolution [20] points towards a calculable function tex2html_wrap_inline1181 for tex2html_wrap_inline1183 GeV2.

One contribution to the DIS tex2html_wrap_inline1165 total cross section is the electroproduction of low mass vector mesons. Experimentally, the statistical errors typically dominate with systematic uncertainties similar to the photoproduction case. The trigger uncertainties are significantly reduced, however, since the scattered electron is easily identified and the radiative corrections, which are more significant ( tex2html_wrap_inline1189  [21]), can be corrected for. The W dependence of the DIS tex2html_wrap_inline773 and tex2html_wrap_inline781 cross sections for finite values of Q2 are shown in Figure 4, compared to the corresponding photoproduction cross sections. The W dependence for the tex2html_wrap_inline773 and tex2html_wrap_inline781 electroproduction data are similar to those for the tex2html_wrap_inline1073 photoproduction data, consistent with an approximate W0.8 dependence also shown in Figure 4. An important point to emphasise here is that the relative production of tex2html_wrap_inline781 to tex2html_wrap_inline773 mesons approaches the quark model prediction of 2/9 at large W and large Q2, which would indicate the applicability of pQCD to these cross sections. The measurements of the helicity angle of the vector meson decay provide a measurement of tex2html_wrap_inline1217 for the (virtual) photon, assuming s-channel helicity conservation, i.e. that the vector meson preserves the helicity of the photon. The photoproduction measurements for the tex2html_wrap_inline773 are consistent with the interaction of dominantly transversely polarised photons ( tex2html_wrap_inline1221  (ZEUS) [8]). However, adopting the same analysis for virtual photons, R=1.5+2.8-0.6 (ZEUS) [8], inconsistent with the behaviour in photoproduction and consistent with a predominantly longitudinal exchange. This predominance is expected for an underlying interaction of the virtual photon with the constituent quarks of the tex2html_wrap_inline773 . Also, the measured b slope approximately halves from the photoproduction case to a value of tex2html_wrap_inline1229  (ZEUS) [8], comparable to that in the photoproduced tex2html_wrap_inline1073 case. The basic interaction is probing smaller distances, which allows a first comparison of the observed cross section with the predictions of leading-log pQCD (see [8]).

  figure124
Figure 4: W dependence of exclusive (a) tex2html_wrap_inline773 and (b) tex2html_wrap_inline781 electroproduction cross sections for fixed values of Q2 compared to various power law dependences discussed in the text.

Finally, first results based on the observation of 42 tex2html_wrap_inline1073 events at significant tex2html_wrap_inline1243  GeV2 have been reported by H1 [13]. The cross section has been evaluated in two W intervals in order to obtain an indication of the W dependence, as shown in Figure 5, where an estimated 50% contribution due to double dissociation has been subtracted [22]. The electroproduction data are shown with statistical errors only although the systematics are estimated to be smaller than these errors ( tex2html_wrap_inline1251 ). The electroproduction and photoproduction tex2html_wrap_inline1073 data are consistent with the W0.8 dependence ( tex2html_wrap_inline1153 ) noted previously. The tex2html_wrap_inline1073 electroproduction cross section is of the same order of that of the tex2html_wrap_inline773 data, in marked contrast to the significantly lower photoproduction cross section for the tex2html_wrap_inline1073 , even at HERA energies, also shown in Figure 5. Further results in this area would allow tests of the underlying dynamics for transverse and longitudinally polarised photons coupling to light and heavy quarks in the pQCD calculations.

  figure145
Figure 5: H1 measurements of the W dependence of electroproduction and photoproduction cross sections of exclusive vector mesons.

In conclusion, there is an accumulating body of exclusive vector meson production data, measured with a systematic precision of tex2html_wrap_inline1251 , which exhibit two classes of W2 behaviour: a slow rise consistent with that of previously measured diffractive data for low M2 photoproduction data but a significant rise of these cross sections when a finite Q2 and/or a significant M2 is measured.


next up previous
Next: Deep Inelastic Structure of Up: Signals and Backgrounds Previous: Signals and Backgrounds

Converted to html: Sat Feb 24 20:48:24 GMT 1996