Historically, the measurements of
<pT*2>, the mean transverse
momentum-squared of the outgoing hadrons, as a function of
xF = pL/pLmax, the scaled longitudinal momentum distribution,
provided insight into the structure of the proton. Here,
the variables are measured in the hadronic centre of mass frame
and with respect to the virtual photon-proton
axis which is equivalent to the virtual photon-pomeron axis for
small values of t.
In Fig. 27(a), the H1
data (full circles)
are compared to the EMC
data at similar
values. The data are also compared to the RAPGAP (RG)
Monte Carlo predictions incorporating quarks and gluons (-QG) and
quarks only (-Q) [31]. (MEPS) and (CDM) refer to the Matrix Elements plus
Parton Showers and Colour Dipole Model fragmentation schemes, respectively.
The H1 data
are approximately symmetric about xF = 0 with a
relatively large
<pT*2> peaking around 0.6 GeV2.
The symmetry and relatively large pT* values reflect the
underlying boson-gluon fusion process where a ``leading" gluon
from the pomeron interacts with the virtual photon.
This behaviour is in contrast to the EMC
data where
QCD radiation is suppresed in the negative-xF (proton remnant) region.
Quantitatively the RAPGAP Monte Carlo which incorporates the pomeron
parton densities (-QG) gives a good description of the data, provided that
quarks and gluons are incorporated whereas a model with only quark (-Q)
fails to describe the data. These conclusions are relatively
independent of the fragmentation scheme, but the colour dipole model tends to
give a better description of the data.
Similarly, event shape variables have been used at e+e- colliders in order to establish the existence of gluon Bremsstrahlung radiation. In this case, the measurement of e.g. mean thrust (the mean value of the scaled longitudinal momentum with respect to the axis which maximises this value) is sensitive to the gluon-induced diagrams. A comparison of <thrust> with e+e- annihilation experiments as a function of the reciprocal of hadronic centre of mass is shown in Fig. 27(b). The diffractive data exhibit lower thrust values compared to e+e- data for all values of MX. This additional broadening is due to the boson gluon fusion process which has no analogue in e+e- annihilation continuum region.
![]() |
The general increase in thrust with increasing MX (decreasing 1/MX)
is indicative of jet production.
The question of the constituent content of the pomeron can also be addressed
via measurements of diffractively produced jets in the photoproduction
data [32]. Jets are reconstructed at large W (
134< W < 277 GeV)
using the cone algorithm with unit cone radius and two jets with
ETjet > 6 GeV.
The diffractive
contribution is identified as a tail in the
distribution
of these events above the
PYTHIA 5.7 [33] Monte Carlo expectation.
In Fig. 28 the measured
cross-section is compared to various model predictions as a function of
,
an estimator of the fraction of the pomeron momentum transferred
to the dijet system.
![]() |
The non-diffractive contribution estimated from
PYTHIA (not shown) is significantly lower than the data.
Here, standard photon and proton parton distributions are adopted and
the overall scale, which agrees with the non-diffractive data normalisation,
is set by ETjet. Also shown are the predicted diffractive cross-sections
from the LO QCD calculation plus parton showers of POMPYT, using a
hard (z(1-z)) quark combined with either a
hard, soft ((1-z)5) or singular gluon
where a Donnachie-Landshoff flux factor is adopted.
Sampling low-energy (soft) gluons corresponds to a small cross-section
and can be discounted,
whereas high-energy (hard) gluons and/or quarks can account for the
cross-section by changing the relative weights of each contribution.
The shape of the
distribution is clearly sensitive to the
shape of the input gluon distribution.
The
distribution for these events, where
is the
corresponding estimator of the fraction of the photon momentum transferred to
the dijet system,
is peaked around 1, indicating that at these ETjet values
a significant fraction of events is due to direct processes where the
whole photon interacts with the pomeron constituents.
So far we have only considered the case of small-t diffraction with respect
to the outgoing proton. Further insight into the diffractive exchange process
can be obtained by measurements of the rapidity gap between jets. Here,
a class of events is observed with little hadronic
activity between the jets [34].
The jets have
ETjet > 6 GeV and are separated by a pseudorapidity
interval (
)
of up to 4 units.
The scale of the momentum transfer, t, is not precisely defined but
is of order
(ETjet)2.
A gap is defined as the absence of particles with
transverse energy greater than 300 MeV between the jets.
The fraction of events containing a gap is then measured as a function of
,
as shown in Fig. 29.
The fit indicates the sum of an exponential behaviour, as
expected for non-diffractive processes and discussed in relation to the
diffractive DIS data, and a flat distribution expected for diffractive
processes. At
values of
,
an excess is seen with a constant fraction
over the expectation for non-diffractive exchange
at
.
This can be interpreted as evidence for large-t diffractive scattering.
In fact, secondary interactions of the photon and proton remnant
jets could fill in the gap and therefore the underlying process could play
a more significant rôle.
The size of this fraction is relatively large when compared to a similar
analysis by DØ and CDF where a constant fraction at
is observed [36,37], as discussed below.
![]() |